- 相關(guān)推薦
函數(shù)的奇偶性說課稿(精選9篇)
作為一名教師,通常會(huì)被要求編寫說課稿,是說課取得成功的前提。那么問題來了,說課稿應(yīng)該怎么寫?下面是小編為大家收集的函數(shù)的奇偶性說課稿,供大家參考借鑒,希望可以幫助到有需要的朋友。
函數(shù)的奇偶性說課稿 篇1
一、教材分析
1.教材所處的地位和作用
"奇偶性"是人教A版第一章"集合與函數(shù)概念"的第3節(jié)"函數(shù)的基本性質(zhì)"的第2小節(jié)。
奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及 入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識(shí)結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。
2.學(xué)情分析
從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對(duì)稱圖形和中心對(duì)稱圖形,并且有了一定數(shù)量的簡(jiǎn)單函數(shù)的儲(chǔ)備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題。
3.教學(xué)目標(biāo)
基于以上對(duì)教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):
【知識(shí)與技能】
1.能判斷一些簡(jiǎn)單函數(shù)的奇偶性。
2.能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡(jiǎn)單的問題。
【過程與方法】
經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價(jià)值觀】
通過自主探索,體會(huì)數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對(duì)稱美。
從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。
4.教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):函數(shù)奇偶性的概念和幾何意義。
幾年的教學(xué)實(shí)踐證明,雖然"函數(shù)奇偶性"這一節(jié)知識(shí)點(diǎn)并不是很難理解,但知識(shí)點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下面的錯(cuò)誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn) 成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把"函數(shù)的奇偶性概念"設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個(gè)問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點(diǎn)問題的講解。
難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過程。
由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對(duì)建構(gòu)奇偶性的`概念造成了一定的困難。因此我把"奇偶性概念的數(shù)學(xué)化提煉過程"設(shè)計(jì)為本節(jié)課的難點(diǎn)。
二、教法與學(xué)法分析
1、教法
根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動(dòng)探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。
2、學(xué)法
讓學(xué)生在"觀察一歸納一檢驗(yàn)一應(yīng)用"的學(xué)習(xí)過程中,自主參與知識(shí)的發(fā)生、發(fā)展、形成的過程,從而使學(xué)生掌握知識(shí)。
三、教學(xué)過程
具體的教學(xué)過程是師生互動(dòng)交流的過程,共分六個(gè)環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會(huì)定義;知識(shí)應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對(duì)這六個(gè)環(huán)節(jié)進(jìn)行說明。
。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣
由于本節(jié)內(nèi)容相對(duì)獨(dú)立,專題性較強(qiáng),所以我采用了"開門見山"導(dǎo)入方式,直接點(diǎn)明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點(diǎn)的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對(duì)稱美。再讓學(xué)生觀察幾個(gè)特殊函數(shù)圖象。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識(shí)作好鋪墊。
。ǘ┲笇(dǎo)觀察、形成概念
在這一環(huán)節(jié)中共設(shè)計(jì)了2個(gè)探究活動(dòng)。
探究1 、2 數(shù)學(xué)中對(duì)稱的形式也很多,這節(jié)課我們就以函數(shù) 和 =︱x︱以及 和 為例展開探究。這個(gè)探究主要是通過學(xué)生的自主探究來實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對(duì)稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個(gè)函數(shù)的對(duì)稱性反應(yīng)到函數(shù)值上具有的特性, ( )然后通過解析式給出嚴(yán)格證明,進(jìn)一步說明這個(gè)特性對(duì)定義域內(nèi)任意一個(gè) 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。
在這個(gè)過程中,學(xué)生把對(duì)圖形規(guī)律的感性認(rèn)識(shí),轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識(shí),切實(shí)經(jīng)歷了一次從特殊歸納出一般的過程體驗(yàn)。
。ㄈ 學(xué)生探索、領(lǐng)會(huì)定義
探究3 下列函數(shù)圖象具有奇偶性嗎?
設(shè)計(jì)意圖:深化對(duì)奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是——定義域關(guān)于原點(diǎn)對(duì)稱。(突破了本節(jié)課的難點(diǎn))
(四)知識(shí)應(yīng)用,鞏固提高
在這一環(huán)節(jié)我設(shè)計(jì)了4道題
例1判斷下列函數(shù)的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下面完成。
例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:
。1) 先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱;
。2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數(shù)的奇偶性:
例3 判斷下列函數(shù)的奇偶性:
例2、3設(shè)計(jì)意圖是探究一個(gè)函數(shù)奇偶性的可能情況有幾種類型?
例4(1)判斷函數(shù) 的奇偶性。
。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?
例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。
在這個(gè)過程中,我重點(diǎn)關(guān)注了學(xué)生的推理過程的表述。通過這些問題的解決,學(xué)生對(duì)函數(shù)的奇偶性認(rèn)識(shí)、理解和應(yīng)用都能提升很大一個(gè)高度,達(dá)到當(dāng)堂消化吸收的效果。
(五)總結(jié)反饋
在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動(dòng)模式,"問題"貫穿于探究過程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。
在本節(jié)課的最后對(duì)知識(shí)點(diǎn)進(jìn)行了簡(jiǎn)單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識(shí)在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識(shí)的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識(shí)的應(yīng)用能力、增強(qiáng)錯(cuò)誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁(yè)練習(xí)第1-2題。
選做題:課本第39頁(yè)習(xí)題1.3A組第6題。
思考題:課本第39頁(yè)習(xí)題1.3B組第3題。
設(shè)計(jì)意圖:面向全體學(xué)生,注重個(gè)人差異,加強(qiáng)作業(yè)的針對(duì)性,對(duì)學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。
函數(shù)的奇偶性說課稿 篇2
各位老師,大家好!
今天我說課的課題是高中數(shù)學(xué)人教A版必修一第一章第三節(jié)"函數(shù)的基本性質(zhì)"中的"函數(shù)的奇偶性",下面我將從教材分析,教法、學(xué)法分析,教學(xué)過程,教輔手段,板書設(shè)計(jì)等方面對(duì)本課時(shí)的教學(xué)設(shè)計(jì)進(jìn)行說明。
一、教材分析
。ㄒ唬┙滩奶攸c(diǎn)、教材的地位與作用
本節(jié)課的主要學(xué)習(xí)內(nèi)容是理解函數(shù)的奇偶性的概念,掌握利用定義和圖象判斷函數(shù)的奇偶性,以及函數(shù)奇偶性的幾個(gè)性質(zhì)。
函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱性密切相關(guān),而且為后面學(xué)習(xí)冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)打下了堅(jiān)實(shí)的基礎(chǔ)。因此本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。
。ǘ┲攸c(diǎn)、難點(diǎn)
1、本課時(shí)的教學(xué)重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。
2、本課時(shí)的教學(xué)難點(diǎn)是:判斷函數(shù)的奇偶性的方法與格式。
。ㄈ┙虒W(xué)目標(biāo)
1、知識(shí)與技能:使學(xué)生理解函數(shù)奇偶性的概念,初步掌握判斷函數(shù)奇偶性的方法;
2、方法與過程:引導(dǎo)學(xué)生通過觀察、歸納、抽象、概括,自主建構(gòu)奇函數(shù)、偶函數(shù)等概念;能運(yùn)用函數(shù)奇偶性概念解決簡(jiǎn)單的問題;使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力。
3、情感態(tài)度與價(jià)值觀:在奇偶性概念形成過程中,使學(xué)生體會(huì)數(shù)學(xué)的科學(xué)價(jià)值和應(yīng)用價(jià)值,培養(yǎng)學(xué)生善于觀察、勇于探索的良好習(xí)慣和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
二、教法、學(xué)法分析
1.教學(xué)方法:?jiǎn)l(fā)引導(dǎo)式
結(jié)合本章實(shí)際,教材簡(jiǎn)單易懂,重在應(yīng)用、解決實(shí)際問題,本節(jié)課準(zhǔn)備采用"引導(dǎo)發(fā)現(xiàn)法"進(jìn)行教學(xué),引導(dǎo)發(fā)現(xiàn)法可激發(fā)學(xué)生學(xué)習(xí)的積極性和創(chuàng)造性,分享到探索知識(shí)的方法和樂趣,在解決問題的過程中,體驗(yàn)成功與失敗,從而逐步建立完善的認(rèn)知結(jié)構(gòu)。使用多媒體輔助教學(xué),突出了知識(shí)的產(chǎn)生過程,又增加了課堂的趣味性。
2.學(xué)法指導(dǎo):引導(dǎo)學(xué)生采用自主探索與互相協(xié)作相結(jié)合的學(xué)習(xí)方式。讓每一位學(xué)生都能參與研究,并最終學(xué)會(huì)學(xué)習(xí)。
三、教輔手段
以學(xué)生獨(dú)立思考、自主探究、合作交流,教師啟發(fā)引導(dǎo)為主,以多媒體演示為輔的教學(xué)方式進(jìn)行教學(xué)
四、教學(xué)過程
為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對(duì)整個(gè)教學(xué)過程進(jìn)行了系統(tǒng)地規(guī)劃,設(shè)計(jì)了五個(gè)主要的教學(xué)程序:設(shè)疑導(dǎo)入,觀圖激趣。指導(dǎo)觀察,形成概念。學(xué)生探索、發(fā)展思維。知識(shí)應(yīng)用,鞏固提高。歸納小結(jié),布置作業(yè)。
。ㄒ唬┰O(shè)疑導(dǎo)入,觀圖激趣
讓學(xué)生感受生活中的美:展示圖片蝴蝶,雪花
學(xué)生舉例生活中的對(duì)稱現(xiàn)象
折紙:取一張紙,在其上畫出直角坐標(biāo)系,并在第一象限任畫一函數(shù)的圖象,以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形。
問題:將第一象限和第二象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)
以y軸為折痕將紙對(duì)折,然后以x 軸為折痕將紙對(duì)折,在紙的背面(即第三象限)畫出第二象限內(nèi)圖象的痕跡,然后將紙展開。觀察坐標(biāo)喜之中的圖形:
問題:將第一象限和第三象限的圖形看成一個(gè)整體,觀察圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特點(diǎn)
(二)指導(dǎo)觀察,形成概念
這節(jié)課我們首先從兩類對(duì)稱:軸對(duì)稱和中心對(duì)稱展開研究。
思考:請(qǐng)同學(xué)們作出函數(shù)y=x2的圖象,并觀察這兩個(gè)函數(shù)圖象的對(duì)稱性如何
給出圖象,然后問學(xué)生初中是怎樣判斷圖象關(guān)于 軸對(duì)稱呢此時(shí)提出研究方向:今天我們將從數(shù)值角度研究圖象的這種特征體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律
借助課件演示,學(xué)生會(huì)回答自變量互為相反數(shù),函數(shù)值相等。接著再讓學(xué)生分別計(jì)算f(1),f(-1),f(2),f(-2),學(xué)生很快會(huì)得到f(-1)=f(1),f(-2)=f(2),進(jìn)而提出在定義域內(nèi)是否對(duì)所有的x,都有類似的情況借助課件演示,學(xué)生會(huì)得出結(jié)論,f(-x)=f(x),從而引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號(hào)表示。
思考:由于對(duì)任一x,必須有一-x與之對(duì)應(yīng),因此函數(shù)的定義域有什么特征
引導(dǎo)學(xué)生發(fā)現(xiàn)函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱。根據(jù)以上特點(diǎn),請(qǐng)學(xué)生用完整的語言敘述定義,同時(shí)給出板書:
。1)函數(shù)f(x)的.定義域?yàn)锳,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x),則稱f(x)為偶函數(shù)
提出新問題:函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,它的自變量與函數(shù)值之間的數(shù)值規(guī)律是什么呢 (同時(shí)打出 y=1/x的圖象讓學(xué)生觀察研究)
學(xué)生可類比剛才的方法,很快得出結(jié)論,再讓學(xué)生給出奇函數(shù)的定義:
。2)函數(shù)f(x)的定義域?yàn)锳,且關(guān)于原點(diǎn)對(duì)稱,如果有f(-x)=f(x), 則稱f(x)為奇函數(shù)
強(qiáng)調(diào)注意點(diǎn):"定義域關(guān)于原點(diǎn)對(duì)稱"的條件必不可少。
接著再探究函數(shù)奇偶性的判斷方法,根據(jù)前面所授知識(shí),歸納步驟:
。1)求出函數(shù)的定義域,并判斷是否關(guān)于原點(diǎn)對(duì)稱
(2)驗(yàn)證f(-x)=f(x)或f(-x)=-f(x) 3)得出結(jié)論
給出例題,加深理解:
例1,利用定義,判斷下列函數(shù)的奇偶性:
。1)f(x)= x2+1
。2)f(x)=x3-x
(3)f(x)=x4-3x2-1
(4)f(x)=1/x3+1
提出新問題:在例1中的函數(shù)中有奇函數(shù),也有偶函數(shù),但象(4)這樣的是什么函數(shù)呢?
得到注意點(diǎn):既不是奇函數(shù)也不是偶函數(shù)的稱為非奇非偶函數(shù)
接著進(jìn)行課堂鞏固,強(qiáng)調(diào)非奇非偶函數(shù)的原因有兩種,一是定義域不關(guān)于原點(diǎn)對(duì)稱,二是定義域雖關(guān)于原點(diǎn)對(duì)稱,但不滿足f(-x)=f(x)或f(-x)=-f(x)
然后根據(jù)前面引入知識(shí)中,繼續(xù)探究函數(shù)奇偶性的第二種判斷方法:圖象法:
函數(shù)f(x)是奇函數(shù)=圖象關(guān)于原點(diǎn)對(duì)稱
函數(shù)f(x)是偶函數(shù)=圖象關(guān)于y軸對(duì)稱
給出例2:書P63例3,再進(jìn)行當(dāng)堂鞏固,
1,書P65ex2
2,說出下列函數(shù)的奇偶性:
Y=x4 ; Y=x-1 ;Y=x ;Y=x-2 ;Y=x5 ;Y=x-3
歸納:對(duì)形如:y=xn的函數(shù),若n為偶數(shù)則它為偶函數(shù),若n為奇數(shù),則它為奇函數(shù)
。ㄈ⿲W(xué)生探索,發(fā)展思維。
思考:1,函數(shù)y=2是什么函數(shù)
2,函數(shù)y=0有是什么函數(shù)
。ㄋ模┎贾米鳂I(yè): 課本P39 習(xí)題1.3(A組) 第6題, B組第3
五、板書設(shè)計(jì)
函數(shù)的奇偶性說課稿 篇3
一、教材與學(xué)生
1、教材
《數(shù)的奇偶性》是在學(xué)生已經(jīng)學(xué)習(xí)數(shù)的奇數(shù)和偶數(shù)的基礎(chǔ)上進(jìn)行的。因?yàn)檫@個(gè)知識(shí)才剛剛從中學(xué)數(shù)學(xué),或小學(xué)奧數(shù)系列進(jìn)入教材學(xué)生不熟悉,教師也陌生,我就想,能否讓學(xué)生親身體會(huì)一下奧數(shù)并不神秘,同時(shí)能在快樂中去學(xué)有價(jià)值、有難度的數(shù)學(xué)。
2、學(xué)生
五年級(jí)學(xué)生在不斷的學(xué)習(xí)過程中已經(jīng)具備一定的觀察、思考、分析、交流以及動(dòng)手操作的能力。但基礎(chǔ)的差異,環(huán)境的不同,后天開發(fā)的不等,故我在循序漸進(jìn),步步為營(yíng)的同時(shí),準(zhǔn)備放開手腳,讓學(xué)生去動(dòng)手探索。
二、教學(xué)目標(biāo)
1.讓學(xué)生在觀察中自然認(rèn)識(shí)奇數(shù)和偶數(shù);掌握數(shù)加減的奇偶性;
2.運(yùn)用設(shè)疑——猜想——驗(yàn)證—運(yùn)用的教學(xué)模式,培養(yǎng)的自主探究的能力;
3.讓學(xué)生在一系列的活動(dòng)中思考、學(xué)習(xí),增長(zhǎng)數(shù)學(xué)興趣和增強(qiáng)學(xué)習(xí)的'內(nèi)驅(qū)力。
三、教法和學(xué)法
主要是自主探究與開放式教學(xué)相結(jié)合。
1、讓學(xué)生自主探索規(guī)律,并全程參與。
我想,什么也不能代替學(xué)生的親身體驗(yàn)。這里我講一個(gè)小故事——有一天,我感冒了。不想說,也不想動(dòng),就說:孩子們,今天講臺(tái)就交給你們了,我就是一個(gè)擦黑板工。同學(xué)們笑了,盡管我講的是租船和租車的復(fù)雜問題,但孩子們講的頭頭是道,寫的一絲不茍。為什么不在適當(dāng)?shù)臅r(shí)候把課堂還給學(xué)生呢?!
2、大膽開放,拋棄束縛。
我的教學(xué)不想拘泥于一點(diǎn),不想修建一個(gè)房屋讓孩子們?cè)诶锩嫱,在思維的國(guó)度,應(yīng)該是平等的,自由的。這難道不是北大的思想嗎?開放式教學(xué)不是我們北大附中的精髓嗎?
因此我打破了教材的局限,設(shè)計(jì)了一個(gè)嶄新的思路——
四、教學(xué)設(shè)計(jì)和思路
。ㄒ唬┯螒?qū),感受奇偶?/p>
1、游戲一:6只小鴨子、5只蝴蝶找伴
2、游戲二:轉(zhuǎn)輪盤
。1)講要求:指針停在幾上就再走幾步;
。2)獨(dú)白:
A請(qǐng)他們?nèi)嗳コ燥,地方?/p>
B學(xué)生開心極了,當(dāng)聽到是東方餃子王………一片贊嘆。
C結(jié)果:乘興而來,敗興而歸,有的指責(zé)我—騙人
。ㄎ摇以趺打_人了?)
討論:為什么會(huì)出現(xiàn)這種情況呢?
如果游戲一是感知數(shù)的奇偶,開始了微笑,那么游戲二就徹底激發(fā)了學(xué)生的學(xué)習(xí)的積極性和主動(dòng)性,在笑聲中,嘆息聲中,在失敗中開始了思索,在思索中尋找答案。
。ù藭r(shí)學(xué)生議論紛紛,正是引出偶數(shù)、奇數(shù)的最佳時(shí)機(jī))
3、板書課題,加以破題,加以過渡。
。ǘ┎孪腧(yàn)證,認(rèn)識(shí)奇偶性
1、為什么沒有人中獎(jiǎng)呢?(學(xué)生猜想,教師板書)
2、真的是這樣嗎?(教師加以驗(yàn)證)
。ㄎ以隍(yàn)證的同時(shí),表?yè)P(yáng)學(xué)生達(dá)到了一年級(jí)水平,二年級(jí)的高度,三年級(jí)的容量,學(xué)生在笑聲中體驗(yàn)了愉悅,在開心中學(xué)到了知識(shí),增長(zhǎng)了能力)
。ǘ谖艺宫F(xiàn)了驗(yàn)證的過程后,開始表?yè)P(yáng)自己,這個(gè)人多帥,多聰明,像不像我——————,哈哈不服氣,你來呀。
。ㄈ┐竽懖孪,細(xì)心求證
1、獨(dú)立來寫(寫出了加法,又寫出了減法,我提示—有沒有乘除呢?)
2、小組合作驗(yàn)證糾偏
3、小組展示(滿滿的一黑板,加減乘除都有。而且欲罷不能,我就在表?yè)P(yáng)學(xué)生的基礎(chǔ)上,圈出我們今天應(yīng)該掌握的加法的奇偶性。)
(四)坡度練習(xí),層層加深
1、填空
2、判斷(這些內(nèi)容,由淺入深,由難及易,層層推進(jìn))
3、填表(著重講解了這一道題—因?yàn)樗抢},我把填表作為要點(diǎn),學(xué)會(huì)觀察與思考,從而得到規(guī)律。)
4、動(dòng)手(有動(dòng)腦的,動(dòng)口的,這里的翻杯子就是動(dòng)手了。)
五、課堂小結(jié),課后延伸
1、說說我們這節(jié)課探索了什么?你發(fā)現(xiàn)了什么?或者有什么想說的?
2、思考題
那如果是4個(gè)杯子全部杯口朝上放在桌上,每次翻動(dòng)其中的3只杯子,能否經(jīng)過若干次翻轉(zhuǎn),使得4個(gè)杯子全部杯口朝下?最少幾次?
函數(shù)的奇偶性說課稿 篇4
一、教材分析
函數(shù)是中學(xué)數(shù)學(xué)的重點(diǎn)和難點(diǎn),函數(shù)的思想貫穿于整個(gè)高中數(shù)學(xué)之中。函數(shù)的奇偶性是函數(shù)中的一個(gè)重要內(nèi)容,它不僅與現(xiàn)實(shí)生活中的對(duì)稱性密切相關(guān)聯(lián),而且為后面學(xué)習(xí)指、對(duì)、冪函數(shù)的性質(zhì)作好了堅(jiān)實(shí)的準(zhǔn)備和基礎(chǔ)。因此,本節(jié)課的內(nèi)容是至關(guān)重要的,它對(duì)知識(shí)起到了承上啟下的作用。
二、教學(xué)目標(biāo)
1.知識(shí)目標(biāo):
理解函數(shù)的奇偶性及其幾何意義;學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);學(xué)會(huì)判斷函數(shù)的奇偶性。
2.能力目標(biāo):
通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生觀察、歸納、抽象的能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
3.情感目標(biāo):
通過函數(shù)的奇偶性教學(xué),培養(yǎng)學(xué)生從特殊到一般的概括歸納問題的能力。
三、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):函數(shù)的奇偶性及其幾何意義。
教學(xué)難點(diǎn):判斷函數(shù)的奇偶性的方法與格式。
四、教學(xué)方法
為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),在教法上我采取:
1、通過學(xué)生熟悉的函數(shù)知識(shí)引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近未知與已知的距離,激發(fā)學(xué)生求知欲,()調(diào)動(dòng)學(xué)生主體參與的積極性。
2、在形成概念的過程中,緊扣概念中的關(guān)鍵語句,通過學(xué)生的主體參與,正確地形成概念。
3、在鼓勵(lì)學(xué)生主體參與的同時(shí),不可忽視教師的主導(dǎo)作用,要教會(huì)學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并順利地完成書面表達(dá)。
五、學(xué)習(xí)方法
1、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識(shí)到理性思維的質(zhì)的飛躍。
2、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運(yùn)用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力。
六、教學(xué)程序
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
"對(duì)稱"是大自然的一種美,這種"對(duì)稱美"在數(shù)學(xué)中也有大量的反映,讓我們看看下列各函數(shù)有什么共性?
觀察下列函數(shù)的`圖象,總結(jié)各函數(shù)之間的共性。
f(x)= x2 f(x)=x
x
通過討論歸納:函數(shù) 是定義域?yàn)槿w實(shí)數(shù)的拋物線;函數(shù)f(x)=x是定義域?yàn)槿w實(shí)數(shù)的直線;各函數(shù)之間的共性為圖象關(guān)于 軸對(duì)稱。觀察一對(duì)關(guān)于 軸對(duì)稱的點(diǎn)的坐標(biāo)有什么關(guān)系?
歸納:若點(diǎn) 在函數(shù)圖象上,則相應(yīng)的點(diǎn) 也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等。
。ǘ┗(dòng)交流 研討新知
函數(shù)的奇偶性定義:
1.偶函數(shù)
一般地,對(duì)于函數(shù) 的定義域內(nèi)的任意一個(gè) ,都有 ,那么 就叫做偶函數(shù)。(學(xué)生活動(dòng))依照偶函數(shù)的定義給出奇函數(shù)的定義。
2.奇函數(shù)
一般地,對(duì)于函數(shù) 的定義域的任意一個(gè) ,都有 ,那么 就叫做奇函數(shù)。
注意:
1.函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì)。
2.由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè) ,則 也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱)。
3.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于 軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。
例1.判斷下列函數(shù)是否是偶函數(shù)。
解:函數(shù) 不是偶函數(shù),因?yàn)樗亩x域關(guān)于原點(diǎn)不對(duì)稱。
函數(shù) 也不是偶函數(shù),因?yàn)樗亩x域?yàn)?,并不關(guān)于原點(diǎn)對(duì)稱。
例2.判斷下列函數(shù)的奇偶性
(1) (2) (3) (4)
解:(略)
小結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
、偈紫却_定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;
、诖_定 ;
③作出相應(yīng)結(jié)論:
若 ;
若 .
例3.判斷下列函數(shù)的奇偶性:
①
、
分析:先驗(yàn)證函數(shù)定義域的對(duì)稱性,再考察 .
解:(1) >0且 > = < < ,它具有對(duì)稱性。因?yàn)?,所以 是偶函數(shù),不是奇函數(shù)。
。2)當(dāng) >0時(shí),-<0,于是
當(dāng)<0時(shí),->0,于是
綜上可知,在r-∪r+上, 是奇函數(shù)。
例4.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象。
教材p41思考題:
規(guī)律:偶函數(shù)的圖象關(guān)于 軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱。
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù)。
例5.已知 是奇函數(shù),在(0,+∞)上是增函數(shù)。
證明: 在(-∞,0)上也是增函數(shù)。
證明:(略)
小結(jié):偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反;奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致。
。ㄋ模╈柟躺罨,反饋矯正
(1)課本p42 練習(xí)1.2 p46 b組題的1.2.3
(2)判斷下列函數(shù)的奇偶性,并說明理由。
①
、
、
、
。ㄎ澹w納小結(jié),整體認(rèn)識(shí)
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì)。
。┰O(shè)置問題,留下懸念
1.書面作業(yè):課本p46習(xí)題a組1.3.9.10題
2.設(shè) >0時(shí),
試問:當(dāng)<0時(shí), 的表達(dá)式是什么?
函數(shù)的奇偶性說課稿 篇5
大家好,我是1號(hào)考生。我說課的題目是《函數(shù)的奇偶性》(板書課題),根據(jù)新課標(biāo)的理念,以教什么,怎么教,為什么這樣教為思路,我從6個(gè)方面進(jìn)行說課。
一、說設(shè)計(jì)理念
根據(jù)新課程教學(xué)理念,在教學(xué)中,我以領(lǐng)悟?yàn)槟康,練?xí)為主線,引導(dǎo)學(xué)生自主學(xué)習(xí),合作探究,在教學(xué)中,注重培養(yǎng)學(xué)生邏輯思維能力、創(chuàng)新能力、合作能力、歸納能力、及數(shù)學(xué)聯(lián)系生活的能力。即實(shí)現(xiàn)數(shù)學(xué)教學(xué)的知識(shí)目標(biāo),又實(shí)現(xiàn)育人的情感目標(biāo)。
二、說教材
《函數(shù)的奇偶性》是人教版第一章集合與函數(shù)概念單元的重要知識(shí)點(diǎn)。全面介紹了偶函數(shù)的定義及判定,奇函數(shù)的定義及判定等兩部分知識(shí)。為后面學(xué)習(xí)指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)等知識(shí)奠定了基礎(chǔ)。
。ㄒ唬┙虒W(xué)目標(biāo):
依據(jù)本節(jié)課的知識(shí)特點(diǎn)及新課標(biāo)要求,本課的三維教學(xué)目標(biāo)是:
1.知識(shí)與技能目標(biāo)是:理解函數(shù)的奇偶性及其幾何意義,掌握判斷函數(shù)奇偶性的方法。
2.過程與方法目標(biāo)是:通過學(xué)生自主探索,合作學(xué)習(xí),培養(yǎng)學(xué)生的觀察、分析和歸納等數(shù)學(xué)能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。。
3.情感態(tài)度與價(jià)值觀目標(biāo)是:讓學(xué)生了解數(shù)學(xué)在生活中運(yùn)用的廣泛性和實(shí)用性,引發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識(shí)的興趣。
(二)重點(diǎn)、難點(diǎn):
重點(diǎn)是:函數(shù)的奇偶性及其幾何意義。
難點(diǎn)是:判斷函數(shù)的奇偶性的方法。
(三)學(xué)情分析
本課的授課對(duì)象是高一年級(jí)的學(xué)生,他們思維活躍,求知欲強(qiáng),他們已經(jīng)初步認(rèn)識(shí)了函數(shù)的概念,高一年級(jí)的學(xué)生有自主學(xué)習(xí)、合作探究的能力,但仍需要教師的指導(dǎo)。
三、教法學(xué)法
教法:本節(jié)課采用自主探究法、啟發(fā)式教學(xué)法、討論交流法等。
學(xué)法:引導(dǎo)學(xué)生探究合作,歸納總結(jié),注重對(duì)學(xué)生自主探究問題能力的培養(yǎng),發(fā)揮學(xué)習(xí)小組的合作作用。
四、教學(xué)準(zhǔn)備
教師制作多媒體課件,編印導(dǎo)學(xué)案;學(xué)生預(yù)習(xí)課文,觀察生活中具有對(duì)稱美的物體或圖像。
五、教學(xué)過程
本節(jié)課我從導(dǎo)、研、練、拓、升五個(gè)環(huán)節(jié)進(jìn)行說課。
環(huán)節(jié)一:創(chuàng)設(shè)情境,導(dǎo)入新課。(導(dǎo)3)、
該環(huán)節(jié),用多媒體向?qū)W生展示現(xiàn)實(shí)生活中蝴蝶、太陽(yáng)、湖面倒影等具有對(duì)稱性的圖像,再讓學(xué)生舉例函數(shù)圖像是否有類似的屬性?通過評(píng)價(jià)學(xué)生回答,引出本節(jié)課的標(biāo)題:函數(shù)的.奇偶性。
本環(huán)節(jié)的設(shè)計(jì)意圖是:采用問題探究導(dǎo)入法,有效地引起學(xué)生的注意,激發(fā)學(xué)生學(xué)習(xí)本節(jié)課的興趣,便于環(huán)節(jié)二的開展。本環(huán)節(jié)需要3分鐘
環(huán)節(jié)二:合作探究,獲取新知(研20)
該環(huán)節(jié),我分兩個(gè)模塊進(jìn)行。
模塊一:完成偶函數(shù)的定義。(板書知識(shí)點(diǎn)的小標(biāo)題)。該模塊中,讓學(xué)生觀察課本圖1.3.7并思考,兩個(gè)函數(shù)圖像有什么共同特征?相應(yīng)的對(duì)應(yīng)表是如何體現(xiàn)這些特征的?進(jìn)而讓學(xué)生觀察討論,得出結(jié)論:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值相同,并引導(dǎo)學(xué)生歸納總結(jié)出偶函數(shù)的定義:定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
模塊二:完成奇函數(shù)的定義。(板書知識(shí)點(diǎn)的小標(biāo)題)。該模塊中,學(xué)生已經(jīng)學(xué)習(xí)了偶函數(shù)的定義,根據(jù)偶函數(shù)相同的教學(xué)方法引導(dǎo)學(xué)生推導(dǎo)出奇函數(shù)的定義,即:定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
模塊三:完成例題5講解。在引導(dǎo)學(xué)生復(fù)述偶函數(shù)、奇函數(shù)的定義的基礎(chǔ)上,師生共同完成例題5中的1)2)小題。在這個(gè)過程中教師要提醒學(xué)生注意函數(shù)定義域的范圍,掌握函數(shù)奇偶性判定的方法。在完成1、2小題的基礎(chǔ)上,讓學(xué)生獨(dú)立完成3)4)兩個(gè)小題。然后在小組內(nèi)討論交流,教師巡視,以便發(fā)現(xiàn)問題,解決問題。
本環(huán)節(jié)的設(shè)計(jì)意圖是:采用講授、研討、探究、評(píng)價(jià)、訓(xùn)練、等多種教學(xué)手段,達(dá)成本節(jié)課的三維目標(biāo)。本環(huán)節(jié)需要25分鐘
環(huán)節(jié)三:強(qiáng)化訓(xùn)練,目標(biāo)達(dá)成。(練12)
該環(huán)節(jié),讓同學(xué)們拿出之前下發(fā)的練習(xí)題,每個(gè)小組選出一位同學(xué)到黑板板演。然后教師對(duì)板演情況進(jìn)行講評(píng),其他同學(xué)小組內(nèi)互相批閱。
本環(huán)節(jié)的設(shè)計(jì)意圖是:采取自評(píng)和他評(píng)相結(jié)合的方法,檢查學(xué)生的學(xué)習(xí)效果,便于及時(shí)對(duì)學(xué)生進(jìn)行查缺補(bǔ)漏。本環(huán)節(jié)需要12分鐘
環(huán)節(jié)四:聯(lián)系生活,拓展延伸(拓5)
這根據(jù)所學(xué)知識(shí),讓學(xué)生聯(lián)系生活,列舉在教室中具有奇偶性的具體實(shí)物,提高學(xué)生將知識(shí)聯(lián)系生活的能力。
環(huán)節(jié)五:總結(jié)提升,布置作業(yè)(升5)
教師對(duì)本節(jié)課知識(shí)點(diǎn)進(jìn)行梳理。完成課堂達(dá)標(biāo)測(cè)評(píng)試題,然后啟發(fā)學(xué)生思考這一課的收獲。最后布置兩種作業(yè);A(chǔ)型作業(yè)為總結(jié)本節(jié)課的所學(xué)知識(shí)完成相關(guān)練習(xí)。擴(kuò)展型作業(yè)為學(xué)生自主查詢函數(shù)奇偶性的相關(guān)資料。
本環(huán)節(jié)通過梳理總結(jié),使本課知識(shí)要點(diǎn)化,系統(tǒng)化,給學(xué)生以強(qiáng)化記憶。所布置的作業(yè),既可以鞏固所學(xué)知識(shí),又能把課堂所學(xué)應(yīng)用于實(shí)踐當(dāng)中,從而達(dá)到教學(xué)的目的。
六、說板書設(shè)計(jì)
我的板書直觀具體形象地將本節(jié)課的學(xué)生重點(diǎn)呈現(xiàn)在黑板之上,方便學(xué)生理解掌握。
我的說課到此結(jié)束,謝謝各位專家老師!
附:板書設(shè)計(jì)
函數(shù)的奇偶性說課稿 篇6
一、教學(xué)目標(biāo)
【知識(shí)與技能】
理解函數(shù)的奇偶性及其幾何意義.
【過程與方法】
利用指數(shù)函數(shù)的圖像和性質(zhì),及單調(diào)性來解決問題.
【情感態(tài)度與價(jià)值觀】
體會(huì)指數(shù)函數(shù)是一類重要的函數(shù)模型,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
二、教學(xué)重難點(diǎn)
【重點(diǎn)】
函數(shù)的奇偶性及其幾何意義
【難點(diǎn)】
判斷函數(shù)的奇偶性的方法與格式.
三、教學(xué)過程
(一)導(dǎo)入新課
取一張紙,在其上畫出平面直角坐標(biāo)系,并在第一象限任畫一可作為函數(shù)圖象的圖形,然后按如下操作并回答相應(yīng)問題:
1 以y軸為折痕將紙對(duì)折,并在紙的背面(即第二象限)畫出第一象限內(nèi)圖形的痕跡,然后將紙展開,觀察坐標(biāo)系中的圖形;
問題:將第一象限和第二象限的圖形看成一個(gè)整體,則這個(gè)圖形可否作為某個(gè)函數(shù)y=f(x)的圖象,若能請(qǐng)說出該圖象具有什么特殊的性質(zhì)?函數(shù)圖象上相應(yīng)的點(diǎn)的坐標(biāo)有什么特殊的關(guān)系?
答案:(1)可以作為某個(gè)函數(shù)y=f(x)的圖象,并且它的圖象關(guān)于y軸對(duì)稱;
(2)若點(diǎn)(x,f(x))在函數(shù)圖象上,則相應(yīng)的點(diǎn)(-x,f(x))也在函數(shù)圖象上,即函數(shù)圖象上橫坐標(biāo)互為相反數(shù)的點(diǎn),它們的縱坐標(biāo)一定相等.
(二)新課教學(xué)
1.函數(shù)的奇偶性定義
像上面實(shí)踐操作1中的圖象關(guān)于y軸對(duì)稱的函數(shù)即是偶函數(shù),操作2中的圖象關(guān)于原點(diǎn)對(duì)稱的函數(shù)即是奇函數(shù).
(1)偶函數(shù)(even function)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(學(xué)生活動(dòng)):仿照偶函數(shù)的定義給出奇函數(shù)的定義
(2)奇函數(shù)(odd function)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
注意:
1 函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);
2 由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)x,則-x也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).
2.具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
3.典型例題
(1)判斷函數(shù)的奇偶性
例1.(教材P36例3)應(yīng)用函數(shù)奇偶性定義說明兩個(gè)觀察思考中的四個(gè)函數(shù)的奇偶性.(本例由學(xué)生討論,師生共同總結(jié)具體方法步驟)
解:(略)
總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:
1 首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;
2 確定f(-x)與f(x)的關(guān)系;
3 作出相應(yīng)結(jié)論:
若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);
若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數(shù).
(三)鞏固提高
1.教材P46習(xí)題1.3 B組每1題
解:(略)
說明:函數(shù)具有奇偶性的一個(gè)必要條件是,定義域關(guān)于原點(diǎn)對(duì)稱,所以判斷函數(shù)的奇偶性應(yīng)應(yīng)首先判斷函數(shù)的.定義域是否關(guān)于原點(diǎn)對(duì)稱,若不是即可斷定函數(shù)是非奇非偶函數(shù).
2.利用函數(shù)的奇偶性補(bǔ)全函數(shù)的圖象
(教材P41思考題)
規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
說明:這也可以作為判斷函數(shù)奇偶性的依據(jù).
(四)小結(jié)作業(yè)
本節(jié)主要學(xué)習(xí)了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時(shí),必須注意首先判斷函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱.單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個(gè)難點(diǎn),需要學(xué)生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個(gè)性質(zhì).
課本P46 習(xí)題1.3(A組) 第9、10題, B組第2題.
四、板書設(shè)計(jì)
函數(shù)的奇偶性
一、偶函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
二、奇函數(shù):一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做奇函數(shù).
三、規(guī)律:
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;
奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
函數(shù)的奇偶性說課稿 篇7
教學(xué)目標(biāo):了解奇偶性的含義,會(huì)判斷函數(shù)的奇偶性。能證明一些簡(jiǎn)單函數(shù)的奇偶性。弄清函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。
重點(diǎn):判斷函數(shù)的奇偶性
難點(diǎn):函數(shù)圖象對(duì)稱性與函數(shù)奇偶性的關(guān)系。
一、復(fù)習(xí)引入
1、函數(shù)的單調(diào)性、最值
2、函數(shù)的奇偶性
。1)奇函數(shù)
。2)偶函數(shù)
。3)與圖象對(duì)稱性的關(guān)系
。4)說明(定義域的要求)
二、例題分析
例1、判斷下列函數(shù)是否為偶函數(shù)或奇函數(shù)
。1) (2)
。3) (4)
例2、證明函數(shù) 在R上是奇函數(shù)。
例3、試判斷下列函數(shù)的奇偶性
三、隨堂練習(xí)
1、函數(shù) ( )
是奇函數(shù)但不是偶函數(shù) 是偶函數(shù)但不是奇函數(shù)
既是奇函數(shù)又是偶函數(shù) 既不是奇函數(shù)又不是偶函數(shù)
2、下列4個(gè)判斷中,正確的`是_______.
。1) 既是奇函數(shù)又是偶函數(shù);
。2) 是奇函數(shù);
。3) 是偶函數(shù);
(4) 是非奇非偶函數(shù)
3、函數(shù) 的圖象是否關(guān)于某直線對(duì)稱?它是否為偶函數(shù)?
函數(shù)的奇偶性說課稿 篇8
教學(xué)目標(biāo)
1.使學(xué)生理解奇函數(shù)、偶函數(shù)的概念;
2.使學(xué)生掌握判斷某些函數(shù)奇偶性的方法;
3.培養(yǎng)學(xué)生判斷、推理的能力、加強(qiáng)化歸轉(zhuǎn)化能力的訓(xùn)練;
教學(xué)重點(diǎn)
函數(shù)奇偶性的概念
教學(xué)難點(diǎn)
函數(shù)奇偶性的判斷
教學(xué)方法
講授法
教具裝備
幻燈片3張
第一張:上節(jié)課幻燈片A。
第二張:課本P58圖2—8(記作B)。
第三張:本課時(shí)作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。
教學(xué)過程
(I)復(fù)習(xí)回顧
師:上節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的概念,請(qǐng)同學(xué)們回憶一下:增函數(shù)、減函數(shù)的定義,并復(fù)述證明函數(shù)單調(diào)性的步驟。
生:(略)
師:這節(jié)課我們來研究函數(shù)的另外一個(gè)性質(zhì)——奇偶性(導(dǎo)入課題,板書課題)。
。↖I)講授新課
。ù虺龌脽羝珹)
師:請(qǐng)同學(xué)們觀察圖形,說出函數(shù)y=x2的圖象有怎樣的對(duì)稱性?
生:(關(guān)于y軸對(duì)稱)。
師:從函數(shù)y=f(x)=x2本身來說,其特點(diǎn)是什么?
生:(當(dāng)自變量取一對(duì)相反數(shù)時(shí),函數(shù)y取同一值)。
師:(舉例),例如:
f(-2)=4, f(2)=4,即f(-2)= f(-2);
f(-1)=1,f(1)=1,即f(-1)= f(1);
……
由于(-x)2=x2 ∴f(-x)= f(x).
以上情況反映在圖象上就是:如果點(diǎn)(x,y)是函數(shù)y=x2的圖象上的任一點(diǎn),那么,與它關(guān)于y軸的對(duì)稱點(diǎn)(-x,y)也在函數(shù)y=x2的圖象上,這時(shí),我們說函數(shù)y=x2是偶函數(shù)。
一般地,(板書)如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)= f(x),那么函數(shù)f(x)就叫做偶函數(shù)。
例如:函數(shù)f(x)=x2+1, f(x)=x4-2等都是偶函數(shù)。
(打出幻燈片B)
師:觀察函數(shù)y=x3的圖象,當(dāng)自變量取一對(duì)相反數(shù)時(shí),它們對(duì)應(yīng)的函數(shù)值有什么關(guān)系?
生:(也是一對(duì)相反數(shù))
師:這個(gè)事實(shí)反映在圖象上,說明函數(shù)的圖象有怎樣的對(duì)稱性呢?
生:(函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱)。
師:也就是說,如果點(diǎn)(x,y)是函數(shù)y=x3的圖象上任一點(diǎn),那么與它關(guān)于原點(diǎn)對(duì)稱的點(diǎn)(-x,-y)也在函數(shù)y=x3的'圖象上,這時(shí),我們說函數(shù)y=x3是奇函數(shù)。
一般地,(板書)如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x) =-f(x),那么函數(shù)f(x)就叫做奇函數(shù)。
例如:函數(shù)f(x)=x,f(x) =都是奇函數(shù)。
如果函數(shù)f(x)是奇函數(shù)或偶函數(shù),那么我們就說函數(shù)f(x)具有奇偶性。
注意:從函數(shù)奇偶性的定義可以看出,具有奇偶性的函數(shù):
。1)其定義域關(guān)于原點(diǎn)對(duì)稱;
。2)f(-x)= f(x)或f(-x)=- f(x)必有一成立。因此,判斷某一函數(shù)的奇偶性時(shí)。
首先看其定義域是否關(guān)于原點(diǎn)對(duì)稱,若對(duì)稱,再計(jì)算f(-x),看是等于f(x)還是等于- f(x),然后下結(jié)論;若定義域關(guān)于原點(diǎn)不對(duì)稱,則函數(shù)沒有奇偶性。
。↖II)例題分析
課本P61例4,讓學(xué)生自看去領(lǐng)悟注意的問題并判斷的方法。
注意:函數(shù)中有奇函數(shù),也有偶函數(shù),但是還有些函數(shù)既不是奇函數(shù)也不是偶函數(shù),唯有f(x)=0(x∈R或x∈(-a,a).a>0)既是奇函數(shù)又是偶函數(shù)。
。↖V)課堂練習(xí):課本P63練習(xí)1。
(V)課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)奇偶性的定義及判斷函數(shù)奇偶性的方法。特別要注意判斷函數(shù)奇偶性時(shí),一定要首先看其定義域是否關(guān)于原點(diǎn)對(duì)稱,否則將會(huì)導(dǎo)致結(jié)論錯(cuò)誤或做無用功。
。╒I)課后作業(yè)
一、課本p65習(xí)題2.3 7。
二、預(yù)習(xí):課本P62例5、例6。預(yù)習(xí)提綱:
1.請(qǐng)自己理一下例5的證題思路。
2.奇偶函數(shù)的圖角各有什么特征?
板書設(shè)計(jì)
課題
奇偶函數(shù)的定義
注意:
判斷函數(shù)奇偶性的方法步驟。
小結(jié):
教學(xué)后記
函數(shù)的奇偶性說課稿 篇9
一、教學(xué)目標(biāo)
。ㄒ唬┩ㄟ^具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象概括能力.
。ǘ├斫、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡(jiǎn)單函數(shù)的奇偶性.
。ㄈ┰诮(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的.
二、任務(wù)分析
這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,增強(qiáng)直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對(duì)于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對(duì)稱的非空數(shù)集;對(duì)于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的`矛盾概念——非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果.
三、教學(xué)設(shè)計(jì)
。ㄒ唬﹩栴}情景
1.觀察如下兩圖(圖略),思考并討論以下問題:
(1)這兩個(gè)函數(shù)圖像有什么共同特征?
。2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?
可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對(duì)稱.從函數(shù)值對(duì)應(yīng)表可以看到,當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.
2.觀察函數(shù)f(x)=x和f(x)=的圖像,并完成下面的兩個(gè)函數(shù)值對(duì)應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征.
可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對(duì)稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對(duì)相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對(duì)相反數(shù),即對(duì)任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).
。ǘ┙⒛P
由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義.
1.奇、偶函數(shù)的定義.
如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對(duì)于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).
2.提出問題,組織學(xué)生討論.
。1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?
。╢(x)不一定是偶函數(shù))
(2)奇、偶函數(shù)的圖像有什么特征?
。ㄆ妗⑴己瘮(shù)的圖像分別關(guān)于原點(diǎn)、y軸對(duì)稱)
(3)奇、偶函數(shù)的定義域有什么特征?
。ㄆ、偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱)
(三)解釋應(yīng)用
[例題]
1.判斷下列函數(shù)的奇偶性.
注:①規(guī)范解題格式;②對(duì)于(5)要注意定義域x∈(-1,1].
2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.
解:(1)任取x<0,則-x>0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).
。2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.
3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論.
解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對(duì)稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:
∴f(x)在(0,+∞)上是增函數(shù).
思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?
[練習(xí)]
1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.
4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.
。ㄋ模┩卣寡由
1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)?
2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:
(1)F(x)=f(x)·g(x)的奇偶性.
(2)G(x)=|f(x)|+g(x)的奇偶性.
3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).
4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?
【函數(shù)的奇偶性說課稿】相關(guān)文章:
《數(shù)的奇偶性》說課稿07-19
高三數(shù)學(xué)《函數(shù)單調(diào)性》說課稿(通用6篇)05-29
函數(shù)心情作文03-07
函數(shù)自我鑒定04-23
函數(shù)的概念教學(xué)反思06-03
冪函數(shù)教學(xué)反思范文07-02