四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會>教學(xué)反思>勾股定理的教學(xué)反思

勾股定理的教學(xué)反思

時間:2024-09-22 19:38:37 教學(xué)反思 我要投稿

勾股定理的教學(xué)反思

  作為一名優(yōu)秀的教師,我們要有一流的課堂教學(xué)能力,對學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,那么教學(xué)反思應(yīng)該怎么寫才合適呢?以下是小編精心整理的勾股定理的教學(xué)反思,希望對大家有所幫助。

勾股定理的教學(xué)反思

勾股定理的教學(xué)反思1

  根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)與教材地位,為了達(dá)到本節(jié)課的教學(xué)目標(biāo),我設(shè)計了以下幾個環(huán)節(jié):

  1.創(chuàng)設(shè)情境,提出猜想讓學(xué)生判斷兩位同學(xué)的畫法是否都能得到斜邊為10cm的直角三角形,通過對不同畫法的探究,溫故知新,為用構(gòu)造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時,引導(dǎo)學(xué)生從特殊到一般提出猜想。

  2.證明猜想,得出新知。由于有前一環(huán)節(jié)的鋪墊,通過啟發(fā)、引導(dǎo)、討論,讓學(xué)生體會用構(gòu)造全等三角形的方法證明問題的思想,突破定理證明這一難點,并適時出示課題。

  3.應(yīng)用訓(xùn)練,鞏固新知為了鞏固新知,靈活運用所學(xué)知識解決相應(yīng)問題,提高學(xué)生的`分析解題能力,我設(shè)計了三個層次的問題,以達(dá)到教學(xué)目標(biāo).第一層次是讓學(xué)生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強(qiáng)調(diào)已知三角形三邊長或三邊關(guān)系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應(yīng)用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據(jù)學(xué)生原有的認(rèn)知結(jié)構(gòu),讓學(xué)生更好地體會分割的思想.設(shè)計的題型前后呼應(yīng),使知識有序推進(jìn),有助于學(xué)生的理解和掌握;讓學(xué)生通過合作、交流、反思、感悟的過程,激發(fā)學(xué)生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學(xué)生是學(xué)習(xí)的主人.。

  4.歸納小結(jié),形成體系讓學(xué)生交流學(xué)習(xí)的收獲、課堂經(jīng)歷的感受和對數(shù)學(xué)思想方法的感悟體會等.幫助學(xué)生內(nèi)化新知,優(yōu)化學(xué)生的認(rèn)知結(jié)構(gòu),形成能力,減輕課后負(fù)擔(dān)。

  5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學(xué)生得到不同層次的發(fā)展

勾股定理的教學(xué)反思2

  《勾股定理》一章檢測結(jié)果出來了,學(xué)生考績很不理想,很多不該錯的題做錯了。是什么原因致使錯誤頻出呢?我輾轉(zhuǎn)反側(cè)。

  一是沒有把握好勾股定理的適用范圍。勾股定理只適用直角三角形,而不適用鈍角三角形和銳角三角形。例如:在△ABC中,AC=3,BC=4,有的同學(xué)直接根據(jù)勾股定理得:AB=5。這是因為與勾股定理的條件相似,已知三角形的兩邊,求第三邊,滿足能利用勾股定理解決問題的特征之一,卻忽略特征之二:勾股定理只適用直角三角形。

  二是沒有弄清楚待求的直角三角形的第三邊是斜邊還是直角邊。例如:已知直角三角形兩直角邊的長分別是4c和5c,求第三邊的長。很多同學(xué)可能是受勾股數(shù)“3,4,5”的影響,錯把結(jié)果寫成了3c,其實這里的第三邊是斜邊.

  三是缺乏分類思想,考慮問題不全面,導(dǎo)致解答錯誤。例如:已知直角三角形兩邊長分別是1、4,求第三邊的長。這里的第三邊有可能是斜邊也有可能是直角邊,所以結(jié)果應(yīng)該有兩個,但好多同學(xué)都填了一個答案。又如:在△ABC中,AB=15,AC=13,高AD=12,求△ABC的面積。此題應(yīng)考慮三角形是銳角三角形,還是鈍角三角形兩種情況,否則會漏解。

  四是利用直角三角形的判別條件時,沒有分清較短邊和較長邊。例如:已知三角形的三邊長分別為a=0.6,b=1,c=0.8,問這個三角形是直角三角形嗎?有的同學(xué)認(rèn)為此三角形不是直角三角形,其實這個三角形是以b為斜邊的直角三角形。

  五是缺少方程思想和轉(zhuǎn)化思想,使綜合類試題痛失分?jǐn)?shù)。

  六是書寫不規(guī)范。例如:運用直角三角形的判別條件,判別一個三角形是否為直角三角形的過程中,有的同學(xué)寫出一句“由勾股定理得”的不恰當(dāng)?shù)臄⑹觥?/p>

  針對上述問題,痛定思痛,感悟頗多:

  第一,教學(xué)不可削弱技能的訓(xùn)練。要學(xué)生真正掌握某個知識,如果缺少相應(yīng)技能的訓(xùn)練是不科學(xué)的。正如教人開車的教練把開車的要點、技巧講清楚,然后叫學(xué)車的學(xué)生馬上開車去考試一樣。試問:當(dāng)教師在講臺上滔滔不絕地講解時,能否保證每一個學(xué)生都專心去聽?能否保證每一個專心去聽的學(xué)生都聽得明白?能否保證每一個聽得明白的學(xué)生都能解同一類題目?可見:“課堂上教師講,學(xué)生聽,聽就會懂,懂就會做!敝皇墙處熞粠樵傅淖龇ǎ處熤挥胁粷M足于自己的“講清楚”,在課堂上幫助學(xué)生獨立完成,并進(jìn)行一定量的訓(xùn)練,才能實現(xiàn)教學(xué)的有效性。

  第二,巧設(shè)錯誤案例,讓學(xué)生辨錯、糾錯,即學(xué)生對教師的有意“示錯”進(jìn)行分析、判斷,提高防錯能力。在教學(xué)中,教師有時可恰到好處,有意地把估計學(xué)生易錯的做法顯示給學(xué)生,以引起學(xué)生的注意,然后通過師生共同分析錯因,加以糾錯,達(dá)到及時、有效預(yù)防,并避免學(xué)生出現(xiàn)類似錯誤的目的。這樣,可防患于未然,并提高學(xué)生分析、判斷、解決問題的能力。

  第三,教學(xué)應(yīng)注重數(shù)學(xué)思想和方法傳授。理解掌握各種數(shù)學(xué)思想和方法是形成數(shù)學(xué)技能技巧,提高數(shù)學(xué)能力的前提。 學(xué)生學(xué)習(xí)數(shù)學(xué),學(xué)會是基礎(chǔ),會學(xué)是目的,教是為了不教。教學(xué)中,在加強(qiáng)技能訓(xùn)練的同時,要強(qiáng)化數(shù)學(xué)思想和數(shù)學(xué)方法的教學(xué),做到講方法聯(lián)系思想,以思想指導(dǎo)方法,使二者相互交融,相得益彰。此外,在教學(xué)中培養(yǎng)學(xué)生的“問題意識”,激勵學(xué)生善于發(fā)現(xiàn)問題、思考問題,并能運用數(shù)學(xué)方法去解決廣泛的多種多樣的實際問題,以便增強(qiáng)學(xué)生探究新知識、新方法的創(chuàng)造能力。

  第四,教學(xué)應(yīng)加大綜合訓(xùn)練的'力度。目前的綜合題已經(jīng)由單純的知識疊加型轉(zhuǎn)化為知識、方法和能力綜合型尤其是創(chuàng)新能力型試題,具有知識容量大、解題方法多、能力要求高、突顯數(shù)學(xué)思想方法的運用以及創(chuàng)新意識等特點。教學(xué)時應(yīng)抓好“三轉(zhuǎn)”能力的培養(yǎng):(1)語言轉(zhuǎn)換能力。每道數(shù)學(xué)綜合題都是由一些特定的文字語言、符號語言、圖形語言所組成,解綜合題往往需要較強(qiáng)的語言轉(zhuǎn)換能力,能把普通語言轉(zhuǎn)換成數(shù)學(xué)語言。(2)概念轉(zhuǎn)換能力:綜合題的轉(zhuǎn)譯常常需要較強(qiáng)的數(shù)學(xué)概念的轉(zhuǎn)換能力。(3)數(shù)形轉(zhuǎn)換能力。解題中的數(shù)形結(jié)合,就是對題目的條件和結(jié)論既分析其代數(shù)含義又分析其幾何意義,力圖在代數(shù)與幾何的結(jié)合上找出解題思路。只有如此,方可找到解決綜合題的突破口。

  第五,教學(xué)勿忘發(fā)揮板書的特有功能。板書通過學(xué)生的視角器官傳遞信息,比語言富有直觀性。條例清晰,層次分明,邏輯嚴(yán)謹(jǐn)?shù)慕獯疬^程的板演,不但便于學(xué)生理解、掌握知識,還會給學(xué)生起到示范作用。

  相信通過反思教學(xué),優(yōu)化方法,細(xì)化過程,一定能取得事半功倍之效。

勾股定理的教學(xué)反思3

  課堂教學(xué)中要正確地、充分地引導(dǎo)學(xué)生探究知識的形成過程,應(yīng)創(chuàng)造讓學(xué)生主動參與學(xué)習(xí)過程的條件,培養(yǎng)學(xué)生的觀察能力、合作能力、探究能力,從而達(dá)到提高學(xué)生數(shù)學(xué)素質(zhì)的目的。多媒體教學(xué)的優(yōu)化組合,在幫助學(xué)生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補(bǔ)來驗證勾股定理并不是所有的學(xué)生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學(xué)生的學(xué)習(xí)興趣。

  在本節(jié)課的教學(xué)中,老師可以從多方面對學(xué)生進(jìn)行合適的評價。如以學(xué)生的課前知識準(zhǔn)備是一種態(tài)度的評價,上課的拼圖能力是一種動手能力的評價,對所結(jié)論的分析是對猜想能力的一種評價,對實際問題的.分析是轉(zhuǎn)化能力的一種評價等等。只有老師給予學(xué)生適時的適當(dāng)?shù)脑u價,才能使學(xué)生充分認(rèn)識到自身的價值,從而達(dá)到提高學(xué)生學(xué)習(xí)自信心的目的,反過來自信心的提高又促使學(xué)生學(xué)習(xí)的積極性大幅度的提高,真正達(dá)到從他律轉(zhuǎn)為自律的目的。也只有這樣才能提高課堂的教學(xué)效果,提高學(xué)生的學(xué)習(xí)成績。

  我相信教者只有不斷的反思自己的教學(xué),不但能很好地實施新課改,實現(xiàn)課改的根本目的,同時能真正的提高學(xué)生學(xué)習(xí)成績。

勾股定理的教學(xué)反思4

  通過本節(jié)課的教學(xué),我采用了合作探究、操作體驗的教學(xué)方式。在課堂教學(xué)中,首先創(chuàng)設(shè)情境,提出問題;再讓學(xué)生通過做一做、測量、判斷、找規(guī)律,猜想出一般性的結(jié)論;然后由學(xué)生想、做、量一量、猜一猜、去驗證結(jié)論……使學(xué)生自始至終感悟、體驗、嘗試到了知識的生成過程,品嘗著成功后帶來的樂趣。這不僅使學(xué)生學(xué)到獲取知識的思想和方法,同時也體會到在解決問題的過程中與他人合作的重要性,而且為學(xué)生今后獲取知識以及探索、發(fā)現(xiàn)和創(chuàng)造打下了良好的基礎(chǔ),更增強(qiáng)了學(xué)生敢于實踐、勇于探索、不斷創(chuàng)新和努力學(xué)習(xí)數(shù)學(xué)知識的信心和勇氣。

  要想真正搞好以探究活動,小組合作為主的課堂教學(xué),必須不斷更新教學(xué)觀念,使課堂真正成為學(xué)生既能自主探究,師生又能合作互動的場所,培養(yǎng)學(xué)生成為既有創(chuàng)新能力,又能夠適應(yīng)現(xiàn)代社會發(fā)展的.公民

  作為教師,在課堂教學(xué)中要始終牢記:學(xué)生才是學(xué)習(xí)的主體,學(xué)生才是課堂的主體;教師只是課堂教學(xué)活動的組織者、引導(dǎo)者與合作者。因此,課堂教學(xué)過程的設(shè)計,也必須體現(xiàn)出學(xué)生的主體性。

勾股定理的教學(xué)反思5

  勾股定理整章書的內(nèi)容很少,就勾股定理和勾股定理的逆定理,這節(jié)課是勾股定理的第一課時,本節(jié)課主要是和學(xué)生一起探究勾股地理的認(rèn)識。在教學(xué)的過程中感覺有幾個方面需要轉(zhuǎn)變的。

  一 、轉(zhuǎn)變師生角色,讓學(xué)生自主學(xué)習(xí)。由于高效課堂中教學(xué)模式需要進(jìn)行學(xué)生自主討論交流學(xué)習(xí),在探究勾股定理的發(fā)現(xiàn)時分四人一小組由同學(xué)們合作探討作圖,去發(fā)現(xiàn)有的直角三角形的三邊具有這種關(guān)系,有的直角三角形不具有這種性質(zhì)?扇匀蛔C明不了我們的猜想是否正確。之后用拼圖的方法再來驗證一下。讓學(xué)生們拿出準(zhǔn)備好的直角三角形和正方形,利用拼圖和面積計算來證明 + = (學(xué)生分組討論。)學(xué)生展示拼圖方法,課件輔助演示。 新課標(biāo)下要求教師個人素質(zhì)越來越高,教師自身要不斷及時地學(xué)習(xí)學(xué)科專業(yè)知識,接受新信息,對自己及時充電、更新,而且要具有幽默藝術(shù)的語言表達(dá)能力。既要有領(lǐng)導(dǎo)者的組織指導(dǎo)能力,更重要的是要有被學(xué)生欣賞佩服的魅力,只有學(xué)生配合你,信任你,喜歡你,教師才能輕松駕御課堂,做到應(yīng)付自如,高效率完成教學(xué)目標(biāo)。 “教師教,學(xué)生聽,教師問,學(xué)生答,教室出題,學(xué)生做”的傳統(tǒng)教學(xué)摸模式,已嚴(yán)重阻阻礙了現(xiàn)代教育的發(fā)展。這種教育模式,不但無法培養(yǎng)學(xué)生的實踐能力,而且會造成機(jī)械的學(xué)習(xí)知識,形成懶惰、空洞的學(xué)習(xí)態(tài)度,形成數(shù)學(xué)的呆子,就像有的大學(xué)畢業(yè)生都不知道1平方米到底有多大?因此,高效課堂上要求老師一定要改變角色,把主動權(quán)交給學(xué)生,讓學(xué)生提出問題,動手操作,小組討論,合作交流,把學(xué)生想到的,想說的想法和認(rèn)識都讓他們盡情地表達(dá),然后教師再進(jìn)行點評與引導(dǎo),這樣做會有許多意外的收獲,而且能充分發(fā)揮挖掘每個學(xué)生的潛能,久而久之,學(xué)生的綜合能力就會與日劇增。

  二、轉(zhuǎn)變教學(xué)方式,讓學(xué)生探索、研究、體會學(xué)習(xí)過程。 學(xué)生學(xué)會了數(shù)學(xué)知識,卻不會解決與之有關(guān)的實際問題,造成了知識學(xué)習(xí)和知識應(yīng)用的脫節(jié),感受不到數(shù)學(xué)與生活的聯(lián)系,這是當(dāng)今課堂教學(xué)存在的普遍問題,對于我們這兒的學(xué)生起點低、數(shù)學(xué)基礎(chǔ)差、實踐能力差,對學(xué)生的各種能力培養(yǎng)非常不利的。課堂中要特別關(guān)注:

  1、關(guān)注學(xué)生是否積極參加探索勾股定理的活動,關(guān)注學(xué)生能否在活動中積思考,能夠探索出解決問題的方法,能否進(jìn)行積極的聯(lián)想(數(shù)形結(jié)合)以及學(xué)生能否有條理的表達(dá)活動過程和所獲得的結(jié)論等;

  2、關(guān)注學(xué)生的拼圖過程,鼓勵學(xué)生結(jié)合自己所拼得的正方形驗證勾股定理。

  3、學(xué)習(xí)的.知識性:掌握勾股定理,體會數(shù)形結(jié)合的思想。

  三、提高教學(xué)科技含量,充分利用多媒體。 勾股定理知識屬于幾何內(nèi)容,而幾何圖形可以直觀地表示出來,學(xué)生認(rèn)識圖形的初級階段中主要依靠形象思維。對幾何圖形的認(rèn)識始于觀察、測量、比較等直觀實驗手段,現(xiàn)代兒童認(rèn)識幾何圖形亦如此,可以通過直觀實驗了解幾何圖形,發(fā)現(xiàn)其中的規(guī)律。然而,因為幾何圖形本身具有抽象性和一般性,一種幾何概念可能包含無限多種不同的情形,例如有無數(shù)種形狀不同的三角形。對一種幾何概念所包含的一部分具體對象進(jìn)行直觀實驗所得到的認(rèn)識,一定適合其他情況驗回答不了的問題。因此,一般地,研究圖形的形狀、大小和位置。 培養(yǎng)邏輯推理能力,作了認(rèn)真的考慮和精心的設(shè)計,把推理證明作為學(xué)生觀察、實驗、探究得出結(jié)論的自然延續(xù)。教科書的幾何部分,要先后經(jīng)歷“說點兒理”“說理”“簡單推理”幾個層次,有意識地逐步強(qiáng)化關(guān)于推理的初步訓(xùn)練,主要做法是在問題的分析中強(qiáng)調(diào)求解過程所依據(jù)的道理,體現(xiàn)事出有因、言之有據(jù)的思維習(xí)慣。 由于信息技術(shù)的發(fā)展與普及,直觀實驗手段在教學(xué)中日益增加,本節(jié)課利用我們學(xué)校建立了電教教室,通過制作課件對于幾何學(xué)的學(xué)習(xí)起到積極作用。

勾股定理的教學(xué)反思6

  新課程改革要求我們:將數(shù)學(xué)教學(xué)置身于學(xué)生自主探究與合作交流的數(shù)學(xué)活動中;將知識的獲取與能力的培養(yǎng)置身于學(xué)生形式各異的探索經(jīng)歷中;關(guān)注學(xué)生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識。為學(xué)生的終身學(xué)習(xí)及可持續(xù)發(fā)展奠定堅實的基礎(chǔ)。

  為此我在教學(xué)設(shè)計中注重了以下幾點:

  一、讓學(xué)生主動想學(xué)

  上這節(jié)課前一個星期教師布置給學(xué)生任務(wù):查有關(guān)勾股定理的資料(可上網(wǎng)查,也可查閱報刊、書籍)。提前兩三天由幾位學(xué)生匯總(教師可適當(dāng)指導(dǎo))。這樣可使學(xué)生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學(xué)生認(rèn)識到勾股定理的'重要性,學(xué)習(xí)勾股定理是非常必要的,激發(fā)學(xué)生的學(xué)習(xí)興趣,對學(xué)生也是一次愛國主義教育,培養(yǎng)民族自豪感,激勵他們奮發(fā)向上。同時培養(yǎng)學(xué)生的自學(xué)能力及歸類總結(jié)能力。

  二、在課堂教學(xué)中,始終注重學(xué)生的自主探究

  首先,創(chuàng)設(shè)情境,由實例引入,激發(fā)學(xué)生的學(xué)習(xí)興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進(jìn)一步鞏固提高。體現(xiàn)了學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,人人學(xué)有價值的數(shù)學(xué),人人都能獲得必需的數(shù)學(xué),不同的人在數(shù)學(xué)上得到不同的發(fā)展。

  對于拼圖驗證,學(xué)生還沒有接觸過,所以在教學(xué)中教師給予學(xué)生適當(dāng)指導(dǎo)與鼓勵。充分體現(xiàn)了教師是學(xué)生數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者、合作者。

  三、教會學(xué)生思維,培養(yǎng)學(xué)生多種能力

  課前查資料,培養(yǎng)學(xué)生的自學(xué)能力及歸類總結(jié)能力;課上的探究培養(yǎng)學(xué)生的動手動腦的能力、觀察能力、猜想歸納總結(jié)的能力、合作交流的能力……

  四、注重了數(shù)學(xué)應(yīng)用意識的培養(yǎng)

  數(shù)學(xué)來源于實踐,而又應(yīng)用于實踐。因此從實例引入,最后通過定理解決引例中的問題,并在定理的應(yīng)用中,讓學(xué)生舉生活中的例子,充分體現(xiàn)了數(shù)學(xué)的應(yīng)用價值。

  整節(jié)課都是在生生互動、師生互動的和諧氣氛中進(jìn)行的,在教師的鼓勵、引導(dǎo)下學(xué)生進(jìn)行了自主學(xué)習(xí)。學(xué)生上講臺表達(dá)自己的思路、解法,體驗了數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)了細(xì)心觀察、認(rèn)真思考的態(tài)度。但本節(jié)課拼圖驗證的方法以前學(xué)生沒接觸過,稍嫌吃力。另在舉勾股定理在生活中的例子時,學(xué)生思路不夠開闊。以后要多培養(yǎng)學(xué)生實驗操作能力及應(yīng)用拓展能力,使學(xué)生思路更開闊。

勾股定理的教學(xué)反思7

  時光稍縱即逝,轉(zhuǎn)眼間一個新的學(xué)期又要結(jié)束了,回顧已逝的教學(xué)時光,可謂百味俱全,其間有一節(jié)課我上得最投入、最值得回憶與反思。

  記得那是期末的展示匯報課,(主任說可能會有校外的教師來聽課。)我當(dāng)時很有壓力,晚上也難以入睡。我選的是《勾股定理》一課。為了上好這節(jié)課,我反復(fù)研究了去洋思學(xué)習(xí)的一些記錄,努力用新理念新手段來打造我的這節(jié)課。當(dāng)我滿懷信心地上完這節(jié)課時,我心情愉悅,因為我教態(tài)自然得體,與學(xué)生合作默契,基本上獲得了教學(xué)的成功。

  1、從生活出發(fā)的教學(xué)讓學(xué)生感受到學(xué)習(xí)的快樂

  在“勾股定理”這節(jié)課中,一開始引入情景:

  平平湖水清可鑒,荷花半尺出水面。

  忽來一陣狂風(fēng)急,吹倒荷花水中偃。

  湖面之上不復(fù)見,入秋漁翁始發(fā)現(xiàn)。

  花離根二尺遠(yuǎn),試問水深尺若干。

  知識回味:復(fù)習(xí)勾股定理及它的公式變形,然后是幾組簡單的計算。

  2、走進(jìn)生活:以裝修房子為主線,設(shè)計木板能否通過門框,梯子底端滑出多少,求螞蟻爬的最短距離,這些都是勾股定理應(yīng)用的典型例題。

  3、名題欣賞:首尾呼應(yīng),用“代數(shù)方法”解決“幾何問題”。印度數(shù)學(xué)家婆什迦羅(1141—1225年)提出的“荷花問題”比我國的“引葭赴岸”問題晚了一千多年!耙绺鞍丁眴栴},是我國數(shù)學(xué)經(jīng)典著作《九章算術(shù)》中的一道名題。《九章算術(shù)》約成書于公元一世紀(jì)。該書的第九章,即勾股章,詳細(xì)討論了用勾股定理解決應(yīng)用問題的方法。這一章的第6題,就是“引葭赴岸”問題,題目是:“今有池一丈,葭生其中央,出水一尺。引葭赴岸,適與岸齊。問水深、葭長各幾何?” “荷花問題”的解法與“引葭赴岸”問題一樣。它的出現(xiàn)卻足以證明,舉世公認(rèn)的古典數(shù)學(xué)名著《九章算術(shù)》傳入了印度。《九章算術(shù)》中的勾股定理應(yīng)用方面的內(nèi)容,涉及范圍之廣,解法之精巧,都是在世界上遙遙領(lǐng)先的,為推動世界數(shù)學(xué)的發(fā)展作出了貢獻(xiàn)。鼓勵學(xué)生可以自己利用課余時間查閱相關(guān)資料,豐富知識。

  4、在教學(xué)應(yīng)用勾股定理時,老是運用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。并且將問題用動畫的形式展現(xiàn)出來,不僅將問題形象化,又提高了學(xué)生的學(xué)習(xí)興趣。同時將實際的問題轉(zhuǎn)化為數(shù)學(xué)問題的過程用直觀的.圖形表示,在降低難度的同時又鼓勵了學(xué)生能夠看到身邊的數(shù)學(xué),從而做到學(xué)以致用。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生之間的合作。

  5、最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。這是為了方便學(xué)生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

  通過本節(jié)課的教學(xué),學(xué)生在勾股定理的學(xué)習(xí)中能感受“數(shù)形結(jié)合”和“轉(zhuǎn)化”的數(shù)學(xué)思想,體會數(shù)學(xué)的應(yīng)用價值和滲透數(shù)學(xué)思想給解題帶來的便利;感受人類文明的力量,了解勾股定理的重要性。真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí)。這堂課將信息技術(shù)融入課堂,有利于創(chuàng)設(shè)教學(xué)環(huán)境,教學(xué)模式將從以教師講授為主轉(zhuǎn)為以學(xué)生動腦動手自主研究、小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)為“數(shù)學(xué)實驗室”,學(xué)生通過自己的活動得出結(jié)論、使創(chuàng)新精神與實踐能力得到了發(fā)展。不足之處:學(xué)生合作意識不強(qiáng),討論氣氛不夠活躍;計算不熟練,書寫不規(guī)范。

勾股定理的教學(xué)反思8

  勾股定理的探索和證明蘊含著豐富的數(shù)學(xué)思想和數(shù)學(xué)方法,是培養(yǎng)學(xué)生良好思維品質(zhì)的最佳載體。它以簡潔優(yōu)美的圖形結(jié)構(gòu),豐富深刻的內(nèi)涵刻畫了自然界的和諧統(tǒng)一的關(guān)系,是數(shù)形結(jié)合的完美典范。著名數(shù)學(xué)家華羅庚就曾提出把“數(shù)形關(guān)系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進(jìn)行第一次“談話”的語言。為讓學(xué)生通過對這節(jié)課的學(xué)習(xí)得到更好的歷練,在教學(xué)時,特別注重從以下幾個方面入手:

  一、注重知識的自然生發(fā)。

  傳統(tǒng)的教學(xué)中,教師往往喜歡壓縮理論傳授過程,用充足的時間做練習(xí),以題代講,搞題海戰(zhàn)術(shù)。但從學(xué)生的發(fā)展來著,如果壓縮數(shù)學(xué)知識的形成過程,不講究知識的自然生發(fā),學(xué)生獲取知識的過程是被動的,形成的體系也是孤立的,長此以往,學(xué)生必將錯過或失去思維發(fā)展和能力提高的`機(jī)遇。在這節(jié)課上,不刻意追求所謂的進(jìn)度,更沒有直接給出勾股定理,而是組織學(xué)生開展畫一畫、看一看、想一想、猜一猜、拼一拼的活動,學(xué)生在活動思考、交流、展示中,逐漸的形成了對知識的自我認(rèn)識和自我感悟。這樣做不僅能幫助學(xué)生牢固掌握勾股定理,更重要的是使學(xué)生體會用自己所學(xué)的舊知識而獲取新知識過程,使他們獲得成功的喜悅,增強(qiáng)了學(xué)生主動性,同時他們的思維能力在知識自然形成的過程中不斷發(fā)展。

  二、注重數(shù)學(xué)課上的操作性學(xué)習(xí)

  操作性學(xué)習(xí)是自主探究性學(xué)習(xí)有效途徑之一,學(xué)生通過在實踐活動中的感受和體驗,有利于幫助學(xué)生理解和掌握抽象的數(shù)學(xué)知識。在這節(jié)課上,首先讓學(xué)生動手畫直角三角形,得出研究題材,然后又讓學(xué)生利用四個直角三角形拼一拼,驗證猜想。這樣充分的調(diào)動了學(xué)生的手、口、腦等多種感官參與數(shù)學(xué)學(xué)習(xí)活動,既享受了操作的樂趣,又培養(yǎng)了學(xué)生的動手能力,加深了對知識的理解。

  三、注重問題設(shè)計的開放性

  課堂教學(xué)是教師組織、引導(dǎo)、參與和學(xué)生自主、合作、探究學(xué)習(xí)的雙邊活動。這其中教師的“引導(dǎo)”起著關(guān)鍵作用。這里的“引導(dǎo)”,很大程度上靠設(shè)疑提問來實現(xiàn)。在教學(xué)實踐中,問題設(shè)計要具有開放性。因為開放性問題更有利于培養(yǎng)學(xué)生的創(chuàng)造性思維、體現(xiàn)學(xué)生的主體意識和個性差異。本節(jié)課在設(shè)計涂鴉直角三角形時,安排學(xué)生在方格紙上任意涂鴉一個直角三角形;在設(shè)計拼圖驗證環(huán)節(jié)時,安排學(xué)生任意拼出一個正方形或直角梯形,有意沒指定畫一個具體邊長的直角三角形和正方形,就是不想對學(xué)生的思維給出太多的限制條件,給出更多的想象和創(chuàng)造空間。雖然探究的時間會更長,但這更符合實際知識的產(chǎn)生環(huán)境,學(xué)生只有在這樣的環(huán)境下進(jìn)行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會得到更有效的歷練。

  四、注重讓學(xué)生經(jīng)歷完整的數(shù)學(xué)知識的發(fā)現(xiàn)過程。

  新《數(shù)學(xué)課程標(biāo)準(zhǔn)》在關(guān)于課程目標(biāo)的闡述中,首次大量使用了"經(jīng)歷(感受)、體驗(體會)、探索"等刻畫數(shù)學(xué)活動水平的過程性目標(biāo)動詞,就是要求在數(shù)學(xué)學(xué)習(xí)的過程中,讓學(xué)生經(jīng)歷知識與技能形成與鞏固過程,經(jīng)歷數(shù)學(xué)思維的發(fā)展過程,經(jīng)歷應(yīng)用數(shù)學(xué)能力解決問題的過程,從而形成積極的數(shù)學(xué)情感與態(tài)度。教學(xué)從學(xué)生感興趣的涂鴉開始,再經(jīng)歷觀察、分析、猜想、驗證的全過程,讓學(xué)生充分的經(jīng)歷了完整的數(shù)學(xué)知識的發(fā)現(xiàn)過程,使學(xué)生獲得對數(shù)學(xué)理解的同時,在知識技能、思維能力以及情感態(tài)度等多方面都得到了進(jìn)步和發(fā)展。

  如果有機(jī)會再上這節(jié)課,我想我會投入更多的精力對學(xué)生可能會給出的答案進(jìn)行預(yù)想,以便在課堂上給予學(xué)生更多的啟迪,讓他們走的更遠(yuǎn)。一堂課,雖已結(jié)束,但對于生命課堂的領(lǐng)悟這條路,還有很長的路要走,我將繼續(xù)上下求索,做學(xué)生更好的支點。

勾股定理的教學(xué)反思9

  勾股定理是中學(xué)數(shù)學(xué)幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關(guān)系,既是直角三角形性質(zhì)的拓展,也是后續(xù)學(xué)習(xí)“解直角三角形”的基礎(chǔ).它緊密聯(lián)系了數(shù)學(xué)中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉(zhuǎn)化成數(shù)量關(guān)系(三邊之間滿足a2+b2=c2)堪稱數(shù)形結(jié)合的典范,在理論上占有重要地位.

  八年級學(xué)生已具備一定的分析與歸納能力,初步掌握了探索圖形性質(zhì)的基本方法.但是學(xué)生對用割補(bǔ)方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數(shù)有機(jī)的結(jié)合起來還很陌生.

  基于以上原因,本節(jié)課把學(xué)生的探索活動放在首位,一方面要求學(xué)生在教師引導(dǎo)下自主探索,合作交流,另一方面要求學(xué)生對探究過程中用到的數(shù)學(xué)思想方法有一定的領(lǐng)悟和認(rèn)識.從而教給學(xué)生探求知識的方法,教會學(xué)生獲取知識的本領(lǐng).并確立了如下的教學(xué)目標(biāo):

  1、學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測一般的合情推理能力。

  2、讓學(xué)生經(jīng)歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經(jīng)驗,在過程中養(yǎng)成獨立思考、合作交流的'學(xué)習(xí)習(xí)慣;通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。

  3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內(nèi)涵,激發(fā)生的熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感。

  教學(xué)難點將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積.

  本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想.另外,我在探索的過程中補(bǔ)充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學(xué)生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關(guān)系,只有直角三角形三邊才存在這種關(guān)系,并且實驗很具有直觀性,便于學(xué)生理解,而且是在學(xué)生的學(xué)習(xí)疲勞期出現(xiàn),達(dá)到了再次點燃學(xué)生學(xué)習(xí)熱情的目的,一舉多得。

  除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學(xué)生愛國熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實例,既讓學(xué)生感受到學(xué)習(xí)知識應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識的途徑等方面.給學(xué)生自由的空間,鼓勵學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對本節(jié)課歸納總結(jié),感悟點滴,使學(xué)生將知識系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.作業(yè)為了達(dá)到提高鞏固的目的,期望學(xué)生能主動地探求對勾股定理更深入的認(rèn)識、拓展學(xué)生的視野.

勾股定理的教學(xué)反思10

  星期四下午講了《勾股定理逆定理》第一課時,現(xiàn)對本節(jié)課反思如下:

 。1)這節(jié)課的設(shè)計思路比較合理:著重體現(xiàn)“探究”這一主題,從“古埃及人得到直角三角形的方法”到學(xué)生用木棒模仿操作,再到畫圖自己證明等一系列活動,得出“勾股定理逆定理”,而對互逆命題,原命題,逆命題等概念的講解只是作為新課引入的命題點化了一下,沒有詳細(xì)講解、把這節(jié)課的.重點放在了如何讓學(xué)生通過三角形三邊關(guān)系判斷是否是直角三角形?在經(jīng)過課堂練習(xí)及課堂檢測來強(qiáng)化學(xué)生對勾股定理逆定理的理解,分別從三角形的邊和角這方面來引導(dǎo)學(xué)生。

 。2)本課PPT的使用是想凸顯“特征讓學(xué)生觀察,思路讓學(xué)生探索,方法讓學(xué)生思考,意義讓學(xué)生概括,結(jié)論讓學(xué)生驗證,難點讓學(xué)生突破,以學(xué)生為主體”的教學(xué)思路,每個環(huán)節(jié)都是緊密相接的。

 。3)課堂教學(xué)環(huán)節(jié)和教學(xué)效果我感覺很滿意,學(xué)生在對問題的回答很積極,在突破難點的過程中,學(xué)生通過小組合作實驗交流,自己總結(jié)歸納勾股定理逆定理,及證明中我給與學(xué)生充分的思考時間讓學(xué)生自己完成。整個過程中體現(xiàn)了以學(xué)生為主,老師為主導(dǎo)的作用,課堂氣氛活躍,效果挺好。

  本節(jié)課的不足之處及改進(jìn)方法:

  1、本節(jié)課我沒有及時發(fā)現(xiàn)學(xué)生的錯誤。在學(xué)生上黑板做題時出現(xiàn)的錯誤沒能及時發(fā)現(xiàn)及改正。

  2、課堂檢測做完后應(yīng)讓學(xué)生自己講解,但時間不夠?qū)е逻@一環(huán)節(jié)沒能讓學(xué)生完成,而是在投影對了答案。

  在以后教學(xué)中,我會不斷地更新教育理念,結(jié)合學(xué)生的認(rèn)知規(guī)律、生活經(jīng)驗對數(shù)教材進(jìn)行再創(chuàng)造,選取密切聯(lián)系學(xué)生現(xiàn)實生活和生動有趣的數(shù)學(xué)素材,為學(xué)生提供充分的數(shù)學(xué)活動和交流的空間,真正把創(chuàng)造還給學(xué)生,讓學(xué)生動起來,讓課堂煥發(fā)新的活力。

勾股定理的教學(xué)反思11

  本節(jié)課為華東師大八年級上第三章第一節(jié)的內(nèi)容。本節(jié)課開始是利用了多媒體介紹了在北京召開的20xx年國際數(shù)學(xué)家大會的會標(biāo),其圖案為“弦圖”,激發(fā)學(xué)生的興趣。導(dǎo)入新課,是課堂教學(xué)的重要一環(huán)。“好的開始是成功的一半”,在課的起始階段,迅速集中學(xué)生的注意力,把他們思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲,對這堂課教學(xué)的成敗與否起著至關(guān)重要的作用。運用多媒體展示這一有意義的圖案,可有效地開啟學(xué)生思維的閘門,激發(fā)聯(lián)想,激勵探究,使學(xué)生的.學(xué)習(xí)狀態(tài)由被動變?yōu)橹鲃,使學(xué)生在輕松愉悅的氛圍中學(xué)到知識。

  在講解勾股定理的結(jié)論時,為了讓學(xué)生更好地理解和掌握勾股定理的探索過程,先讓學(xué)生自己進(jìn)行探索,然后同學(xué)進(jìn)行討論,最后上臺演示。這樣可以加深學(xué)生的參與,也讓師生間、生生間有了互動。然后老師再利用電腦演示直角三角形中勾股定理的探索過程。反復(fù)演示幾遍,讓學(xué)生自己感覺并最后體會到勾股定理的結(jié)論。通過動畫演示體會到解決問題的方法是多種多樣,使得這課的重難點輕易地突破,大大提高了教學(xué)效率,培養(yǎng)了學(xué)生的解決問題的能力和創(chuàng)新能力。學(xué)生在這一過程中各顯神通,都得到了解決問題的滿足感和自豪感。

  在教學(xué)應(yīng)用勾股定理時,老是運用公式計算,學(xué)生感覺比較厭倦,為了吸引學(xué)生注意力,活躍課堂氣氛,拓寬學(xué)生思路,運用多媒體出示了一道“智慧爺爺”出的思考題:即折竹抵地問題。同學(xué)們一看,興趣來了。最后讓學(xué)生互相討論,就這樣讓學(xué)生在開放自由的情況下解決了該題,同時培養(yǎng)了學(xué)生的想像力。

  最后介紹了勾股定理的歷史,并且推薦了一些網(wǎng)站,讓學(xué)生下課之后進(jìn)行查閱、了解。只是為了方便學(xué)生到更廣闊的知識海洋中去尋找知識寶藏,利用網(wǎng)絡(luò)檢索相關(guān)信息,充實、豐富、拓展課堂學(xué)習(xí)資源,提供各種學(xué)習(xí)方式,讓學(xué)生學(xué)會選擇、整理、重組、再用這些更廣泛的資源。這種對網(wǎng)絡(luò)資源的重新組織,使學(xué)生對知識的需求由窄到寬,有力的促進(jìn)了自主學(xué)習(xí)。這樣學(xué)生不僅能在課堂上學(xué)習(xí)到知識,還讓他們有了怎樣學(xué)習(xí)知識的方法。這就達(dá)到了新課標(biāo)新理念的預(yù)定目標(biāo)。

勾股定理的教學(xué)反思12

  勾股定理是我們這學(xué)期教學(xué)中一個非常重要的定理,它揭示了直角三角形的三邊之間的數(shù)量關(guān)系,是典型的數(shù)形結(jié)合思想的運用,拿著我們初二數(shù)學(xué)備課組全體老師的精心設(shè)計的講學(xué)稿,上完課后,反思不少。本節(jié)課的設(shè)計主要是根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu),“以畫一畫、量一量、算一算、證一證、用一用”為主線軸展開教學(xué)的,著實體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,真正地讓學(xué)生體會到觀察、歸納、驗證的思想和數(shù)形結(jié)合的思想,探究出勾股定理的內(nèi)容,并能做到簡單地應(yīng)用,主要成功的地方有:

  一、導(dǎo)入新課,設(shè)疑巧激趣。

  引入20xx年在北京召開的國際數(shù)學(xué)家大會會標(biāo),展示“弦圖”并設(shè)疑,迅速集中了學(xué)生的注意力,把學(xué)生的思緒帶進(jìn)了特定的學(xué)習(xí)環(huán)境中,激發(fā)了全班同學(xué)的濃厚興趣和強(qiáng)烈的求知欲,為本節(jié)課的成功創(chuàng)造了有利條件。

  二、引導(dǎo)量量、猜猜、證證,有條不紊,思路清晰。

  讓學(xué)生動手畫直角三角形,觀察、分析,引導(dǎo)學(xué)生自己得出結(jié)論,再對結(jié)論進(jìn)行科學(xué)的論證,用所得的結(jié)論解決數(shù)學(xué)問題。在課堂上,探索目標(biāo)明確,體現(xiàn)了教學(xué)的重點和難點,充分發(fā)揮了學(xué)生的主體作用,調(diào)動了學(xué)生的積極性,培養(yǎng)了學(xué)生動手操作的能力,體現(xiàn)了以學(xué)生為主體的意識,各環(huán)節(jié)銜接緊密,學(xué)生課堂反應(yīng)好。

  三、注重學(xué)生的.情感目標(biāo),實現(xiàn)加強(qiáng)愛國主義教育。

  本節(jié)課在教學(xué)探討的過程中,還滲透著勾股定理的歷史方化背景,激發(fā)學(xué)生的民族自豪感,促使探索新知識的熱情,整個課堂師生和諧,氣氛好;師生共同探討并驗證定理,鼓勵學(xué)生再用其他方法來驗證所得的勾股定理結(jié)論。

  四、課堂上充分體現(xiàn)學(xué)生的主體地位,教師是組織者,引導(dǎo)者。

  例:在引入拼圖驗證定理時,學(xué)生以前從未接觸過,故在教學(xué)中我就多給學(xué)生適當(dāng)指導(dǎo)和鼓勵,盡量做學(xué)生的組織者、合作者。

  通過這節(jié)課,備課、上課之后,感悟點點滴滴,確實還存在著一些遺憾。

 、俑杏X今天這堂課沒有平時上課的氣氛那么濃,部分同學(xué)認(rèn)為是錄像課,不敢拋頭露面,甚至連回答問題的聲音都小了很多,故主動提問的人較少。

 、谥v學(xué)稿編設(shè)的內(nèi)容較多,有點欲速則不達(dá)的感覺。

勾股定理的教學(xué)反思13

  教學(xué)目標(biāo)

  一、知識與技能

  1.掌握直角三角形的判別條件。

  2.熟記一些勾股數(shù)。

  3.掌握勾股定理的逆定理的探究方法。

  二、過程與方法

  1.用三邊的數(shù)量關(guān)系來判斷一個三角形是否為直角三角形,培養(yǎng)學(xué)生數(shù)形結(jié)合的思想。

  2.通過對Rt△判別條件的研究,培養(yǎng)學(xué)生大膽猜想,勇于探索的創(chuàng)新精神。

  三、情感態(tài)度與價值觀

  1.通過介紹有關(guān)歷史資料,激發(fā)學(xué)生解決問題的愿望。

  2.通過對勾股定理逆定理的探究;培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和創(chuàng)新精神。

  教學(xué)重點探究勾股定理的逆定理,理解互逆命題,原命題、逆命題的有關(guān)概念及關(guān)系.理解并掌握勾股定理的逆定理,并會應(yīng)用。

  教學(xué)難點理解勾股定理的逆定理的推導(dǎo)。

  教具準(zhǔn)備多媒體課件。

  教學(xué)過程

  一、創(chuàng)設(shè)問屬情境,引入新課

  活動1

  (1)總結(jié)直角三角形有哪些性質(zhì)。

 。2)一個三角形,滿足什么條件是直角三角形?

  設(shè)計意圖:通過對前面所學(xué)知識的歸納總結(jié),聯(lián)想到用三邊的關(guān)系是否可以判斷一個三角形為直角三角形,提高學(xué)生發(fā)現(xiàn)反思問題的能力。

  師生行為學(xué)生分組討論,交流總結(jié);教師引導(dǎo)學(xué)生回憶。

  本活動,教師應(yīng)重點關(guān)注學(xué)生:①能否積極主動地回憶,總結(jié)前面學(xué)過的舊知識;②能否“溫故知新”。

  生:直角三角形有如下性質(zhì):

 。1)有一個角是直角;

 。2)兩個銳角互余;

 。3)兩直角邊的平方和等于斜邊的平方;

 。4)在含30°角的'直角三角形中,30°的角所對的直角邊是斜邊的一半。

  師:那么,一個三角形滿足什么條件,才能是直角三角形呢?

  生:有一個內(nèi)角是90°,那么這個三角形就為直角三角形。

  生:如果一個三角形,有兩個角的和是90°,那么這個三角形也是直角三角形。

  師:前面我們剛學(xué)習(xí)了勾股定理,知道一個直角三角形的兩直角邊a,b斜邊c具有一定的數(shù)量關(guān)系即a2+b2=c2,我們是否可以不用角,而用三角形三邊的關(guān)系來判定它是否為直角三角形呢?我們來看一下古埃及人如何做?

  二、講授新課

  活動2

  問題:據(jù)說古埃及人用下圖的方法畫直角:把一根長蠅打上等距離的13個結(jié),然后以3個結(jié),4個結(jié)、5個結(jié)的長度為邊長,用木樁釘成一個三角形,其中一個角便是直角。

  這個問題意味著,如果圍成的三角形的三邊分別為3、4、5。有下面的關(guān)系“32+42=52”。那么圍成的三角形是直角三角形。

  畫畫看,如果三角形的三邊分別為2.5cm,6cm,6.5cm,有下面的關(guān)系,“2.52+62=6.52,畫出的三角形是直角三角形嗎?換成三邊分別為4cm、7.5cm、8.5cm.再試一試.

  設(shè)計意圖:由特殊到一般,歸納猜想出“如果三角形三邊a,b,c滿足a2+b2=c2,那么這個三角形就為直免三角形的結(jié)論,培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法。

  師生行為讓學(xué)生在小組內(nèi)共同合作,協(xié)手完成此活動。教師參與此活動,并給學(xué)生以提示、啟發(fā)。在本活動中,教師應(yīng)重點關(guān)注學(xué)生:①能否積極動手參與;②能否從操作活動中,用數(shù)學(xué)語言歸納、猜想出結(jié)論;③學(xué)生是否有克服困難的勇氣。

  生:我們不難發(fā)現(xiàn)上圖中,第(1)個結(jié)到第(4)個結(jié)是3個單位長度即AC=3;同理BC=4,AB=5.因為32+42=52。我們圍成的三角形是直角三角形。

  生:如果三角形的三邊分別是2.5cm,6cm,6.5cm.我們用尺規(guī)作圖的方法作此三角形,經(jīng)過測量后,發(fā)現(xiàn)6.5cm的邊所對的角是直角,并且2.52+62=6.52.

  再換成三邊分別為4cm,7.5cm,8.5cm的三角形,目標(biāo)可以發(fā)現(xiàn)8.5cm的邊所對的角是直角,且也有42+7.52=8.52.

  是不是三角形的三邊只要有兩邊的平方和等于第三邊的平方,就能得到一個直角三角形呢?

  活動3下面的三組數(shù)分別是一個三角形的三邊長a,b,c

  5,12,13;7,24,25;8,15,17。

 。1)這三組效都滿足a2+b2=c2嗎?

 。2)分別以每組數(shù)為三邊長作出三角形,用量角器量一量,它們都是直角三角形嗎?

  設(shè)計意圖:本活動通過讓學(xué)生按已知數(shù)據(jù)作出三角形,并測量三角形三個內(nèi)角的度數(shù)來進(jìn)一步獲得一個三角形是直角三角形的有關(guān)邊的條件。

  師生行為:學(xué)生進(jìn)一步以小組為單位,按給出的三組數(shù)作出三角形,從而更加堅信前面猜想出的結(jié)論。

  教師對學(xué)生歸納出的結(jié)論應(yīng)給予解釋,我們將在下一節(jié)給出證明.本活動教師應(yīng)重點關(guān)注學(xué)生:①對猜想出的結(jié)論是否還有疑慮;②能否積極主動的操作,并且很有耐心。

  生:(1)這三組數(shù)都滿足a2+b2=c2。(2)以每組數(shù)為邊作出的三角形都是直角三角形。

  師:很好,我們進(jìn)一步通過實際操作,猜想結(jié)論。

  命題2如果三角形的三邊長a,b,c滿足a2+b2=c2那么這個三角形是直角三角形。

  同時,我們也進(jìn)一步明白了古埃及人那樣做的道理.實際上,古代中國人也曾利用相似的方法得到直角,直至科技發(fā)達(dá)的今天。

勾股定理的教學(xué)反思14

  本節(jié)課是公式課,探索勾股定理和利用數(shù)形結(jié)合的方法驗證勾股定理。勾股定理是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它是解直角三角形的主要根據(jù)之一,是直角三角形的一條非常重要的性質(zhì),也是幾何中最重要的定理之一,它將形與數(shù)密切聯(lián)系起來,在數(shù)學(xué)的發(fā)展中起著重要的作用,在現(xiàn)實世界中也有著廣泛的作用.由此可見,勾股定理是對直角三角形進(jìn)一步的認(rèn)識和理解,是后續(xù)學(xué)習(xí)的'基礎(chǔ)。因此,本節(jié)內(nèi)容在整個知識體系中起著重要的作用。

  針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課的設(shè)計思路是引導(dǎo)學(xué)生‘做’數(shù)學(xué)”,選用“引導(dǎo)探究式”教學(xué)方法,先由淺入深,由特殊到一般地提出問題,接著引導(dǎo)學(xué)生通過實驗操作,歸納驗證,在學(xué)生的自主探究與合作交流中解決問題,這樣既遵循了學(xué)生的認(rèn)知規(guī)律,又充分體現(xiàn)了“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人、教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”的教學(xué)理念.通過教師引導(dǎo),學(xué)生動手、動腦,主動探索獲取新知,進(jìn)一步理解并運用歸納猜想,由特殊到一般,數(shù)形結(jié)合等數(shù)學(xué)思想方法解決問題。同時讓學(xué)生感悟到:學(xué)習(xí)任何知識的最好方法就是自己去探究。

  本節(jié)課采用的教學(xué)流程是:創(chuàng)設(shè)情境→激發(fā)興趣→提出問題→故事場景→發(fā)現(xiàn)新知→深入探究→網(wǎng)絡(luò)信息→規(guī)律猜想→數(shù)字驗證→拼圖效果→實踐應(yīng)用→拓展提高→回顧小結(jié)→整體感知等環(huán)節(jié)共六個活動來完成教學(xué)任務(wù)的。在這一過程中,讓學(xué)生經(jīng)歷了知識的發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結(jié)合的思想,從而更好地理解勾股定理,應(yīng)用勾股定理,發(fā)展學(xué)生應(yīng)用數(shù)學(xué)的意識與能力,增強(qiáng)了學(xué)生學(xué)好數(shù)學(xué)的愿望和信心。

  本節(jié)課中的學(xué)生對用地磚鋪成的地面的觀察發(fā)現(xiàn),計算建立在直角三角形斜邊上的正方形面積,對直角三角形三邊關(guān)系的發(fā)現(xiàn),自我小結(jié)等,都給學(xué)生提供了充分的表達(dá)和交流的機(jī)會,發(fā)展了語言表達(dá)和概括能力,增強(qiáng)了合作意識。由展示生活圖片,感受生活中直角三角形的應(yīng)用,引導(dǎo)學(xué)生將生活圖形數(shù)學(xué)化。感受到生活中處處有數(shù)學(xué)。由實際問題:工人師傅要做出一個直角三角形支架,一般會怎么做?引導(dǎo)學(xué)生思考:直角三角形的三邊除了我們已知的不等關(guān)系以外,是不是還存在著我們未知的等量關(guān)系呢?調(diào)動學(xué)生的學(xué)習(xí)熱情,激發(fā)學(xué)生的學(xué)習(xí)愿望和參與動機(jī)。由學(xué)生觀察地磚鋪成的地面,分別以圖中的直角三角形三邊為邊向外作正方形,求出這三個正方形的面積,尤其計算建立在直角三角形斜邊上的正方形面積。

  這樣學(xué)生通過正方形面積之間的關(guān)系主動建立了由形到數(shù),由數(shù)到形的聯(lián)想,同時也初步感受到對于直角三角形而言,三邊滿足兩直角邊的平方和等于斜邊的平方。這樣的設(shè)計有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語言表達(dá)能力,體會數(shù)形結(jié)合的思想。

  得出結(jié)論后,還要引導(dǎo)學(xué)生用符號語言表示勾股定理,如符號語言:Rt△ABC中,∠C=90,AC2+BC2=AB2(或a2+b2=c2),因為將文字語言轉(zhuǎn)化為數(shù)學(xué)語言是數(shù)學(xué)學(xué)習(xí)的一項基本能力。其次,介紹“勾,股,弦”的含義,進(jìn)行點題,并指出勾股定理只適用于直角三角形;最后介紹古今中外對勾股定理的研究,這樣可讓學(xué)生更好地體會勾股定理的豐富內(nèi)涵與文化背景,陶冶情操,豐富自我,從中得到深層次的發(fā)展。

勾股定理的教學(xué)反思15

  本節(jié)課首先由口答引入相關(guān)知識點,激起本單元知識的初步回顧,再借小題夯實基礎(chǔ)知識點,構(gòu)建本單元知識的結(jié)構(gòu)框架,然后運用例題規(guī)范知識點應(yīng)用,梳理本單元的數(shù)學(xué)思想方法,接著通過對課本習(xí)題延伸,拓寬學(xué)生分析問題的視野和思路,最后分層設(shè)計課堂練習(xí),讓所有學(xué)生都能獲得成功的體驗。整個設(shè)計體現(xiàn)了以教師為主導(dǎo)、學(xué)生為主體,以知識為載體、以培養(yǎng)學(xué)生的思維能力為重點的教學(xué)思想。在經(jīng)歷解決問題的過程中,培養(yǎng)了學(xué)生分類、探究、歸納等能力。通過本節(jié)課的復(fù)習(xí),學(xué)生對勾股定理及其逆定理有關(guān)概念及其相關(guān)知識有了更深更新的認(rèn)識。

  本單元復(fù)習(xí)課的設(shè)計著重體現(xiàn)把學(xué)生作為主動的人而不是接受知識的容器,強(qiáng)調(diào)學(xué)生對知識的建構(gòu)和注重提升全體學(xué)生的科學(xué)素養(yǎng),激發(fā)了學(xué)生對知識繼續(xù)探求的動力。在復(fù)習(xí)時給于了學(xué)生不同題目的類型,使他們能夠充分了解勾股定理及其逆定理的重通過復(fù)習(xí),讓學(xué)生能對本單元所學(xué)知識系統(tǒng)化,加強(qiáng)前后各部分知識之間的'聯(lián)系,綜合運用所學(xué)知識分析解決問題,反思本節(jié)復(fù)習(xí)課的教學(xué),大致有以下幾點成功之處:

  1. 開始設(shè)計的問題:①勾股定理的圖形證明,②直角三角形的判定及聯(lián)想,③知識綜合應(yīng)用。通過對這些問題的回答,達(dá)到梳理本章內(nèi)容,建立一定知識體系的目的。關(guān)注了學(xué)生運用例子說明自己對有關(guān)知識的理解,而不是簡單復(fù)述教科書上的結(jié)論。

  2. 設(shè)計的題目既考察了對基本知識的掌握情況,又注重了綜合課的特點,注重對所學(xué)知識的綜合利用。

  3. 設(shè)計的問題盡量與實際問題有聯(lián)系,體現(xiàn)了數(shù)學(xué)來源于實際,又應(yīng)用于生活實際,這一點符合新課標(biāo)的要求。

  不足之處:

  1. 設(shè)計題目多,不夠精,時間緊,沒能按時完成。

  2.教師不善于運用激勵性的語言去激發(fā)學(xué)生學(xué)習(xí)的興趣,導(dǎo)致有些學(xué)生還是沒有掌握相關(guān)的知識點。

  3.教師在課堂靈活處理上還是有許多不足之處,需要在日常教學(xué)中學(xué)習(xí)完善。

【勾股定理的教學(xué)反思】相關(guān)文章:

《勾股定理》教學(xué)反思09-27

勾股定理教學(xué)反思11-08

《勾股定理》教學(xué)反思范文08-12

數(shù)學(xué)《勾股定理》教學(xué)反思04-22

八年級勾股定理教學(xué)反思04-17

《探索勾股定理》教學(xué)設(shè)計(精選11篇)11-02

《勾股定理》的說課稿01-18

勾股定理說課稿04-18

精選勾股定理說課稿8篇03-28