- 相關(guān)推薦
Z-元件特性與應(yīng)用的擴(kuò)展
摘要:Z-元件具有進(jìn)一步的開發(fā)潛力,擴(kuò)充其特性和應(yīng)用可形成一些新型電子器件。本文在溫、光、磁敏Z-元件的基礎(chǔ)上,依據(jù)對(duì)Z-元件工作機(jī)理的深入探討,開發(fā)出一些新型的半導(dǎo)體敏感元件,如摻金γ-硅熱敏電阻、力敏Z-元件以及新型V/F轉(zhuǎn)換器。本文著重介紹了這些新型敏感元件的電路結(jié)構(gòu)與工作原理。這些新型敏感元件都具有生產(chǎn)工藝簡(jiǎn)單、體積小、成本低等特點(diǎn)。關(guān)鍵詞:熱敏電阻,摻金γ-硅熱敏電阻,Z-元件,力敏Z-元件,V/F轉(zhuǎn)換器
一、前言
Z-半導(dǎo)體敏感元件﹙簡(jiǎn)稱Z-元件﹚性能奇特,應(yīng)用電路簡(jiǎn)單而且規(guī)范,使用組態(tài)靈活,應(yīng)用開發(fā)潛力大。它包括Z-元件在內(nèi)僅用兩個(gè)﹙或3個(gè)﹚元器件,就可構(gòu)成電路最簡(jiǎn)單的三端傳感器,實(shí)現(xiàn)多種用途。特別是其中的三端數(shù)字傳感器,已引起許多用戶的關(guān)注。
Z-元件現(xiàn)有溫、光、磁,以及正在開發(fā)中的力敏四個(gè)品種,都能以不同的電路組態(tài),分別輸出開關(guān)、模擬或脈沖頻率信號(hào),相應(yīng)構(gòu)成不同品種的三端傳感器。其中,僅以溫敏Z-元件為例,就可以組合出12種電路結(jié)構(gòu),輸出12種波形,實(shí)現(xiàn)6種基本應(yīng)用[3]。再考慮到其它光、磁或力敏Z-元件幾個(gè)品種,其可供開發(fā)的擴(kuò)展空間將十分可觀。為了拓寬Z-元件的應(yīng)用領(lǐng)域,很有從深度上和廣度上進(jìn)一步研究的價(jià)值。
本文在前述溫、光、磁敏Z-元件的基礎(chǔ)上,結(jié)合生產(chǎn)工藝和應(yīng)用開發(fā)實(shí)踐,在半導(dǎo)體工作機(jī)理上和電路應(yīng)用組態(tài)上進(jìn)行了深入的擴(kuò)展研究,形成了一些新型的敏感元件。作為其中的部分實(shí)例,本文重點(diǎn)介紹了摻金g-硅新型熱敏電阻、力敏Z-元件以及新型V/F轉(zhuǎn)換器,供用戶分析研究與應(yīng)用開發(fā)參考。這些新型敏感元件都具有體積小、生產(chǎn)工藝簡(jiǎn)單、成本低、使用方便等特點(diǎn)。
二、摻金g-硅新型熱敏電阻
1.概述
用g-硅單晶制造半導(dǎo)體器件是不多見的,特別是用原本制造Z-元件這樣的高阻g-硅單晶來制造Z-元件以外的半導(dǎo)體器件,目前尚未見到報(bào)導(dǎo)。Z-元件的特殊性能,主要是由摻金高阻g-硅區(qū)﹙也就是n-i區(qū)﹚的特性所決定的,對(duì)摻金高阻g-硅的性能進(jìn)行深入地研究希望引起半導(dǎo)體器件工作者的高度重視。
本部分從對(duì)摻金g-硅的特性深入研究入手,開發(fā)出一種新型的熱敏元件,即摻金g-硅熱敏電阻。介紹了該新型熱敏電阻的工作原理、技術(shù)特性和應(yīng)用特點(diǎn)。
2.摻金g-硅熱敏電阻的工作機(jī)理“摻金g-硅熱敏電阻”簡(jiǎn)稱摻金硅熱敏電阻,它是在深入研究Z-元件微觀工作機(jī)理的基礎(chǔ)上,按新的結(jié)構(gòu)和新的生產(chǎn)工藝設(shè)計(jì)制造的,在溫度檢測(cè)與控制領(lǐng)域提供了一種新型的溫敏元件。
為了熟悉并正確使用這種新型溫敏元件,必須首先了解它的工作機(jī)理。Z-元件是其N區(qū)被重?fù)诫s補(bǔ)償?shù)母男訮N結(jié),即在高阻硅材料上形成的PN結(jié),又經(jīng)過重金屬補(bǔ)償,因而它具有特殊的半導(dǎo)體結(jié)構(gòu)和特殊的伏安特性。圖1為Z-元件的正向伏安特性曲線,圖2為Z-元件的半導(dǎo)體結(jié)構(gòu)示意圖。
由圖1可知,Z-元件具有一條“L”型伏安特性[1],該特性可分成三個(gè)工作區(qū):M1高阻區(qū),M2負(fù)阻區(qū),M3低阻區(qū)。其中,高阻的M1區(qū)對(duì)溫度具有較高的靈敏度,自然成為研制摻金g-硅熱敏電阻的主要著眼點(diǎn)。
從圖2可知,Z-元件的結(jié)構(gòu)依次是:金屬電極層—P+歐姆接觸區(qū)—P型擴(kuò)散區(qū)—P-N結(jié)結(jié)面—低摻雜高補(bǔ)償N區(qū),即n-.i區(qū)—n+歐姆接觸區(qū)—金層電極層。可見Z-元件是一種改性PN結(jié),它具有由p+-p-n-.i-n+構(gòu)成的四層結(jié)構(gòu),其中核心部位是N型高阻硅區(qū)n-.i,特稱為摻金g-硅區(qū)。摻金g-硅區(qū)的建立為摻金g-硅熱敏電阻奠定了物理基礎(chǔ)。
Z-元件在正偏下的導(dǎo)電機(jī)理是基于一種“管道擊穿”和“管道雪崩擊穿”的模型[2]。Z-元件是一種PN結(jié),對(duì)圖2所示的Z-元件結(jié)構(gòu)可按P-N結(jié)經(jīng)典理論加以分析,因而在p-n-.i兩區(qū)中也應(yīng)存在一個(gè)自建電場(chǎng)區(qū)。該電場(chǎng)區(qū)因在P區(qū)很薄,自建電場(chǎng)區(qū)主要體現(xiàn)在n-.i區(qū),且?guī)缀跽紦?jù)了全部n-.i型區(qū),這樣寬的電場(chǎng)區(qū)其場(chǎng)強(qiáng)是很弱的,使得Z-元件呈現(xiàn)了高阻特性。如果給Z-元件施加正向偏壓,這時(shí)因正向偏壓的電場(chǎng)方向同Z-元件內(nèi)部自建電場(chǎng)方向是相反的,很小的正向偏壓便抵消了自建電場(chǎng)。這時(shí)按經(jīng)典的PN結(jié)理論分析,本應(yīng)進(jìn)入正向?qū)顟B(tài),但由于Z-元件又是一種改性的PN結(jié),其n-.i型區(qū)是經(jīng)重金屬摻雜的高補(bǔ)償區(qū),由于載流子被重金屬陷阱所束縛,其電阻值在兆歐量級(jí),其正向電流很小,表現(xiàn)在“L”曲線是線性電阻區(qū)即“M1”區(qū)。這時(shí),如果存在溫度場(chǎng),由于熱激發(fā)的作用使重金屬陷阱中釋放的載流子不斷增加,并參與導(dǎo)電,必然具有較高的溫度靈敏度。在M1區(qū)尚末形成導(dǎo)電管道,如果施加的正向偏壓過大,將產(chǎn)生“管道擊穿”,甚至“管道雪崩擊穿”,將破壞了摻金g-硅新型熱敏電阻的熱阻特性,這是該熱敏電阻的特殊問題。
在這一理論模型的指導(dǎo)下,不難想到,如果將Z-元件的n-.i區(qū)單獨(dú)制造出來,肯定是一個(gè)高靈敏度的熱敏電阻(由于半導(dǎo)體伴生著光效應(yīng),當(dāng)然也是一個(gè)光敏感電阻),由此可構(gòu)造出摻金g-硅新型熱敏電阻的基本結(jié)構(gòu),如圖3所示。由于摻金g-硅新型熱敏電阻不存在PN結(jié),其中n-.i層就是摻金g-硅,它并不是Z-元件的n-.i區(qū)。測(cè)試結(jié)果表明,該結(jié)構(gòu)的電特性就是一個(gè)熱敏電阻。該熱敏電阻具有NTC特性,它與現(xiàn)行NTC熱敏電阻相比,具有較高的溫度靈敏度。
3.摻金g-硅熱敏電阻的生產(chǎn)工藝
摻金g-硅熱敏電阻的生產(chǎn)工藝流程如圖4工藝框圖所示。可以看出,該生產(chǎn)工藝過程與Z-元件生產(chǎn)工藝的最大區(qū)別,就是不做P區(qū)擴(kuò)散,所以它不是改性PN結(jié),又與現(xiàn)行NTC熱敏電阻的生產(chǎn)工藝完全不同,這種摻金g-硅新型熱敏電阻使用的特殊材料和特殊工藝決定了它的性能與現(xiàn)行NTC熱敏感電阻相比具有很大區(qū)別,其性能各有優(yōu)缺點(diǎn)。
4.摻金g-硅熱敏電阻與NTC熱敏電阻的性能對(duì)比
從上述結(jié)構(gòu)模型和工藝過程分析可知,摻金g-硅層是由金擴(kuò)入而形成的高補(bǔ)償?shù)腘型半導(dǎo)體,不存在PN結(jié)的結(jié)區(qū)。它的導(dǎo)電機(jī)理就是在外電場(chǎng)作用下未被重金屬補(bǔ)償?shù)氖S嗟氖┲麟娮訁⑴c導(dǎo)電以及在外部熱作用下使金陷阱中的電子又被激活而參與導(dǎo)電,而呈現(xiàn)的電阻特性。由于原材料是高阻g-硅,原本施主濃度就很低,又被陷阱捕獲一些,剩余電子也就很少很少。參與導(dǎo)電的電子主要是陷阱中被熱激活的電子占絕對(duì)份額。也就是說,摻金g-硅熱敏電阻在一定的溫度下的電阻值,是決定于工藝流程中金擴(kuò)的濃度。研制實(shí)踐中也證明了這一理論分析。不同的金擴(kuò)濃度可以得到幾千歐姆到幾兆歐姆的電阻值。金擴(kuò)散成為產(chǎn)品質(zhì)量與性能控制的關(guān)健工序。
我們認(rèn)為,由于摻金g-硅熱敏電阻的導(dǎo)電機(jī)理與現(xiàn)行的NTC熱敏電阻的導(dǎo)電機(jī)理完全不同,所以特性差別很大,也存在各自不同的優(yōu)缺點(diǎn)。摻金g-硅熱敏電阻的優(yōu)點(diǎn)是:生產(chǎn)工藝簡(jiǎn)單,成本低,易于大批量生產(chǎn),阻值范圍寬(從幾千歐姆到幾兆歐姆),靈敏度高,特別是低于室溫的低溫區(qū)段比NTC熱敏電阻要高近一個(gè)量級(jí)。其缺點(diǎn)是:一批產(chǎn)品中電阻值的一致性較差、線性度不如NTC,使用電壓有閾值限制,超過閾值時(shí)會(huì)出現(xiàn)負(fù)阻。摻金g-硅新型熱敏電阻與NTC熱敏電阻的電阻溫度靈敏度特性對(duì)比如圖5所示。
在不同溫度下,溫度靈敏度的實(shí)測(cè)值對(duì)比如表1所示。
摻金g-硅熱敏電阻是一種新型溫敏元件。本文雖作了較詳細(xì)的工作機(jī)理分析,但現(xiàn)在工藝尚未完全成熟,愿與用戶合作,共同探討,通過工藝改進(jìn)與提高,使這一新型元件早日成熟,推向市場(chǎng),為用戶服務(wù)。
表1 不同溫度下溫度靈敏度實(shí)測(cè)值對(duì)比(kΩ/°C)
°C
0#
1#
2#
3#
4#
5#
6#
注
6.3
12.4
29.8
28.9
32.1
25.7
35.0
36.1
10.7
9.5
21.0
20.5
22.8
17.8
24.9
25.6
14.9
7.9
16.2
15.9
17.3
13.6
19.2
19.6
21.3
5.1
9.3
9.1
9.9
7.9
11.0
11.2
26.9
4.2
7.7
7.8
7.0
8.2
7.1
8.0
31.0
3.4
4.2
4.4
4.7
3.7
5.2
5.2
36.2
2.7
3.2
3.2
23.4
2.7
3.8
3.8
42.1
2.0
2.2
2.2
2.3
1.8
2.6
2.5
49.5
1.0
1.0
1.0
1.1
0.8
1.3
1.3
57.0
0.9
0.8
0.8
0.9
0.7
1.0
1.0
67.0
0.7
0.6
0.6
0.6
0.5
0.7
0.7
74.5
0.7
0.5
0.5
0.5
0.43
0.6
0.6
86.0
0.3
0.2
0.2
0.2
0.2
0.3
0.3
注:表1中0#樣件為NTC熱敏電阻,1#-6#樣件為摻金g-硅熱敏電阻。
三、力敏Z-元件
1.概述
“力”參數(shù)的檢測(cè)與控制在國(guó)民經(jīng)濟(jì)中占有重要地位。力敏元件及其相應(yīng)的力傳感器可直接測(cè)力,通過力也可間接檢測(cè)許多其它物理參數(shù),如重量,壓力、氣壓、差壓、流量、位移、速度、加速度、角位移、角速度、角加速度、扭矩、振動(dòng)等,在機(jī)械制造、機(jī)器人、工業(yè)控制、農(nóng)業(yè)氣象、醫(yī)療衛(wèi)生、工程地質(zhì)、機(jī)電一體化產(chǎn)品以及其它國(guó)民經(jīng)濟(jì)裝備領(lǐng)域中,具有廣泛的用途。
在力參數(shù)的檢測(cè)與控制領(lǐng)域中,現(xiàn)行的各種力敏元件或力傳感器,包括電阻應(yīng)變片、擴(kuò)散硅應(yīng)變片、擴(kuò)散硅力傳感器等,嚴(yán)格說,應(yīng)稱為模擬力傳感器。它只能輸出模擬信號(hào),輸出幅值小,靈敏度低是它的嚴(yán)重不足。這三種力敏元件或力傳感器,為了與數(shù)字計(jì)算機(jī)相適應(yīng),用戶不得不采取附加的數(shù)字化方法(即加以放大和A/D轉(zhuǎn)換)才能與數(shù)字計(jì)算機(jī)相連接,使用極其不便,也增加了系統(tǒng)的成本。
Z-元件能以極其簡(jiǎn)單的電路結(jié)構(gòu)直接輸出數(shù)字信號(hào),非常適合研制新型數(shù)字傳感器[1],其中也包括力數(shù)字傳感器。這種力數(shù)字傳感器輸出的數(shù)字信號(hào)(包括開關(guān)信號(hào)和脈沖頻率信號(hào)),不需A/D轉(zhuǎn)換,就可與計(jì)算機(jī)直接通訊,為傳感器進(jìn)一步智能化和網(wǎng)絡(luò)化提供了方便。
我們?cè)谏钊胙芯縕-元件工作機(jī)理的基礎(chǔ)上,初步研制成功力敏Z-元件,但目前尚不成熟,歡迎試用與合作開發(fā)這一新器件,實(shí)現(xiàn)力檢測(cè)與控制領(lǐng)域的技術(shù)創(chuàng)新。
2.力敏Z-元件的伏安特性
如前所述,力敏Z-元件也是一種其N區(qū)被重?fù)诫s補(bǔ)償?shù)母男訮N結(jié)。力敏Z-元件的半導(dǎo)體結(jié)構(gòu)如圖6(a)所示。按本企業(yè)標(biāo)準(zhǔn)電路符號(hào)如圖6(b)所示,圖中“+”號(hào)表示PN結(jié)P區(qū),即在正偏使用時(shí)接電源正極。圖6(c)為正向“L”型伏安特性,與其它Z-元件一樣該特性也分成三個(gè)工作區(qū):M1高阻區(qū),M2負(fù)阻區(qū),M3低阻區(qū)。描述這個(gè)特性有四個(gè)特征參數(shù):Vth為閾值電壓,Ith為閾值電流,Vf為導(dǎo)通電壓, If為導(dǎo)通電流。
M1區(qū)動(dòng)態(tài)電阻很大,M3區(qū)動(dòng)態(tài)電阻很。ń诹悖,從M1區(qū)到M3區(qū)的轉(zhuǎn)換時(shí)間很短(微秒級(jí)), Z-元件具有兩個(gè)穩(wěn)定的工作狀態(tài):“高阻態(tài)”和“低阻態(tài)”,工作的初始狀態(tài)可按需要設(shè)定。若靜態(tài)工作點(diǎn)設(shè)定在M1區(qū),Z-元件處于穩(wěn)定的高阻狀態(tài),作為開關(guān)元件在電路中相當(dāng)于“阻斷”。若靜態(tài)工作點(diǎn)設(shè)定在M3區(qū),Z-元件將處于穩(wěn)定的低阻狀態(tài),作為開關(guān)元件在電路中相當(dāng)于“導(dǎo)通”。在正向伏安特性上P點(diǎn)是一個(gè)特別值得關(guān)注的點(diǎn),特稱為閥值點(diǎn),其坐標(biāo)為:P(Vth,Ith)。P點(diǎn)對(duì)外部力作用十分敏感,其靈敏度要比伏安特性上其它諸點(diǎn)要高許多。利用這一性質(zhì),可通過力作用,促成工作狀態(tài)的一次性轉(zhuǎn)換或周而復(fù)始地轉(zhuǎn)換,就可分別輸出開關(guān)信號(hào)或脈沖頻率信號(hào)。
3.力敏Z-元件的電路結(jié)構(gòu)
在圖7所示的應(yīng)用電路中,電路的結(jié)構(gòu)特征是:力敏Z-元件與負(fù)載電阻相串聯(lián),負(fù)載電阻RL用于限制工作電流,并取出輸出信號(hào)。Z-元件應(yīng)用開發(fā)的基本工作原理就在于通過半導(dǎo)體結(jié)構(gòu)內(nèi)部導(dǎo)電管道的力調(diào)變效應(yīng),使工作電流發(fā)生變化,從而改變Z-元件與負(fù)載電阻RL之間的壓降分配,獲得不同波形的輸出信號(hào)。
(1)力敏Z-元件的開關(guān)量輸出
在圖7(a)所示的電路中,通過E和RL設(shè)定工作點(diǎn)Q,如圖6﹙c﹚所示。若工作點(diǎn)選擇在M1區(qū)時(shí),力敏Z-元件處于小電流的高阻工作狀態(tài),輸出電壓為低電平。由于力敏Z-元件的閾值電壓Vth對(duì)力載荷F具有很高的靈敏度,當(dāng)力載荷F增加時(shí),閾值點(diǎn)P向左推移,使Vth減小,當(dāng)力載荷F增加到某一閾值Fth時(shí),力敏Z-元件上的電壓VZ恰好滿足狀態(tài)轉(zhuǎn)換條件[1],即VZ=Vth,力敏Z-元件將從M1區(qū)跳變到M3區(qū),處于大電流的低阻工作狀態(tài),輸出電壓為高電平。在RL上可得到從低電平到高電平的上跳變開關(guān)量輸出,如圖8(a)所示。如果在圖7(a)所示電路中,把力敏Z-元件與負(fù)載電阻RL互換位置,則可得到由高電平到低電平的下跳變開關(guān)量輸出,如圖8(b)所示。無論是上跳變或下跳變開關(guān)量輸出,VO的跳變幅值均可達(dá)到電源電壓E的40~50%。
開關(guān)量輸出的力敏Z-元件可用作力敏開關(guān)、力報(bào)警器或力控制器。
(2)力敏Z-元件的脈沖頻率輸出
由于力敏Z-元件的伏安特性隨外部激勵(lì)改變而改變,只要滿足狀態(tài)轉(zhuǎn)換條件,就可實(shí)現(xiàn)力敏Z-元件工作狀態(tài)的轉(zhuǎn)換。如果滿足狀態(tài)轉(zhuǎn)換條件,實(shí)現(xiàn)Z-元件工作狀態(tài)的一次性轉(zhuǎn)換,負(fù)載電阻RL上可輸出開關(guān)信號(hào);同理,如果滿足狀態(tài)轉(zhuǎn)換條件,設(shè)法實(shí)現(xiàn)力敏Z-元件工作狀態(tài)的周期性轉(zhuǎn)換,則負(fù)載電阻RL上就可輸出脈沖頻率信號(hào)。
脈沖頻率輸出電路如圖7(b)所示。在圖7(b)電路中,力敏 Z-元件與電容器C并聯(lián)。由于力敏Z-元件具有負(fù)阻效應(yīng),且有兩個(gè)工作狀態(tài),當(dāng)并聯(lián)以電容后,通過RC充放電作用,構(gòu)成RC振蕩回路,因此在輸出端可得到與力載荷成比例變化的脈沖頻率信號(hào)輸出。其輸出波形如圖9(a)所示。輸出頻率的大小與E、RL、C取值有關(guān),也與力敏Z-元件的閾值電壓Vth值有關(guān)。當(dāng)E、RL、C參數(shù)確定后,輸出頻率僅與Vth有關(guān),而Vth對(duì)力作用很敏感,可得到較高的力靈敏度。初步測(cè)試結(jié)果表明:電容器C選擇范圍在0.01~1.0mF,負(fù)載電阻在5~20kW,較為合適。同理,若把力敏Z-元件(連同輔助電容器C)與負(fù)載電阻RL互換位置,其輸出頻率仍與力載荷成比例,波形雖為鋸齒波,但與圖9﹙a﹚完全不同,如圖9(b)所示。
4.力敏Z-元件的機(jī)械結(jié)構(gòu)與施力方式
力敏Z-元件芯片體積很小,施加外力載荷時(shí),必須通過某種彈性體作為依托。當(dāng)力載荷作用于彈性體時(shí),使芯片內(nèi)部產(chǎn)生內(nèi)應(yīng)力,此內(nèi)應(yīng)力可改變力敏Z-元件的工作狀態(tài)(從低阻態(tài)到高阻態(tài),或者從高阻態(tài)到低阻態(tài)),從而使輸出端產(chǎn)生開關(guān)量輸出或脈沖頻率輸出。作為彈性體可以采用條形或園形膜片,材質(zhì)可以是磷銅、合金鋼或其它彈性材料。無論采用哪種彈性體,力敏Z-元件的受力方式目前理論上可歸結(jié)為兩種基本結(jié)構(gòu):即懸臂式結(jié)構(gòu)和簡(jiǎn)支式結(jié)構(gòu),其示意圖如圖10所示。為便于研究力敏Z-元件受力后的應(yīng)力應(yīng)變特征,結(jié)構(gòu)放大示意如圖11所示。
如前所述,Z-元件在外加電場(chǎng)作用下,在N區(qū)可產(chǎn)生“導(dǎo)電管道”,該導(dǎo)電管道在外部激勵(lì)作用下,可產(chǎn)生“管道調(diào)變效應(yīng)[2],由圖11可知,對(duì)力敏Z-元件來說,其P區(qū)很薄,N區(qū)相對(duì)較厚,焊接層的厚度可忽略不計(jì),因而,在力載荷作用下的管道調(diào)變效應(yīng)必將發(fā)生在N區(qū)。當(dāng)力載荷作為一種外部激勵(lì)作用于彈性體時(shí),使彈性體產(chǎn)生一定的撓度,在半導(dǎo)體晶格內(nèi)部產(chǎn)生內(nèi)應(yīng)力,導(dǎo)電管道受到力調(diào)變作用,使N區(qū)電阻發(fā)生變化,改變了力敏Z-元件的伏安特性
【Z-元件特性與應(yīng)用的擴(kuò)展】相關(guān)文章:
Z-半導(dǎo)體敏感元件原理與應(yīng)用 二08-06
Z-半導(dǎo)體敏感元件原理與應(yīng)用一08-06
串行擴(kuò)展應(yīng)用平臺(tái)設(shè)計(jì)08-06
OpenGL擴(kuò)展的應(yīng)用技術(shù)08-06
電子商務(wù)的應(yīng)用特性08-06
MPEG4 面向網(wǎng)絡(luò)傳輸?shù)奶匦约皯?yīng)用08-06
《創(chuàng)建圖形元件》08-16
擴(kuò)展語(yǔ)句08-16