四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>資料大全>說課稿>高中數(shù)學數(shù)列說課稿

高中數(shù)學數(shù)列說課稿

時間:2023-03-30 22:01:36 說課稿 我要投稿
  • 相關推薦

高中數(shù)學數(shù)列說課稿

  高中數(shù)學數(shù)列說課稿(一)

高中數(shù)學數(shù)列說課稿

  本節(jié)課講述的是人教版高一數(shù)學(上)§3.2等差數(shù)列(第一課時)的內(nèi)容。

  一、教材分析

  1、教材的地位和作用:

  數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了學習對比的依據(jù)。

  2、教學目標

  根據(jù)教學大綱的要求和學生的實際水平,確定了本次課的教學目標

  a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;初步引入"數(shù)學建模"的思想方法并能運用。

  b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數(shù)與數(shù)列關系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

  c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。

  3、教學重點和難點

  根據(jù)教學大綱的要求我確定本節(jié)課的教學重點為:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項公式的推導過程及應用。

  由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學生對"數(shù)學建模"的思想方法較為陌生,因此用數(shù)學思想解決實際問題是本節(jié)課的另一個難點。

  二、學情教法分析:

  對于三中的高一學生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

  針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。

  三、學法指導:

  在引導分析時,留出學生的思考空間,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學程序

  本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業(yè),六個教學環(huán)節(jié)構成。

 。ㄒ唬⿵土曇耄

  1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應的一列函數(shù)值,從而數(shù)列的通項公式也就是相應函數(shù)的______.(N﹡;解析式)

  通過練習1復習上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準備。

  2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92   ①

  3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25    ②

  通過練習2和3引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

  (二) 新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,

  這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調:

 、 "從第二項起"滿足條件;

  ②公差d一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調"同一個常數(shù)" );

  在理解概念的基礎上,由學生將等差數(shù)列的文字語言轉化為數(shù)學語言,歸納出數(shù)學表達式:

  an+1-an=d   (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1.  9 ,8,7,6,5,4,……;√ d=-1

  2.  0.70,0.71,0.72,0.73,0.74……;√ d=0.01

  3. 0,0,0,0,0,0,……; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  其中第一個數(shù)列公差<0, 第二個數(shù)列公差>0,第三個數(shù)列公差=0

  由此強調:公差可以是正數(shù)、負數(shù),也可以是0

  2、第二個重點部分為等差數(shù)列的通項公式

  在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

  若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:

  a2 - a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:

  an=a1+(n-1)d

  此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向學生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an – an-1=d

  將這(n-1)個等式左右兩邊分別相加,就可以得到   an– a1= (n-1) d即 an= a1+(n-1) d (1)

  當n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學方法。

  利用等差數(shù)列概念啟發(fā)學生寫出n-1個等式。

  對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。

  在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到"注重方法,凸現(xiàn)思想" 的教學要求

  接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,

  即an=2n-1    以此來鞏固等差數(shù)列通項公式運用

  同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質顯現(xiàn)得更加清楚。

 。ㄈ⿷门e例

  這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

 。2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關鍵是求出數(shù)列的通項公式an.

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d.

  在前面例1的基礎上將例2當作練習作為對通項公式的鞏固

  例3  是一個實際建模問題

  建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階"等高"使學生想到每級臺階離地面的高度構成等差數(shù)列,引導學生將該實際問題轉化為數(shù)學模型------等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。

  設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;3.再者通過數(shù)學實例展示了"從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的"數(shù)學建模"的數(shù)學思想方法

 。ㄋ模┓答伨毩

  1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

  目的:對學生加強建模思想訓練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

 。ㄎ澹w納小結(由學生總結這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學表達式。

  強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2.等差數(shù)列的通項公式 an= a1+(n-1) d會知三求一

  3.用"數(shù)學建模"思想方法解決實際問題

 。┎贾米鳂I(yè)

  必做題:課本P114 習題3.2第2,6 題

  選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。

 。康模和ㄟ^分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

  五、板書設計

  在板書中突出本節(jié)重點,將強調的地方如定義中,"從第二項起"及"同一常數(shù)"等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

  高中數(shù)學數(shù)列說課稿(二)

  一、說教材:

  1、地位、作用和特點:

  《________________》是高中數(shù)學課本第______冊(____修)的第____章"________"的第______節(jié)內(nèi)容。

  本節(jié)是在學習了___________________________________之后編排的。通過本節(jié)課的學習,既可以對_____________________________的知識進一步鞏固和深化,又可以為后面學習_________________________打下基礎,所以_________________是本章的重要內(nèi)容。此外,《________________________》的知識與我們?nèi)粘I、生產(chǎn)、科學研究_________________________有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。本節(jié)的特點之一是:____________________;

  特點之二是:_________________.

  2、教學目標:

  根據(jù)《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

 。1)知識目標:A、B、C

  (2)能力目標:A、B、C

  (3)德育目標:A、B

  3、教學的重點和難點:

 。1)教學重點:

 。2)教學難點:

  二、說教法:

  基于上面的教材分析,我根據(jù)自己對研究性學習"啟發(fā)式"教學模式和新課程改革的理論認識,結合本校學生實際,主要突出了幾個方面:一是創(chuàng)設問題情景,充分調動學生求知欲,并以此來激發(fā)學生的探究心理。二是運用啟發(fā)式教學方法,就是把教和學的各種方法綜合起來統(tǒng)一組織運用于教學過程,以求獲得最佳效果。另外還注意獲得和交換信息渠道的綜合、教學手段的綜合和課堂內(nèi)外的綜合。并且在整個教學設計盡量做到注意學生的心理特點和認知規(guī)律,觸發(fā)學生的思維,使教學過程真正成為學生的學習過程,以思維教學代替單純的記憶教學。三是注重滲透數(shù)學思考方法(聯(lián)想法、類比法、數(shù)形結合等一般科學方法)。讓學生在探索學習知識的過程中,領會常見數(shù)學思想方法,培養(yǎng)學生的探索能力和創(chuàng)造性素質。四是注意在探究問題時留給學生充分的時間,以利于開放學生的思維。當然這就應在處理教學內(nèi)容時能夠做到葉老師所說"教就是為了不教".因此,擬對本節(jié)課設計如下教學程序:

  三、說學法:

  學生學習的過程實際上就是學生主動獲取、整理、貯存、運用知識和獲得學習能力的過程,因此,我覺得在教學中,指導學生學習時,應盡量避免單純地、直露地向學生灌輸某種學習方法。有效的能被學生接受的學法指導應是滲透在教學過程中進行的,是通過優(yōu)化教學程序來增強學法指導的目的性和實效性。在本節(jié)課的教學中主要滲透以下幾個方面的學法指導。

  1、培養(yǎng)學生學會通過自學、觀察、實驗等方法獲取相關知識,使學生在探索研究過程中分析、歸納、推理能力得到提高。

  本節(jié)教師通過列舉具體事例來進行分析,歸納出________________________,并依據(jù)此知識與具體事例結合、推導出___________________________,這正是一個分析和推理的全過程。

  2、讓學生親自經(jīng)歷運用科學方法探索的過程。_主要是努力創(chuàng)設應用科學方法探索、解決問題情境,讓學生在探索中體會科學方法,如在講授________________時,可通過_____________演示,創(chuàng)設探索______________規(guī)律的情境,引導學生以可靠的事實為基礎,經(jīng)過抽象思維揭示內(nèi)在規(guī)律,從而使學生領悟到把可靠的事實和深刻的理論思維結合起來的特點。

  3、讓學生在探索性實驗中自己摸索方法,觀察和分析現(xiàn)象,從而發(fā)現(xiàn)"新"的問題或探索出"新"的規(guī)律。從而培養(yǎng)學生的發(fā)散思維和收斂思維能力,激發(fā)學生的創(chuàng)造動力。在實踐中要盡可能讓學生多動腦、多動手、多觀察、多交流、多分析;老師要給學生多點撥、多啟發(fā)、多激勵,不斷地尋找學生思維和操作上的閃光點,及時總結和推廣。

  4、在指導學生解決問題時,引導學生通過比較、猜測、嘗試、質疑、發(fā)現(xiàn)等探究環(huán)節(jié)選擇合適的概念、規(guī)律和解決問題方法,從而克服思維定勢的消極影響,促進知識的正向遷移。如教師引導學生對比中,蘊含的本質差異,從而擺脫知識遷移的負面影響。這樣,既有利于學生養(yǎng)成認真分析過程、善于比較的好習慣,又有利于培養(yǎng)學生通過現(xiàn)象發(fā)掘知識內(nèi)在本質的能力。

  四、教學過程:

 。ㄒ唬、課題引入:

  教師創(chuàng)設問題情景(創(chuàng)設情景:A、教師演示實驗。B、使用多媒體模擬一些比較有趣、與生活實踐比較有關的事例。C、講述數(shù)學科學史上的有關情況。)激發(fā)學生的探究欲望,引導學生提出接下去要研究的問題。

 。ǘ、新課教學:

  1、針對上面提出的問題,設計學生動手實踐,讓學生通過動手探索有關的知識,并引導學生進行交流、討論得出新知,并進一步提出下面的問題。

  2、組織學生進行新問題的實驗方法設計—這時在設計上最好是有對比性、數(shù)學方法性的設計實驗,指導學生實驗、通過多媒體的輔助,顯示學生的實驗數(shù)據(jù),模擬強化出實驗情況,由學生分析比較,歸納總結出知識的結構。

 。ㄈ、實施反饋:

  1、課堂反饋,遷移知識(最好遷移到與生活有關的例子)。讓學生分析有關的問題,實現(xiàn)知識的升華、實現(xiàn)學生的再次創(chuàng)新。

  2、課后反饋,延續(xù)創(chuàng)新。通過課后練習,學生互改作業(yè),課后研實驗,實現(xiàn)課堂內(nèi)外的綜合,實現(xiàn)創(chuàng)新精神的延續(xù)。

  五、板書設計:

  在教學中我把黑板分為三部分,把知識要點寫在左側,中間知識推導過程,右邊實例應用。

  六、說課綜述:

  以上是我對《___________》這節(jié)教材的認識和對教學過程的設計。在整個課堂中,我引導學生回顧前面學過的_________________知識,并把它運用到對______________

  的認識,使學生的認知活動逐步深化,既掌握了知識,又學會了方法。

  ____總之,對課堂的設計,我始終在努力貫徹以教師為主導,以學生為主體,以問題為基礎,以能力、方法為主線,有計劃培養(yǎng)學生的自學能力、觀察和實踐能力、思維能力、應用知識解決實際問題的能力和創(chuàng)造能力為指導思想。并且能從各種實際出發(fā),充分利用各種教學手段來激發(fā)學生的學習興趣,體現(xiàn)了對學生創(chuàng)新意識的培養(yǎng)。

  高中數(shù)學數(shù)列說課稿(三)

  一、教材分析:

  "數(shù)列"是中學數(shù)學的重要內(nèi)容之一。不僅在歷年的高考中占有一定的比重,而且在實際生活中也經(jīng)常要用到數(shù)列的一些知識。例如:儲蓄、分期付款中的有關計算就要用到數(shù)列知識。

  就本節(jié)課而言,在給出數(shù)列的基本概念之后,結合例題,指出數(shù)列可以看作定義域為正整數(shù)集(或它的有限子集)的函數(shù)。因此,本節(jié)課的內(nèi)容,一方面是前面函數(shù)知識的延伸及應用,可以使學生加深對函數(shù)概念的理解;另一方面也可以為后面學習等差數(shù)列、等比數(shù)列的通項、求和等知識打下鋪墊。所以本節(jié)課在教材中起到了"承上啟下"的作用,必須講清、講透。

  二、教學目標:

  根據(jù)上面對教材的分析,并結合學生的認知水平和思維特點,確定本節(jié)課的教學目標。

  1、知識目標:

 。1)形成并掌握數(shù)列及其有關概念,識記數(shù)列的表示和分類,了解數(shù)列通項公式的意義。

 。2)理解數(shù)列的通項公式,能根據(jù)數(shù)列的通項公式寫出數(shù)列的任意一項。對比較簡單的數(shù)列,使學生能根據(jù)數(shù)列的前幾項觀察歸納出數(shù)列的通項公式,并通過數(shù)列與函數(shù)的比較加深對數(shù)列的認識。

  2、能力目標:

  培養(yǎng)學生觀察、歸納、類比、聯(lián)想等分析問題的能力,同時加深理解數(shù)學知識之間相互滲透性的思想。

  3、情感目標:

  通過滲透函數(shù)、方程思想,培養(yǎng)學生的思維能力,使學生在民主、和諧的活動中感受學習的樂趣。通過介紹數(shù)列與函數(shù)間存在的特殊到一般關系,向學生進行辯證唯物主義思想教育。

  三、重點、難點:

  1、教學重點

  理解數(shù)列的概念及其通項公式,加強與函數(shù)的聯(lián)系,并能根據(jù)通項公式寫出數(shù)列中的任意一項。

  2、教學難點

  根據(jù)數(shù)列前幾項的特點,通過多角度、多層次的觀察和分析,歸納出數(shù)列的通項公式。

  四、教法學法

  本節(jié)課以"問題情境——歸納抽象——鞏固訓練"的模式展開,引導學生從知識和生活經(jīng)驗出發(fā),提出問題并與學生共同探索、討論解決問題的方法,讓學生經(jīng)歷知識的形成過程,從而理解更加透徹。

  現(xiàn)代教學觀明確指出:教師是主導,學生是主體,學生應成為學習的主人。根據(jù)本節(jié)內(nèi)容及學生的認知規(guī)律,針對不同內(nèi)容應選擇不同的方法。對于國際象棋棋盤麥粒采用電腦動畫演示,增強感性認識;所舉的引例及數(shù)列的函數(shù)定義,可采用探索發(fā)現(xiàn)法;對通項公式及數(shù)列的分類等概念采用指導閱讀法;對于難題(根據(jù)數(shù)列的前幾項寫出一個通項公式)采用講練結合法。

  "授人以魚,不如授人以漁",平時在教學中教師應不斷指導學生學會學習。本節(jié)課從學生實際出發(fā),創(chuàng)設情境,引導學生觀察、分析,探索發(fā)現(xiàn),歸納總結,培養(yǎng)學生積極思維的品質,加強主動學習的能力。

  為了有效地突出重點,突破難點,增大課堂容量,提高課堂效率,本節(jié)課將常規(guī)教學手段與現(xiàn)代教學手段相結合,將引例、例題、練習等實物投影。

  五、教學過程

  1、創(chuàng)設情景,激發(fā)興趣,引入新課

 。1)電腦動畫演示:國際象棋棋盤格子中放有麥粒的示意圖,從而得到一組數(shù):1,2,22,23……263

  敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。

  設計意圖:以實例引入概念,再配以電腦動畫,敘述小故事,增強了感性認識,調動學生學習新知識的積極性。

 。2)投影演示,再觀察以下幾列數(shù):

 、倌嘲鄬W生的學號:1,2,3,4……,50

  ②從1984年到2004年,中國體育健兒參加奧運會每屆所得的金牌數(shù):

  15,5,16,16,28,32

  ③某次活動,在1km長的路段,從起點開始,每隔10m放置一個垃圾筒,由近及遠各筒與起點的距離排成一列數(shù):0.10.20.30,……1000

  ④放射性物質衰變,設原質量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……

  2、歸納抽象,形成概念

 。1)學生嘗試敘述數(shù)列的定義:啟發(fā)學生觀察上述幾組數(shù)據(jù)后,進行歸納總結定義:按一定次序排成的一列數(shù),叫數(shù)列,便于培養(yǎng)學生的抽象概括能力。

  舉例1:1,3,5,7與7,5,3,1 這兩個數(shù)列有何區(qū)別?

  舉例2:-1,1,-1,1,……是不是一個數(shù)列?

  設計意圖:使學生注意把數(shù)列中的數(shù)和集合中的元素區(qū)分開來:

 、贁(shù)列中的數(shù)是有順序的,而集合中的元素是無序的。

 、跀(shù)列中的數(shù)可以重復出現(xiàn),而集中的元素不能重復出現(xiàn)。

  進一步加深學生對數(shù)列定義的理解。

 。2)數(shù)列的項及項的表示方法: an

  (3)數(shù)列的表示方法:可寫成:a1,a2,a3,……,an……

  或簡記為:{an},注意an與{an}的區(qū)別

  上述(2)(3)采用指導閱讀法(書P106頁第7節(jié)~第8節(jié)第一句話),對an與{an}的區(qū)別進行集體討論歸納。

  3、通項公式的探索

  (1)觀察歸納定義

  由學生觀察引例中數(shù)列的項與它在數(shù)列中的位置(即項的序號)間的關系:

  實物投影:

  序號      1        2      3           ……  64

  ↓      ↓      ↓             ↓

  項       1= 21-1   2=22-1  22 = 23-1    ……  263

  從而可看出項與項的序號之間可用一個公式:an =2n-1表示,該公式叫數(shù)列的通項公式,然后歸納抽象出數(shù)列的通項公式的定義(略)。

  (2)用函數(shù)觀點看待數(shù)列:這是一個難點,(m.htc668.com)講解必須清楚、透徹。數(shù)列可看作是以自然數(shù)集或它的有限子集為定義域的函數(shù),當自變量由小到大依次取值時對應的一列函數(shù)值(這是數(shù)列的本質),其圖象是一群孤立的點,畫圖(棋盤麥粒這個數(shù)列)

  設計意圖:加深對函數(shù)概念的理解。

 。3)數(shù)列的分類,并口答引例及數(shù)列①②③④分別歸于哪類數(shù)列。

  4、講解例題

  設計例題:①根據(jù)通項公式寫出前幾項并會判斷某個數(shù)是否為該數(shù)列中的項;②根據(jù)數(shù)列的前幾項寫出一個通項公式。

  例1,根據(jù)下列數(shù)列{an}的通項公式,寫出它的前5項

 。1) an= n/(n+1)  (2)an=(-1)n · n

  設計意圖:使學生正確掌握通項與序號的關系。

  變式訓練:問 2589/2590是否為數(shù)列(1)中的項

  設計意圖:使學生明確方程思想是解決數(shù)列問題的重要方法。

  例2,寫出下列數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):

 。1)1,3,5,7

 。2)2, -2,2 ,-2

 。3)1 ,11 ,111 ,

  設計意圖:引導學生進行解題后反思,對完善學生的認知結構是十分必要。寫通項公式時,就是要去發(fā)現(xiàn)an與n的關系,對各項進行多角度、多層次觀察,找出這些項與相應的項數(shù)(即序號)之間的對應關系。(注:遇到分數(shù),可分別觀察分子組的數(shù)列特征與分母組成的數(shù)列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進行符號交換,有時也可根據(jù)相鄰的項,適當調整有關的表達式。)

  5、練習鞏固

  投影演示:

 。1)寫出數(shù)列1,-1,1,-1,……的一個通項公式

 。2)是否所有數(shù)列都有通項公式?

  上述(1)的設計意圖:an=(-1)n+1也可寫成  (分段函數(shù)的形式)(當n為奇數(shù)時,n為偶數(shù)時),說明根據(jù)數(shù)列的前幾項寫出的通項公式可能不唯一。(2):引例②就沒有通項公式。通過這些練習,使學生能及時消化,及時鞏固所學內(nèi)容。

  6、歸納小結

  由學生試著總結本節(jié)課所學內(nèi)容,老師適當補充,可以訓練學生的收斂思維,有助于完善學生的思維結構。

 。1) 數(shù)列及有關概念。

 。2) 根據(jù)數(shù)列的通項公式求任意一項,并能判斷某數(shù)是否為該數(shù)列中的項。

 。3) 根據(jù)數(shù)列的前幾項寫出數(shù)列的一個通項公式。

 。4) 數(shù)列與函數(shù)的關系

  7、課后作業(yè):

 。1)課本P110/習題3.1/1(3)(4)(5);2、書P108/4(1)(3)(4)

 。2)復習看書P106-107

  六、評價與分析

  本節(jié)課,教師可通過創(chuàng)設情景,適時引導的方式來激發(fā)學生積極思考的欲望,有時直接講解,有時組織掌握學生集體討論、探索發(fā)現(xiàn),課堂上除反復強調注意點外,還應通過課堂練習和課后作業(yè)來強化它們。

  通過本節(jié)課的學習,學生不僅掌握了數(shù)列及有關概念,而且可體會到數(shù)學概念形成過程中蘊含的基本數(shù)學思想:"函數(shù)思想、數(shù)形結合思想、特殊化思想",使之獲得內(nèi)心感受,提高了基本技能和解決問題的能力,也可以逐漸學會辯證地看待問題。

【高中數(shù)學數(shù)列說課稿】相關文章:

高中數(shù)學 數(shù)列教案01-03

高中數(shù)學數(shù)列教案12-30

等差數(shù)列說課稿08-11

高中數(shù)學 數(shù)列教案5篇01-03

高中數(shù)學數(shù)列教案5篇12-30

高中數(shù)學等差數(shù)列教案09-25

高中數(shù)學數(shù)列教學中的教學策略08-02

數(shù)列08-17

高中數(shù)學說課稿08-12