四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>《探索勾股定理》教學(xué)設(shè)計(jì)

《探索勾股定理》教學(xué)設(shè)計(jì)

時(shí)間:2024-11-02 03:13:51 兆波 八年級(jí)數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

《探索勾股定理》教學(xué)設(shè)計(jì)(精選11篇)

  作為一位優(yōu)秀的人民教師,就有可能用到教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)以計(jì)劃和布局安排的形式,對(duì)怎樣才能達(dá)到教學(xué)目標(biāo)進(jìn)行創(chuàng)造性的決策,以解決怎樣教的問(wèn)題。那么教學(xué)設(shè)計(jì)應(yīng)該怎么寫(xiě)才合適呢?下面是小編整理的《探索勾股定理》教學(xué)設(shè)計(jì),歡迎大家分享。

《探索勾股定理》教學(xué)設(shè)計(jì)(精選11篇)

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇1

  一、教材分析

  勾股定理歷史悠久,是初中數(shù)學(xué)中非常重要的一個(gè)結(jié)論,稱為"幾何學(xué)的基石",在數(shù)學(xué)學(xué)習(xí)中有重要的地位。它是平面幾何有關(guān)度量的最基本定理,它從邊的角度進(jìn)一步刻畫(huà)了直角三角形的特征,學(xué)習(xí)勾股定理是進(jìn)一步認(rèn)識(shí)和理解直角三角形的需要,也是后續(xù)有關(guān)幾何度量運(yùn)算和代數(shù)學(xué)習(xí)的必要基礎(chǔ)。因而勾股定理具有學(xué)科的基礎(chǔ)性和廣泛的應(yīng)用。

  二、學(xué)情分析:

  八年級(jí)學(xué)生已經(jīng)學(xué)習(xí)了三角形的一些基本知識(shí);也經(jīng)歷過(guò)利用圖形面積來(lái)探求數(shù)學(xué)公式過(guò)程。如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。本節(jié)課在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,使學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

  但是這個(gè)年齡的孩子的思維偏重于直觀。而勾股定理的探究方法雖然很多,但對(duì)于八年級(jí)的學(xué)生,如果直接讓探究直角三角形三邊之間的關(guān)系,學(xué)生大多會(huì)思考三邊之間的一次關(guān)系,而較難想到三邊之間的平方關(guān)系,可能會(huì)陷入較長(zhǎng)時(shí)間的困惑,而且沒(méi)有教師的指引可能最終都不能走到正確道路上來(lái),為此,從特殊的等腰直角三角形入手,提出問(wèn)題,課堂中,注重學(xué)生的動(dòng)手操,引導(dǎo)學(xué)生從具體到一般,層層遞進(jìn),引導(dǎo)學(xué)生親歷定理的產(chǎn)生和驗(yàn)證過(guò)程,作為以后相關(guān)知識(shí)的繼續(xù)學(xué)習(xí)奠定良好的基礎(chǔ)。

  讓學(xué)生經(jīng)歷勾股定理的探究過(guò)程,進(jìn)一步豐富學(xué)生的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),發(fā)展學(xué)生的推理能力,以及分析問(wèn)題、解決問(wèn)題的能力,同時(shí)感受勾股定理的文化價(jià)值。

  三、教學(xué)目標(biāo):

  1、讓學(xué)生親歷"發(fā)現(xiàn)問(wèn)題—提出問(wèn)題—一解決問(wèn)題"、從"特殊到一般"的過(guò)程,體會(huì)類比、轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想和方法。

  2、讓學(xué)生經(jīng)歷實(shí)踐操作、計(jì)算分析、拼圖實(shí)驗(yàn)的過(guò)程,在過(guò)程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過(guò)程中發(fā)揮自己特長(zhǎng),通過(guò)解決問(wèn)題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過(guò)老師的介紹,感受勾股定理的文化價(jià)值。

  3、能說(shuō)出勾股定理,并能用勾股定理解決簡(jiǎn)單問(wèn)題

  四、教學(xué)重點(diǎn):勾股定理的探索過(guò)程和簡(jiǎn)單的應(yīng)用

  五、教學(xué)難點(diǎn):勾股定理的探索過(guò)程

  六、教學(xué)方法:小組合作、教師點(diǎn)撥

  七、 教學(xué)資源:教材、多媒體

  八、 教學(xué)準(zhǔn)備:已剪好的若干個(gè)邊長(zhǎng)為整數(shù)的直角三角形、方格紙 、幾何畫(huà)板課件

  九、教學(xué)過(guò)程

  教學(xué)環(huán)節(jié)

  教師活動(dòng)

  學(xué)生活動(dòng)

  設(shè)計(jì)意圖

  一、發(fā)現(xiàn)問(wèn)題

  老師:同學(xué)們,我們?cè)谄吣昙?jí)已經(jīng)學(xué)習(xí)過(guò)三角形的一些基本知識(shí),我們也了解了一些特殊的三角形,你知道的特殊的三角形有哪些?

  對(duì)于等腰三角形和等邊三角形你知道些什么?直角三角形呢?邊與邊的關(guān)系呢?(課件出示)

  老師提出問(wèn)題,學(xué)生獨(dú)立思考,同桌兩人交流討論,再由代表公布。

  這是對(duì)特殊的兩類三角形的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的'認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo)。

  二、提出問(wèn)題

  Rt△ABC中,∠C=90°,請(qǐng)問(wèn):邊a、b、c之間有何關(guān)系? 該如何研究?

 。ń處煱鍟(shū)今天的研究目的)

  提出問(wèn)題,學(xué)生思考,該如何研究呢?測(cè)量?還是其他方法呢?

  以問(wèn)題串的形式,引發(fā)學(xué)生思考,測(cè)量后學(xué)生不能發(fā)現(xiàn)規(guī)律,進(jìn)而引出研究問(wèn)題的方法:可以從簡(jiǎn)單的特殊的入手。

  三、如何解決

  三、如何解決

  三、如何解決

  1、特殊入手——簡(jiǎn)單的

  問(wèn)題1.已知Rt△ABC,∠C=90°

  若 a=b=1,你能寫(xiě)出含c的等式嗎?

  若 a=b=2,你能寫(xiě)出含c的等式嗎?

  若 a=1, b=2呢?

  思考:

 。1)(2)的條件有什么共同點(diǎn)?(3)的條件與(1)(2)有什么區(qū)別?

 。1)(2)的結(jié)果有什么共同點(diǎn)?c2=2,c2=8能讓我們想起什么?

  學(xué)生難以得出時(shí),老師給予適當(dāng)?shù)奶崾荆梢詮拿娣e入手。

  學(xué)生思考,并暢所欲言。

  學(xué)生不難得出平方和正方形的面積有關(guān)系,所以引導(dǎo)學(xué)生利用面積來(lái)探求關(guān)系。

  當(dāng)老師擁有完美的方法解決問(wèn)題的時(shí)候,學(xué)生好奇的不僅是老師解決問(wèn)題的方法,學(xué)生更加關(guān)心的是老師是如何想到這一方法的,從特殊的簡(jiǎn)單的入手,是學(xué)生容易接受的。

  讓學(xué)生體會(huì)到當(dāng)一般性的問(wèn)題不好解決時(shí),可以先將一般問(wèn)題轉(zhuǎn)化為特殊問(wèn)題來(lái)研究。

  從學(xué)生認(rèn)知基礎(chǔ)、已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長(zhǎng)之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺(jué)得解決今天問(wèn)題的方法并不陌生,增強(qiáng)探索問(wèn)題的信心和欲望。

  2、分析方法

  問(wèn)題: 如何驗(yàn)證以c為邊長(zhǎng)的正方形的面積是否為2 ?

  方法2.用網(wǎng)格1幫助

  你能用上述方法驗(yàn)證問(wèn)題(2)的結(jié)論嗎?

  思考:你有哪些方法知道正方形的面積為8?

  問(wèn)題:你能用上述方法幫助解決問(wèn)題(3)嗎?

  思考:你有哪些方法知道正方形的面積為5?

  教師引導(dǎo),學(xué)生觀察不難得出。

  類比邊長(zhǎng)為1的等腰直角三角形在網(wǎng)格中得出斜邊的平方為2的方法,學(xué)生不難想到在方格紙中利用面積得到。

  當(dāng)學(xué)生在方格紙上畫(huà)出這個(gè)正方形后,采用補(bǔ)、拼、割的辦法得出。

  對(duì)于問(wèn)題(3),當(dāng)學(xué)生在方格紙上畫(huà)出這個(gè)正方形后,讓學(xué)生小組討論交流,選代表發(fā)言。學(xué)生類比前面方法,采用割或者補(bǔ)的辦法得出。

  引導(dǎo)學(xué)生求這個(gè)正方形面積的方法可以又多種,拓展學(xué)生的思維。

  讓學(xué)生在問(wèn)題(1)的啟發(fā)下,得出方法,自己動(dòng)手實(shí)踐,體會(huì)成功的喜悅,激發(fā)內(nèi)驅(qū)力。

  展示學(xué)生的方法:割的方法,補(bǔ)的方法,平移的方法,旋轉(zhuǎn)的方法,(旋轉(zhuǎn)的方法是正確的,但是它只適應(yīng)于斜邊是整數(shù)的情況,況且學(xué)生在此時(shí)還不會(huì)計(jì)算斜邊的長(zhǎng),因此這種方法沒(méi)有一般性,如果學(xué)生有提到,教師應(yīng)予以解釋。)肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生進(jìn)行總結(jié),把圖形進(jìn)行割和補(bǔ),即把不能利用網(wǎng)格線直接計(jì)算面積的圖形轉(zhuǎn)化為可以利用網(wǎng)格線直接計(jì)算面積的圖形。讓學(xué)生體會(huì)數(shù)學(xué)的轉(zhuǎn)化思想。

  3、應(yīng)用方法

  問(wèn)題1.(4)若a=2,b=3.你能求c2嗎?

  思考:你有哪些方法知道正方形的面積為13?

  讓學(xué)生自己在方格紙上畫(huà)出直角邊分別為2和3的直角三角形,類比前面的方法,得出c的平方。

  通過(guò)此活動(dòng)鍛煉了學(xué)生動(dòng)手能力,體現(xiàn)了活動(dòng)數(shù)學(xué)的思想。同時(shí)也是對(duì)割、補(bǔ)方法計(jì)算正方形面積做了加深理解。

  4、 觀察歸納

  問(wèn)題2. 梳理上述四個(gè)問(wèn)題的邊長(zhǎng),并思考a、b、c之間有什么聯(lián)系?

  5、。驗(yàn)證結(jié)論

  問(wèn)題3.(1)在網(wǎng)格中能驗(yàn)證a2+b2=c2嗎?

  活動(dòng):在網(wǎng)格紙上任意畫(huà)一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形,并分別以這個(gè)直角三角形的各邊為邊向外做出三個(gè)正方形,求出此時(shí)三個(gè)正方形的面積。

  學(xué)生通過(guò)觀察表格,初步得出猜想:a2+b2=c2

  學(xué)生活動(dòng)時(shí),教師要積極的參與到學(xué)生活動(dòng)中去,其中以斜邊為邊向外作正方形時(shí),另兩個(gè)頂點(diǎn)位置的確定是這一活動(dòng)的難點(diǎn),教師巡視是如果有學(xué)生在這兩處存在問(wèn)題的話,教師就以中國(guó)象棋馬走日,連續(xù)走四次所形成的線路圖給學(xué)生啟發(fā)。

  梳理四個(gè)問(wèn)題,學(xué)生歸納總結(jié),得出猜想,讓學(xué)生初步得到直角三角形三邊之間的關(guān)系猜想,為進(jìn)一步的探索明確方向。

  此活動(dòng)是一個(gè)學(xué)生全面經(jīng)歷探究的過(guò)程,也是割和補(bǔ)的方法的再次應(yīng)用,讓全體學(xué)生再次感受轉(zhuǎn)化思想,體驗(yàn)成功的樂(lè)趣。此時(shí)要給學(xué)生充分的時(shí)間,相信在同學(xué)們計(jì)算中學(xué)生會(huì)得到更多的一般情形,由此為歸納定理奠定基礎(chǔ)。這樣歸納的結(jié)果也更具一般性,學(xué)生們的印象也更加深刻。

  讓學(xué)生體會(huì)到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻。

  6、。結(jié)論一般化

 。1)通過(guò)以上的實(shí)驗(yàn)、操作、計(jì)算,我們發(fā)現(xiàn)以直角三角形的各邊為邊所作的正方形的面積之間有什么關(guān)系呢?同學(xué)們還有什么疑問(wèn)嗎?

  (2)網(wǎng)格有局限性,對(duì)于非整數(shù)邊長(zhǎng)的直角三角形,結(jié)論是否成立?

  a、插入幾何畫(huà)板:

  提問(wèn):在老師拖動(dòng)的過(guò)程中,仔細(xì)觀察,變化的是什么?不變的是什么?

  b、學(xué)生拿出四個(gè)全等的直角三角形拼圖。

  學(xué)生留下思考時(shí)間,提出問(wèn)題:我們畫(huà)的都是格點(diǎn)三角形,直角邊的長(zhǎng)度都是整數(shù),如果不是整數(shù)會(huì)不會(huì)成立?

  問(wèn)題激發(fā)學(xué)生進(jìn)一步探究的興趣。

  讓學(xué)生仔細(xì)觀察,從而得出結(jié)論。

  通過(guò)學(xué)生觀察幾何畫(huà)板、親自動(dòng)手拼圖、運(yùn)算推演、互相交流,發(fā)現(xiàn)以直角三角形的各邊為邊所作的正方形面積之間的關(guān)系,由特殊到一般,使學(xué)生印象深刻,對(duì)于勾股定理的得出就水到渠成了,并讓學(xué)生體會(huì)成功的樂(lè)趣。

  引導(dǎo)學(xué)生從特殊到一般,發(fā)現(xiàn)直角三角形三邊之間的數(shù)量關(guān)系。這一問(wèn)題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá)。

  四、歸納應(yīng)用

  1、歸納

 。1)我們這節(jié)課是探索直角三角形三邊數(shù)量關(guān)系。至此,你對(duì)直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?

 。2)直角三角邊的兩直角邊的平方和等于斜邊的平方。 也就是說(shuō):如果直角三角形的兩直角邊為a、b,斜邊為c.那么(板書(shū)勾股定理內(nèi)容,進(jìn)而給出字母表達(dá)式,并給出勾股定理的幾種表達(dá)式。)

  我國(guó)古代稱直角三角形的較短的直角邊為勾,較長(zhǎng)的直角邊為股,斜邊為弦,所以這個(gè)結(jié)論稱為勾股定理。(如圖1---5所示)(板書(shū))其實(shí)這個(gè)結(jié)論早在公元前1000年被我國(guó)的商高發(fā)現(xiàn)并應(yīng)用于測(cè)量土地,在國(guó)外,由于是古希臘的畢達(dá)哥拉斯于公元前500年發(fā)現(xiàn)的,所以此定理又稱為畢達(dá)哥拉斯定理。

  點(diǎn)出本節(jié)研究?jī)?nèi)容,也就是本節(jié)課題——探索勾股定理。

  回顧思考:

  1.怎樣探索獲得勾股定理的?

  2.你體會(huì)到的數(shù)學(xué)方法有哪些?

  之后教師梳理。

  思考:

 。1)勾股定理的使用條件是什么?

  (2)有什么用?

  給學(xué)生留有思考時(shí)間。

  由學(xué)生用自己的語(yǔ)言概括自己所發(fā)現(xiàn)的規(guī)律。

  學(xué)生突破本節(jié)學(xué)習(xí)目標(biāo)。

  課堂小結(jié),讓學(xué)生暢所欲言。

  先讓同桌之間相互說(shuō)一說(shuō),再找同學(xué)分享給全班同學(xué),其他同學(xué)不斷補(bǔ)充,同學(xué)談完后,老師梳理,

  強(qiáng)調(diào):勾股定理只有在直角三角形中才成立。

  讓學(xué)生自己總結(jié)歸納,培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,并了解學(xué)生所學(xué)。

  滲透勾股定理的歷史,讓學(xué)生了解勾股定理歷史淵源深厚,激發(fā)學(xué)生的愛(ài)國(guó)情懷和民族自豪感。

  以這樣方式引出本節(jié)課題,回扣了一開(kāi)始提出的研究目的:直角三角形三邊之間的關(guān)系,滲透勾股定理研究的是直角三角形三邊之間的關(guān)系。

  這樣不僅引導(dǎo)學(xué)生回顧本節(jié)所學(xué),并培養(yǎng)學(xué)生的語(yǔ)言表達(dá)和歸納能力,同時(shí)也讓學(xué)生對(duì)本節(jié)的探索流程有了更深的理解和認(rèn)識(shí),為下一節(jié)課勾股定理的證明做好鋪墊。

  2、應(yīng)用

 。1)求下列圖形中未知數(shù)x,y,z的值。

 。2)求下列三角形未知邊的長(zhǎng)。

 。3)已知等邊三角形ABC的邊長(zhǎng)是6cm.求:

  (1)高AD的長(zhǎng);(2)△ABC的面積。

  學(xué)生獨(dú)立完成,然后小組交流,每組派代表給出本組結(jié)論。

  展示答案,學(xué)生互相評(píng)價(jià),總結(jié)類型、方法。

  充分利用課本上的習(xí)題,鞏固新知。

  通過(guò)對(duì)勾股定理的基本應(yīng)用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊。

  讓學(xué)生有將知識(shí)內(nèi)化為自己的知識(shí)結(jié)構(gòu)的過(guò)程,教師巡視,對(duì)有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)原則。

  讓學(xué)生有將知識(shí)內(nèi)化為自己的知識(shí)結(jié)構(gòu)的過(guò)程,教師巡視,對(duì)有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)原則。

  拓寬學(xué)生的思維,體會(huì)數(shù)學(xué)知識(shí)之間的聯(lián)系,認(rèn)識(shí)數(shù)學(xué)的轉(zhuǎn)化思想。

  一段緊張的探究和簡(jiǎn)單應(yīng)用之后,給出一段關(guān)于勾股定理驗(yàn)證方法和文化價(jià)值的拓展,這樣既激發(fā)了同學(xué)們的興趣,又增加了課堂的愉快氣氛。讓學(xué)生感受到勾股定理的歷史并了解一定的證明方法,增加了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  五、達(dá)標(biāo)檢測(cè)

  六、拓展視野

  A組:(填空題)已知在直角三角形ABC中,∠C=90°

 、偃鬭=3,b=4,則c=________;②若a=6,c=10,則b=_______;③若c=25,b=15,則a=_______.

  B組:學(xué)了勾股定理后,小明和小麗遇到這樣一個(gè)問(wèn)題:"在Rt△ABC中,如果a=3,b=4,則c=5."小明認(rèn)為這個(gè)說(shuō)法正確的,小麗覺(jué)得有問(wèn)題,你覺(jué)得呢?并說(shuō)明理由。

  1、驗(yàn)證方法:古今中外,勾股定理的驗(yàn)證方法達(dá)500多種,上至總統(tǒng)下至數(shù)學(xué)愛(ài)好者。

  2、文化價(jià)值:

  (1)2002年國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)

 。2)目前世界上許多科學(xué)家正在試圖尋找其他星球的"人 .為此向宇宙發(fā)出了許多信號(hào)。如地球上人類的語(yǔ)言。音樂(lè)。各種圖形等。我國(guó)數(shù)學(xué)家華羅庚曾建議。發(fā)射一種反映勾股定理的圖形。如果宇宙人是"文明人 .那么他們一定會(huì)識(shí)別這種語(yǔ)言的。這個(gè)事實(shí)可以說(shuō)明勾股定理的重大意義。

  對(duì)于A組,采用學(xué)生獨(dú)立完成,出示答案,同位互換,互批,小組計(jì)分,當(dāng)堂反饋。

  B組,根據(jù)情況,可以適當(dāng)引導(dǎo)學(xué)生解此題的思路。

  一段緊張的探究之后,結(jié)尾給出一段優(yōu)美的音樂(lè),配以老師的解說(shuō),讓學(xué)生的情感再次升華。

  設(shè)計(jì)兩組題目,尊重學(xué)生的個(gè)體差異。

  B組題目可以拓寬學(xué)生的思維,體會(huì)分類討論思想。

  學(xué)生獨(dú)立完成,出示答案,同位互換,互批,小組計(jì)分,當(dāng)堂反饋。便于老師及時(shí)了解學(xué)生對(duì)知識(shí)的掌握情況,如果出現(xiàn)共性問(wèn)題,老師要拿出解決方案,對(duì)于個(gè)別學(xué)生的問(wèn)題可以在課后進(jìn)行補(bǔ)差。

  激發(fā)學(xué)生利用網(wǎng)絡(luò)資源,課下繼續(xù)探討學(xué)習(xí)和研究,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。同時(shí)也活躍了課堂氣氛,展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛(ài)祖國(guó)悠久歷史文化,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)的情感 .激發(fā)學(xué)生的民族自豪感,

  教師寄語(yǔ)

  給我最大快樂(lè)的,不是已懂得知識(shí),而是不斷的學(xué)習(xí);不是已有的東西,而是不斷的獲。徊皇且堰_(dá)到的高度,而是繼續(xù)不斷的攀登。

  ——高斯

  同學(xué)們,學(xué)習(xí)知識(shí)的過(guò)程就是不斷挑戰(zhàn),不斷攀登的過(guò)程,相信我們通過(guò)自己的勤奮探索,一定會(huì)達(dá)到知識(shí)的最高峰!

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇2

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

  本節(jié)教科書(shū)從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。

  [教學(xué)目標(biāo)]

  一、 知識(shí)與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題

  3、學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理

  二、 過(guò)程與方法

  引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。

  三、 情感與態(tài)度目標(biāo)

  通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

  四、 重點(diǎn)與難點(diǎn)

  1、探索和證明勾股定理

  2熟練運(yùn)用勾股定理

  [教學(xué)過(guò)程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問(wèn)題

  1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。

  第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。

  因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。

  這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的`驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)

  1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇3

  教學(xué)目標(biāo)

  1、知識(shí)與技能目標(biāo)

  用數(shù)格子(或割、補(bǔ)、拼等)的辦法體驗(yàn)勾股定理的探索過(guò)程并理解勾股定理反映的直角三角形的三邊之間的數(shù)量關(guān)系,會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用.

  2、過(guò)程與方法

  讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法.進(jìn)一步發(fā)展學(xué)生的說(shuō)理和簡(jiǎn)單推理的意識(shí)及能力;進(jìn)一步體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系.

  3、情感態(tài)度與價(jià)值觀

  在探索勾股定理的過(guò)程中,體驗(yàn)獲得成功的快 樂(lè);通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久化的思想,激勵(lì)學(xué)生發(fā)奮 學(xué)習(xí).

  教學(xué)重點(diǎn)了結(jié)勾股定理的由,并能用它解決一些簡(jiǎn)單的問(wèn)題。

  教學(xué)難點(diǎn):勾股定理的發(fā)現(xiàn)

  教學(xué)準(zhǔn)備:多媒體

  教學(xué)過(guò)程:

  第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新(3分鐘,學(xué)生觀察、欣賞)

  內(nèi)容:2002年世界數(shù)學(xué)家大會(huì)在我國(guó)北京召開(kāi),

  投影顯示本屆世界數(shù)學(xué)家大會(huì)的會(huì)標(biāo):

  會(huì)標(biāo)中央的圖案是一個(gè)與“勾股定理”有關(guān)的圖形,數(shù)學(xué)家曾建議用“勾股定理”

  的圖作為與“外星人”聯(lián)系的'信號(hào).今天我們就一同探索勾股定理.(板書(shū) 題)

  第二環(huán)節(jié):探索發(fā)現(xiàn)勾股定理(15分鐘,學(xué)生獨(dú)立觀察,自主探究)

  1.探究活動(dòng)一:

  內(nèi)容:(1)投影顯示如下地板磚示意圖,讓學(xué)生初步觀察:

  (2)引導(dǎo)學(xué)生從面積角度觀察圖形:

  問(wèn):你能發(fā)現(xiàn)各圖中三個(gè)正 方形的面 積之間有何關(guān)系嗎?

  學(xué)生通過(guò)觀察,歸納發(fā)現(xiàn):

  結(jié)論1 以等腰直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積.

  2.探究 活動(dòng)二:

  由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?

 。1)觀察下面兩幅圖:

 。2)填表:

  A 的面積

 。▎挝幻娣e)B的面積

 。▎挝幻娣e)C的面積

 。▎挝幻娣e)

  左圖

  右圖

 。3)你是怎樣得到正方形C的面積的?與同伴交流.(學(xué)生可能會(huì)做出多種方法,教師應(yīng)給予充分肯定.)

 。4)分析填表的數(shù)據(jù),你發(fā)現(xiàn)了什么?

  學(xué)生通過(guò)分析數(shù)據(jù),歸納出:

  結(jié)論2 以直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積.

  3.議一議:

  內(nèi)容:(1)你能用直角三角形的邊長(zhǎng) 、 表示上圖中正方形的面積嗎?

 。2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?

 。3)分別以5厘米、12厘米為直角邊作出一個(gè)直角三角形,并測(cè)量斜邊的長(zhǎng)度.2中發(fā)現(xiàn)的規(guī)律對(duì)這個(gè)三角形仍然成立嗎?

  勾股定理(gou-gu theorem):

  如果直角三角形兩直角邊長(zhǎng)分別為 、 ,斜邊長(zhǎng)為 ,那么即直角三角形兩直角邊的平方和等于斜邊的平方.

  數(shù)學(xué)小史:勾股定理是我國(guó)最早發(fā)現(xiàn)的,中國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名.

  第三環(huán)節(jié): 勾股定理的簡(jiǎn)單應(yīng)用(7分鐘,學(xué)生合作探究)

  內(nèi)容:

  例 如圖所示,一棵大樹(shù)在一次強(qiáng)烈臺(tái)風(fēng)中于離

  地面10m處折斷倒下,

  樹(shù)頂落在離樹(shù)根24m處. 大樹(shù)在折斷之前高多少?

 。ń處煱逖萁忸}過(guò)程)

  第四環(huán)節(jié):鞏 固練習(xí)(10分鐘,學(xué)生先獨(dú)立完成,后全班交流)

  1、列圖形中未知正方形的面積或未知邊的長(zhǎng)度:

  2、生活中的應(yīng)用:

  小明媽媽買了一部29英寸(74厘米)的電視機(jī). 小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得 一定是售貨員搞錯(cuò)了.你同意他的想法嗎?你能解釋這是為什么嗎?

  第五環(huán)節(jié):堂小結(jié)(3分鐘,師生對(duì)答,共同總結(jié))

  內(nèi)容:教師提問(wèn):

  1.這一節(jié)我們一起學(xué)習(xí)了哪些知識(shí)和思想方法?

  2.對(duì)這些內(nèi)容你有什么體會(huì)?請(qǐng)與你的同伴交流.

  在學(xué)生自由發(fā)言的基礎(chǔ)上,師生共同總結(jié):

  1.知識(shí):勾股定理:如果直角三角形兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么 .

  2.方法:① 觀察—探索—猜想—驗(yàn)證—?dú)w納—應(yīng)用;

 、 面積法;

  ③ “割、補(bǔ)、拼、接”法.

  3.思想:① 特殊—一般—特殊;

  ② 數(shù)形結(jié)合思想.

  第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

  內(nèi)容:

  作業(yè):1.教科書(shū)習(xí)題1.1;

  2.《讀一讀》——勾股世界;

  3.觀察下圖,探究圖中三角形的三邊長(zhǎng)是否滿足 .

  要求:A組(學(xué)優(yōu)生):1、2、3

  B組(中等生):1、2

  C組(后三分之一生):1

  板書(shū)設(shè)計(jì):見(jiàn)電子屏幕

  教學(xué)反思:

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇4

  一、教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法.

  2.運(yùn)用勾股解決一些實(shí)際問(wèn)題.

  (二)能力訓(xùn)練要求

  1.學(xué)會(huì)用拼圖的方法驗(yàn)證勾股定理,培養(yǎng)學(xué)生的創(chuàng)新能力和解決實(shí)際問(wèn)題的能力.

  2.在拼圖過(guò)程中,鼓勵(lì)學(xué)生大膽聯(lián)想,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí).

  (三)情感與價(jià)值觀要求

  利用拼圖的方法驗(yàn)證勾股定理,是我國(guó)古代數(shù)學(xué)家的`一大貢獻(xiàn).借助對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育.并在拼圖的過(guò)程中獲得學(xué)習(xí)數(shù)學(xué)的快樂(lè),提高學(xué)習(xí)數(shù)學(xué)的興趣.

  二.教學(xué)重、難點(diǎn)

  重點(diǎn):勾股定理的證明及其應(yīng)用.

  難點(diǎn):勾股定理的證明.

  三.教學(xué)方法

  教師引導(dǎo)和學(xué)生自主探索相結(jié)合的方法.

  在用拼圖的方法驗(yàn)證勾股定理的過(guò)程中.教師要引導(dǎo)學(xué)生善于聯(lián)想,將形的問(wèn)題與數(shù)的問(wèn)題聯(lián)系起來(lái),讓學(xué)生自主探索,大膽地聯(lián)系前面知識(shí),推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實(shí)際問(wèn)題.

  四.教具準(zhǔn)備

  1.每個(gè)學(xué)生準(zhǔn)備一張硬紙板;

  2.投影片三張:

  第一張:?jiǎn)栴}串(記作1.1.2 A);

  第二張:議一議(記作1.1.2 B);

  第三張:例題(記作1.1.2 C).

  五.教學(xué)過(guò)程

 、.創(chuàng)設(shè)問(wèn)題情景,引入新課

  [師]我們?cè)鴮W(xué)習(xí)過(guò)整式的運(yùn)算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容.誰(shuí)還能記得當(dāng)時(shí)這兩個(gè)公式是如何推出的?

  [生]利用多項(xiàng)式乘以多項(xiàng)式的法則從公式的左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.

  [生]還可以用拼圖的方法來(lái)推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個(gè)邊長(zhǎng)為a的正方形,一個(gè)邊長(zhǎng)為b的正方形,兩個(gè)長(zhǎng)和寬分別為a和b的長(zhǎng)方形可拼成如下圖所示的邊長(zhǎng)為(a+b)的正方形,那么這個(gè)大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇5

  教學(xué)目標(biāo)

  知識(shí)與技能:

  了解勾股定理的一些證明方法,會(huì)簡(jiǎn)單應(yīng)用勾股定理解決問(wèn)題

  過(guò)程與方法:

  在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過(guò)程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。

  情感態(tài)度價(jià)值觀:

  通過(guò)對(duì)我國(guó)古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。

  教學(xué)過(guò)程

  1、創(chuàng)設(shè)情境

  問(wèn)題1國(guó)際數(shù)學(xué)家大會(huì)是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會(huì)”。2002年在北京召開(kāi)了第24屆國(guó)際數(shù)學(xué)家大會(huì)。下圖就是大會(huì)會(huì)徽的圖案。你見(jiàn)過(guò)這個(gè)圖案嗎?它由哪些我們學(xué)習(xí)過(guò)的基本圖形組成?這個(gè)圖案有什么特別的含義?

  師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過(guò)今天的學(xué)習(xí),就能理解會(huì)徽?qǐng)D案的含義。

  設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽說(shuō)起,設(shè)置懸念,引入課題。

  2、探究勾股定理

  觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界

  問(wèn)題2相傳2500多年前,畢達(dá)哥拉斯有一次在朋友家作客時(shí),發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的`地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請(qǐng)你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?

  師生活動(dòng):學(xué)生先獨(dú)立觀察思考一分鐘后,小組交流合作分析圖形中兩個(gè)藍(lán)色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學(xué)生的討論

  追問(wèn):由這三個(gè)正方形的邊長(zhǎng)構(gòu)成的等腰直角三角形三條邊長(zhǎng)之間又有怎么樣的關(guān)系?

  師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長(zhǎng)的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

  設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論

  問(wèn)題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測(cè)在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

  師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長(zhǎng)的正方形的面積,可由師生共同總結(jié)得出可以通過(guò)割、補(bǔ)兩種方法,求出其面積。

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇6

  課題:

  勾股定理

  課型:

  新授課

  課時(shí)安排:

  1課時(shí)

  教學(xué)目的:

  一、知識(shí)與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運(yùn)用勾股定理進(jìn)行計(jì)算,并解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  二、過(guò)程與方法目標(biāo)通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

  三、情感、態(tài)度與價(jià)值觀目標(biāo)了解中國(guó)古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛(ài)國(guó)熱情;學(xué)生通過(guò)自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時(shí)體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

  教學(xué)重點(diǎn):

  引導(dǎo)學(xué)生經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能運(yùn)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題

  教學(xué)難點(diǎn):

  用面積法方法證明勾股定理

  課前準(zhǔn)備:

  多媒體ppt,相關(guān)圖片

  教學(xué)過(guò)程:

 。ㄒ唬┣榫硨(dǎo)入

  1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹(shù),2002年國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo)等。通過(guò)圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的'文化價(jià)值。

  2、多媒體課件演示FLASH小動(dòng)畫(huà)片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。

 。ǘ⿲W(xué)習(xí)新課問(wèn)題一是等腰直角三角形的情形(通過(guò)多媒體給出圖形),判斷外圍三個(gè)正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時(shí),發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對(duì)于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對(duì)于一般的直角三角形是否也有這樣的性質(zhì)呢?請(qǐng)大家畫(huà)一個(gè)任意的直角三角形,量一量,算一算。問(wèn)題二是一般直角三角形的情形,判斷這時(shí)外圍三個(gè)正方形的面積是否也存在這種關(guān)系?通過(guò)這個(gè)觀察和驗(yàn)算這個(gè)直角三角形外圍的三個(gè)正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過(guò)前面對(duì)兩個(gè)問(wèn)題的驗(yàn)證,可以得到勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。

 。ㄈ╈柟叹毩(xí)1、如果一個(gè)直角三角形的兩條邊長(zhǎng)分別是6厘米和8厘米,那么這個(gè)三角形的周長(zhǎng)是多少厘米?2、解決課程開(kāi)始時(shí)提出的情境問(wèn)題。

 。ㄋ模┬〗Y(jié)

  1、背景知識(shí)介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨(dú)創(chuàng)。

  2、通過(guò)這節(jié)課的學(xué)習(xí),你會(huì)寫(xiě)方程了嗎?你有什么收獲和體會(huì)?

 。ㄎ澹┳鳂I(yè)練習(xí)18.1中的1、2、3題。板書(shū)設(shè)計(jì):勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊為c,那么a2+b2=c2。

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇7

  學(xué)習(xí)目標(biāo)

  1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.

  2.探索勾股定理的過(guò)程,發(fā)展合情推理的能力,體會(huì)數(shù)型結(jié)合的思想。

  重點(diǎn)難點(diǎn)

  或?qū)W習(xí)建議學(xué)習(xí)重點(diǎn):用面積的方法說(shuō)明勾股定理的正確.

  學(xué)習(xí)難點(diǎn):勾股定理的應(yīng)用.

  學(xué)習(xí)過(guò)程教師

  二次備課欄

  自學(xué)準(zhǔn)備與知識(shí)導(dǎo)學(xué):

  這是1955年希臘為紀(jì)念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。

  郵票上的圖案是根據(jù)一個(gè)著名的數(shù)學(xué)定理設(shè)計(jì)的。

  學(xué)習(xí)交流與問(wèn)題研討:

  1、探索

  問(wèn)題:分別以圖中的直角三角形三邊為邊向三角形外

  作正方形,小方格的面積看做1,求這三個(gè)正方形的面積?

  S正方形BCED=S正方形ACFG=S正方形ABHI=

  發(fā)現(xiàn):

  2、實(shí)驗(yàn)

  在下面的方格紙上,任意畫(huà)幾個(gè)頂點(diǎn)都在格點(diǎn)上的三角形;并分別以這個(gè)三角形的各邊為一邊向三角形外做正方形并計(jì)算出正方形的面積。

  請(qǐng)完成下表:

  S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系

  112

  145

  41620

  91625

  發(fā)現(xiàn):

  如何用直角三角形的三邊長(zhǎng)來(lái)表示這個(gè)結(jié)論?

  這個(gè)結(jié)論就是我們今天要學(xué)習(xí)的`勾股定理:

  如圖:我國(guó)古代把直角三角形中,較短的直角邊叫做“勾”,較長(zhǎng)的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾

  練習(xí)檢測(cè)與拓展延伸:

  練習(xí)1、求下列直角三角形中未知邊的長(zhǎng)

  練習(xí)2、下列各圖中所示的線段的長(zhǎng)度或正方形的面積為多少。

  (注:下列各圖中的三角形均為直角三角形)

  例1、如圖,在四邊形中,∠,∠,,求.

  檢測(cè):

  1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;

  (2)b=8,c=17,則S△ABC=________。

  2、在Rt△ABC中,∠C=90,周長(zhǎng)為60,斜邊與一條直角邊之比為13∶5,則這個(gè)三角形三邊長(zhǎng)分別是()

  A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

  3、若等腰三角形中相等的兩邊長(zhǎng)為10cm,第三邊長(zhǎng)為16cm,那么第三邊上的高為()

  A.12cmB.10cmC.8cmD.6cm

  4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長(zhǎng)的梯子?(畫(huà)出示意圖)

  5、飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到一個(gè)男孩頭頂正上方4千米處,過(guò)了20秒,飛機(jī)距離這個(gè)男孩5千米,飛機(jī)每小時(shí)飛行多少千米?

  課后反思或經(jīng)驗(yàn)總結(jié):

  1、什么叫勾股定理;

  2、什么樣的三角形的三邊滿足勾股定理;

  3、用勾股定理解決一些實(shí)際問(wèn)題。

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇8

  【學(xué)習(xí)目標(biāo)】

  能運(yùn)用勾股定理及直角三角形的判別條件解決簡(jiǎn)單的實(shí)際問(wèn)題.

  【學(xué)習(xí)重點(diǎn)】

  勾股定理及直角三角形的判別條件的運(yùn)用.

  【學(xué)習(xí)重點(diǎn)】

  直角三角形模型的建立.

  【學(xué)習(xí)過(guò)程】

  一.課前復(fù)習(xí)

  勾股定理及勾股定理逆定理的區(qū)別

  二.新課學(xué)習(xí)

  探究點(diǎn)一:螞蟻沿圓柱側(cè)面爬行的最短路徑問(wèn)題

  1.3如圖,有一個(gè)圓柱,它的高等于12cm,底面圓的周長(zhǎng)是18cm.在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面上與A點(diǎn)相對(duì)的B點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路程是多少?

  思考:

  1.利用學(xué)具,嘗試從A點(diǎn)到B點(diǎn)沿圓柱側(cè)面畫(huà)出幾條線路,你認(rèn)為

  這樣的線路有幾條?可分為幾類?

  2.將右圖的圓柱側(cè)面剪開(kāi)展開(kāi)成一個(gè)長(zhǎng)方形,B點(diǎn)在什么位置?從

  A點(diǎn)到B點(diǎn)的最短路線是什么?你是如何畫(huà)的?

  1.33.螞蟻從A點(diǎn)出發(fā),想吃到B點(diǎn)上的食物,它沿圓柱側(cè)面爬行的最短路程是多少?你是如何解答這個(gè)問(wèn)題的?畫(huà)出圖形,寫(xiě)出解答過(guò)程。

  4.你是如何將這個(gè)實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題的?

  小結(jié):

  你是如何解決圓柱體側(cè)面上兩點(diǎn)之間的最短距離問(wèn)題的?

  探究點(diǎn)二:利用勾股定理逆定理如何判斷兩線垂直?

  1.31.31.3李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直底邊AB,

  但他隨身只帶了卷尺。(參看P13頁(yè)雕塑圖1-13)

 。1)你能替他想辦法完成任務(wù)嗎?

  1.31.3(2)李叔叔量得AD的長(zhǎng)是30cm,AB的長(zhǎng)是40cm,

  BD長(zhǎng)是50cm.AD邊垂直于AB邊嗎?你是如何解決這個(gè)問(wèn)題的?

 。3)小明隨身只有一個(gè)長(zhǎng)度為20cm的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  小結(jié):通過(guò)本道例題的探索,判斷兩線垂直,你學(xué)會(huì)了什么方法?

  探究點(diǎn)三:利用勾股定理的方程思想在實(shí)際問(wèn)題中的應(yīng)用

  例圖1-14是一個(gè)滑梯示意圖,若將滑道AC水平放置,則剛好與AB一樣長(zhǎng).已知滑梯的高度CE=3m,CD=1m,試求滑道AC的長(zhǎng).

  1.3

  思考:

  1.求滑道AC的長(zhǎng)的問(wèn)題可以轉(zhuǎn)化為什么數(shù)學(xué)問(wèn)題?

  2.你是如何解決這個(gè)問(wèn)題的?寫(xiě)出解答過(guò)程。

  小結(jié):

  方程思想是勾股定理中的重要思想,勾股定理反應(yīng)的直角三角形三邊的關(guān)系正是構(gòu)建方程的基礎(chǔ).

  四.課堂小結(jié):本節(jié)課你學(xué)到了什么?

  三.新知應(yīng)用

  1.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.

  1.3

  2.如圖,在水池的正中央有一根蘆葦,池底長(zhǎng)10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達(dá)池邊的水面則這根蘆葦?shù)拈L(zhǎng)度是()

  1.3

  五.作業(yè)布置:習(xí)題1.41,3,4題

  【反思】

  一、教師我的體會(huì):

 、、我根據(jù)學(xué)生實(shí)際情況認(rèn)真?zhèn)湔n這節(jié)課,書(shū)本總共兩個(gè)例題,且兩個(gè)例題都很難,如果一節(jié)課就講這兩題難題,那一方面學(xué)生的學(xué)習(xí)效率會(huì)比較低,另一方面會(huì)使學(xué)生畏難情緒增加。所以,我簡(jiǎn)化教材,使教材易于操作,讓學(xué)生易于學(xué)習(xí),有利于學(xué)生學(xué)習(xí)新知識(shí)、接受新知識(shí),降低學(xué)習(xí)難度。

  把教材讀薄,

 、、除了備教材外,還備學(xué)生。從教案及授課過(guò)程也可以看出,充分考慮到了學(xué)生的年齡特點(diǎn):對(duì)新事物有好奇心,但對(duì)新知識(shí)的鉆研熱情又不夠高,這樣,造成教學(xué)難度較大,為了改變這一狀況,在處理教材時(shí),把某些數(shù)學(xué)語(yǔ)言轉(zhuǎn)換成通俗文字來(lái)表達(dá),把難度大的運(yùn)用能力降低為難度稍細(xì)的理解能力,讓學(xué)生樂(lè)于面對(duì)奧妙而又有一定深度的'數(shù)學(xué),樂(lè)于學(xué)習(xí)數(shù)學(xué)。

 、、新課選用的例子、練習(xí),都是經(jīng)過(guò)精心挑選的,運(yùn)用性強(qiáng),貼近生活,與生活實(shí)際緊密聯(lián)系,既達(dá)到學(xué)習(xí)、鞏固新知識(shí)的目的,同時(shí),又充分展現(xiàn)出數(shù)學(xué)教學(xué)的重大特征:數(shù)學(xué)源于生活實(shí)際,又服務(wù)于生活實(shí)際。勾股定理源于生活,但同時(shí)它又能極大的為生活服務(wù)。

 、、使用多媒體進(jìn)行教學(xué),使知識(shí)顯得形象直觀,充分發(fā)揮現(xiàn)代技術(shù)作用。

  二、學(xué)生體會(huì):

  課前,我們也去查閱了一些資料,關(guān)于勾股定理的證明以及有關(guān)的一些應(yīng)用,通過(guò)這節(jié)課,真真發(fā)現(xiàn)勾股定理真真來(lái)源于生活,我們的幾何圖形和幾何計(jì)算對(duì)于勾股定理來(lái)說(shuō)非常廣泛,而且以后更要用好它。對(duì)于勾股定理都應(yīng)用時(shí),我覺(jué)得關(guān)鍵是找到相關(guān)的三角形,并且分清直角邊或斜邊,靈活機(jī)智地進(jìn)行計(jì)算和一些推理。另外與同學(xué)間在數(shù)學(xué)課上有自主學(xué)習(xí)的機(jī)會(huì),有相互之間的討論、爭(zhēng)辯等協(xié)作的機(jī)會(huì),在合作學(xué)習(xí)的過(guò)程中共同提高我覺(jué)得都是難得的機(jī)會(huì)。鍛煉了能力,提高了思維品質(zhì),并且勾股定理的應(yīng)用中我覺(jué)得圖形很美,古代的數(shù)學(xué)家已經(jīng)有了很好的研究并作出了很大的貢獻(xiàn),現(xiàn)代的藝術(shù)家們也在各方面用到很多,同時(shí)在課堂中漸漸地培養(yǎng)了我們的數(shù)學(xué)興趣和一定的思維能力。

  不過(guò)課堂上老師在最后一題的畫(huà)圖中能放一放,讓我們有時(shí)間去思考怎么畫(huà),那會(huì)更好些,自然思維也得到了發(fā)展。課上老師鼓勵(lì)我們嘗試不完善的甚至錯(cuò)誤的意見(jiàn),大膽發(fā)表自己的見(jiàn)解,體現(xiàn)了我們是學(xué)習(xí)的主人。數(shù)學(xué)課堂里充滿了智慧。

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇9

  一、學(xué)生知識(shí)狀況分析

  本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問(wèn)題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開(kāi)、折疊等活動(dòng)。學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過(guò)相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問(wèn)題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ)。

  二、教學(xué)任務(wù)分析

  本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書(shū)八年級(jí)(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問(wèn)題。當(dāng)然,在這些具體問(wèn)題的解決過(guò)程中,需要經(jīng)歷幾何圖形的抽象過(guò)程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問(wèn)題、解決問(wèn)題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。

  三、本節(jié)課的教學(xué)目標(biāo)是:

  1.通過(guò)觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.

  2.在將實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題的過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想.

  3.在利用勾股定理解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

  利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題是本節(jié)課的重點(diǎn)也是難點(diǎn).

  四、教法學(xué)法

  1.教學(xué)方法

  引導(dǎo)—探究—?dú)w納

  本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問(wèn)題情景入手,通過(guò)知識(shí)再現(xiàn),孕育教學(xué)過(guò)程;

  (2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過(guò)程;

  (3)利用探索研究手段,通過(guò)思維深入,領(lǐng)悟教學(xué)過(guò)程.

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件.

  學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

  五、教學(xué)過(guò)程分析

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).

  1.3勾股定理的應(yīng)用:課后練習(xí)

  一、問(wèn)題引入:

  1、勾股定理:直角三角形兩直角邊的.________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。

  2、勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足________,那么這個(gè)三角形是直角三角形

  1.3勾股定理的應(yīng)用:同步檢測(cè)

  1.為迎接新年的到來(lái),同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開(kāi)新年晚會(huì),小劉搬來(lái)一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )

  A.0.7米B.0.8米C.0.9米D.1.0米

  2.小華和小剛兄弟兩個(gè)同時(shí)從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個(gè)( )

  A.銳角彎B.鈍角彎C.直角彎D.不能確定

  3.如圖,是一個(gè)圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個(gè)小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長(zhǎng)度(罐壁的厚度和小圓孔的大小忽略不計(jì))范圍是( )

  A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

  4.一個(gè)木工師傅測(cè)量了一個(gè)等腰三角形木板的腰、底邊和高的長(zhǎng),但他把這三個(gè)數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請(qǐng)你幫助他找出來(lái),是第( )組.

  A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇10

  教學(xué)目標(biāo)

  1、知識(shí)與技能目標(biāo)

  學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.

  2、過(guò)程與方法

  (1)經(jīng)歷一般規(guī)律的探索過(guò)程,發(fā)展學(xué)生的抽象思維能力.

  (2)在將實(shí)際問(wèn)題抽象成幾何圖形過(guò)程中,提高分析問(wèn)題、解決問(wèn)題的能力及滲透數(shù)學(xué)建模的思想.

  3、情感態(tài)度與價(jià)值觀

  (1)通過(guò)有趣的問(wèn)題提高學(xué)習(xí)數(shù)學(xué)的興趣.

  (2)在解決實(shí)際問(wèn)題的過(guò)程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

  教學(xué)重點(diǎn):

  探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問(wèn)題.

  教學(xué)難點(diǎn):

  利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問(wèn)題.

  教學(xué)準(zhǔn)備:

  多媒體

  教學(xué)過(guò)程:

  第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)

  情景:

  如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

  第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)

  學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過(guò)具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開(kāi)后展開(kāi)得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問(wèn)題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問(wèn)題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算.

  學(xué)生匯總了四種方案:

 。ǎ保 (2) (3)(4)

  學(xué)生很容易算出:情形(1)中A→B的.路線長(zhǎng)為:AA’+d,情形(2)中A→B的路線長(zhǎng)為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

  學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開(kāi)圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點(diǎn)之間線段最短可判斷(4)最短.

  如圖:

  (1)中A→B的路線長(zhǎng)為:AA’+d;

 。ǎ玻┲蠥→B的路線長(zhǎng)為:AA’+A’B>AB;

 。ǎ常┲蠥→B的路線長(zhǎng)為:AO+OB>AB;

  (4)中A→B的路線長(zhǎng)為:AB.

  得出結(jié)論:利用展開(kāi)圖中兩點(diǎn)之間,線段最短解決問(wèn)題.在這個(gè)環(huán)節(jié)中,可讓學(xué)生沿母線剪開(kāi)圓柱體,具體觀察.接下來(lái)后提問(wèn):怎樣計(jì)算AB?

  在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

  第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)

  教材23頁(yè)

  李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

 。1)你能替他想辦法完成任務(wù)嗎?

 。2)李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?

  (3)小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)

  1.甲、乙兩位探險(xiǎn)者到沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時(shí)后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠(yuǎn)?

  2.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.

  3.有一個(gè)高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問(wèn)這根鐵棒有多長(zhǎng)?

  第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問(wèn)答)

  內(nèi)容:

  1、如何利用勾股定理及逆定理解決最短路程問(wèn)題?

  第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

  內(nèi)容:

  作業(yè):1.課本習(xí)題1.5第1,2,3題.

  要求:A組(學(xué)優(yōu)生):1、2、3

  B組(中等生):1、2

  C組(后三分之一生):1

  板書(shū)設(shè)計(jì):

  教學(xué)反思:

  《探索勾股定理》教學(xué)設(shè)計(jì) 篇11

  學(xué)習(xí)目標(biāo):

  1、通過(guò)拼圖,用面積的方法說(shuō)明勾股定理的正確性.

  2、通過(guò)實(shí)例應(yīng)用勾股定理,培養(yǎng)學(xué)生的知識(shí)應(yīng)用技能.

  學(xué)習(xí)重點(diǎn):

  1.用面積的方法說(shuō)明勾股定理的正確.

  2. 勾股定理的應(yīng)用.

  學(xué)習(xí)難點(diǎn):

  勾股定理的應(yīng)用.

  學(xué)習(xí)過(guò)程:

  一、學(xué)前準(zhǔn)備:

  1、閱讀課本第46頁(yè)到第47頁(yè),完成下列問(wèn)題:

  (1)我國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的稱為股,斜邊稱為弦。圖(1)稱為“弦圖”,最早是由三國(guó)時(shí)期的數(shù)學(xué)家趙爽在為《周髀算經(jīng)》作法時(shí)給出的。圖(2)是在北京召開(kāi)的2002年國(guó)際數(shù)學(xué)家大會(huì)(TCM-2002)的.會(huì)標(biāo),其圖案正是“弦圖”,它標(biāo)志著中國(guó)古代的數(shù)學(xué)成就. 你能用不同方法表示大正方形的面積嗎?

  2、剪四個(gè)完全相同的直角三角形,然后將它們拼成如圖所示的圖形。大正方形的面積可以表示為_(kāi)________________________,又可以表示為_(kāi)_________________________.對(duì)比兩種表示方法,看看能不能得到勾股定理的結(jié)論。用上面得到的完全相同的四個(gè)直角三角形,還可以拼成如下圖所示的圖形,與上面的方法類似,也能說(shuō)明勾股定理是正確的方法(請(qǐng)逐一說(shuō)明)

  二、合作探究:

 。ㄒ唬┳詫W(xué)、相信自己:

 。ǘ┧妓、交流:

  拼圖填空:剪裁出若干個(gè)大小、形狀完全相同的直角三角形,三邊長(zhǎng)分別記為a、b、c,如圖①.(1)拼圖一:分別用4張直角三角形紙片,拼成如圖②③的形狀,觀察圖②③可發(fā)現(xiàn),圖②中兩個(gè)小正方形的面積之和

 。ㄈ⿷(yīng)用、探究:

  1、如圖 ,為了求出湖兩岸的A、B兩點(diǎn)之間的距離,一個(gè)觀測(cè)者在點(diǎn)C設(shè)樁,使三角形ABC恰好為直角三角形.通過(guò)測(cè)量,得到AC長(zhǎng)160米,BC長(zhǎng)128米.問(wèn)從點(diǎn)A穿過(guò)湖到點(diǎn)B有多遠(yuǎn)?

 。ㄋ模╈柟叹毩(xí):

  1、如圖,64、400分別為所在正方形的面積,則圖中字

  母A所代表的正方形面積是 _________ 。

  三.學(xué)習(xí)體會(huì):

  本節(jié)課我們進(jìn)一步認(rèn)識(shí)了勾股定理,并用兩種方法證明了這個(gè)定理,在應(yīng)用此定理解決問(wèn)題時(shí),應(yīng)注意只有直角三角形的三邊才有這樣的關(guān)系,如果不是直角三角形應(yīng)該構(gòu)造直角三角形來(lái)解決。

  2②圖

  四.自我測(cè)試:

  五.自我提高:

【《探索勾股定理》教學(xué)設(shè)計(jì)】相關(guān)文章:

《勾股定理》教學(xué)反思09-27

勾股定理教學(xué)反思11-08

勾股定理的教學(xué)反思04-22

一堂節(jié)外生枝的數(shù)學(xué)探究課——“探索勾股定理”教學(xué)案例02-21

《探索勾股定理》第一課時(shí)說(shuō)課稿03-18

數(shù)學(xué)《勾股定理》教學(xué)反思04-22

《勾股定理》教學(xué)反思范文08-12

歷史課堂教學(xué)優(yōu)化設(shè)計(jì)的探索02-21

探索規(guī)律教學(xué)反思03-18