- 相關(guān)推薦
高壓大功率變換器拓?fù)浣Y(jié)構(gòu)的演化及分析和比較
摘要:闡述了高壓大功率變換器拓?fù)浣Y(jié)構(gòu)的發(fā)展,同時(shí)對(duì)它們進(jìn)行了分析和比較,指出各自的優(yōu)缺點(diǎn),其中重點(diǎn)介紹了級(jí)聯(lián)型拓?fù)浣Y(jié)構(gòu)并給出了仿真波形。關(guān)鍵詞:多電平變換器;拓?fù)浣Y(jié)構(gòu);高壓大功率
引言
變頻調(diào)速技術(shù)的飛速發(fā)展為變頻器性能的提高提供了技術(shù)保障,而環(huán)保和節(jié)能的客觀需要,又為變頻器在生產(chǎn)和生活的各個(gè)領(lǐng)域中的應(yīng)用提供了發(fā)展空間,但是,隨著國(guó)民經(jīng)濟(jì)的發(fā)展,小容量變頻器已越來越不能滿足現(xiàn)代化生產(chǎn)和生活的需要。(范文先生網(wǎng)m.htc668.com收集整理)目前,我國(guó)采用的變頻調(diào)速裝置基本上都是低壓的,即電壓為380~690V,而在節(jié)能方面起著更主要作用的高電壓大容量變頻器在我國(guó)尚處于起步階段。是什么原因阻礙了高壓大功率變頻調(diào)速技術(shù)的應(yīng)用呢?主要原因一是大容量(200kW以上)電動(dòng)機(jī)的供電電壓高(6kV或者10kV),而電力電子器件的耐壓等級(jí)和所承受的電流的限制,造成了電壓匹配上的困難;二是高壓大功率變頻調(diào)速系統(tǒng)技術(shù)含量高,難度大,成本高,而一般的風(fēng)機(jī)、水泵等節(jié)能改造項(xiàng)目都希望低投入、高回報(bào),較少考慮社會(huì)效益和綜合經(jīng)濟(jì)效益。這兩個(gè)原因使得高壓變頻調(diào)速技術(shù)的發(fā)展和推廣受到了限制,因此,提高電力電子變流裝置的功率容量,降低成本,改善其輸出性能是現(xiàn)代電力電子技術(shù)的重要發(fā)展方向之一,也是當(dāng)前世界各國(guó)相關(guān)行業(yè)競(jìng)相關(guān)注的熱點(diǎn),為此,國(guó)內(nèi)外各變頻器生產(chǎn)廠商八仙過海,各有高招,雖然其主電路結(jié)構(gòu)不盡一致,但都較為成功地解決了高壓大容量這一難題[5]。
1 大功率電力電子變流裝置的拓?fù)鋵W(xué)進(jìn)展[3]
近年來,各種高壓變頻器不斷出現(xiàn),可是到目前為止,高壓變頻器還沒有像低壓變頻器那樣具有近乎統(tǒng)一的拓?fù)浣Y(jié)構(gòu)。根據(jù)高壓組成方式,可分為直接高壓型和高—低—高型;根據(jù)有無中間直流環(huán)節(jié),可以分為交—交變頻器和交—直—交變頻器。在交—直—交變頻器中,根據(jù)中間直流濾波環(huán)節(jié)的不同,又可分為電壓源型(也稱電壓型)和電流源型(也稱電流型)。高—低—高型變頻器采用變壓器實(shí)行降壓輸入、升壓輸出的方式,其實(shí)質(zhì)上還是低壓變頻器,只不過從電網(wǎng)和電動(dòng)機(jī)兩端來看是高壓的,這是受到功率器件電壓等級(jí)限制而采取的變通辦法。由于需要輸入、輸出變壓器,而存在中間低壓環(huán)節(jié)電流大、效率低、可靠性下降、占地面積大等缺點(diǎn),只用于一些小容量高壓電動(dòng)機(jī)的簡(jiǎn)單調(diào)速。常規(guī)的交—交變頻器由于受到輸出最高頻率的限制,只用在一些低速、大容量的特殊場(chǎng)合。
下面對(duì)直接高壓大功率電力電子裝置拓?fù)浣Y(jié)構(gòu)作一個(gè)分類,分類是針對(duì)單個(gè)器件的電壓或電流承受能力往往不能適應(yīng)容量要求這一特點(diǎn)進(jìn)行的,為此,把大功率電力電子變流裝置的拓?fù)浣Y(jié)構(gòu)分為兩類:
1)以器件串聯(lián)為基礎(chǔ)的橋臂擴(kuò)展型結(jié)構(gòu);
2)以變流單元電路串聯(lián)為基礎(chǔ)的多單元變流器結(jié)構(gòu)。
這種分類方式從電路構(gòu)成的角度揭示了名種拓?fù)浣Y(jié)構(gòu)的內(nèi)在聯(lián)系。按照這種分類方式,多管串聯(lián)的兩電平變換電路,二極管鉗位和飛跨電容鉗位型多電平拓?fù)鋵儆谝云骷?lián)為基礎(chǔ)的橋臂擴(kuò)展型結(jié)構(gòu);級(jí)聯(lián)型多電平變流器屬于以變流單元電路串聯(lián)為基礎(chǔ)的多單元變流器結(jié)構(gòu)。
2 高—低—高結(jié)構(gòu)
該種結(jié)構(gòu)將輸入高壓經(jīng)降壓變壓器變成380V
的低壓,然后用普通變頻器進(jìn)行變頻,再由升壓變壓器將電壓變回高壓。很明顯,該種結(jié)構(gòu)的優(yōu)點(diǎn)是可利用現(xiàn)有的低壓變頻技術(shù)實(shí)現(xiàn)高壓變頻,易于實(shí)現(xiàn),價(jià)格低;其缺點(diǎn)是系統(tǒng)體積大、成本高、效率低、低頻時(shí)能量傳輸困難等。
3 器件串聯(lián)拓?fù)浣Y(jié)構(gòu)[4]
3.1 多管串聯(lián)的兩電平變換電路
將器件串聯(lián)使用,是滿足系統(tǒng)容量要求的一個(gè)簡(jiǎn)單直觀的辦法。串聯(lián)在一起的各個(gè)器件,被當(dāng)作單個(gè)器件使用,其控制也是完全相同的。這種結(jié)構(gòu)的優(yōu)點(diǎn)是可利用較為成熟的低壓變頻器的電路拓?fù),控制策略和控制方法;其缺點(diǎn)是串聯(lián)開關(guān)管需要?jiǎng)討B(tài)均壓和靜態(tài)均壓。這是因?yàn)榇?lián)器件開、關(guān)時(shí)間不一致,最后開通或最先關(guān)斷的器件將承受全部電源電壓,這就必然影響到它的可靠運(yùn)行,所以,電力電子器件串聯(lián)運(yùn)行時(shí)應(yīng)有相應(yīng)的均壓措施,而均壓電路使系統(tǒng)復(fù)雜化,損耗增加,效率下降。另外,為使串聯(lián)器件同時(shí)導(dǎo)通和關(guān)斷,對(duì)驅(qū)動(dòng)、控制電路的要求也大大提高。圖1為多管串聯(lián)的兩電平主電路拓?fù)浣Y(jié)構(gòu)。
3.2 中點(diǎn)鉗位型多電平拓?fù)浣Y(jié)構(gòu)
3.2.1 二極管鉗位型多電平結(jié)構(gòu)
為了解決器件直接串聯(lián)時(shí)的均壓?jiǎn)栴},逐漸發(fā)展出以器件串聯(lián)為基礎(chǔ),各器件分別控制的變流器結(jié)構(gòu)。在這方面,日本學(xué)者A.Nabae于1983年提出的中點(diǎn)鉗位型PWM逆變電路結(jié)構(gòu)具有開創(chuàng)性的意義。單相中點(diǎn)二極管鉗位型變流器的結(jié)構(gòu)如圖2所示,該變流器的輸出電壓為三電平。如果去掉兩個(gè)鉗位二極管,這種變流器就是用兩個(gè)功率器件串聯(lián)使用代替單個(gè)功率器件的半橋逆變電路。由于兩個(gè)鉗位二極管的存在,各個(gè)器件能夠分別進(jìn)行控制,因而避免了器件直接串聯(lián)引起的動(dòng)態(tài)均壓?jiǎn)栴}。與普通的二電平變流器相比,由于輸出電壓的電平數(shù)有所增加,每個(gè)電平幅值相對(duì)降低,由整個(gè)直流母線電壓降為一半直流母線電壓,在同等開關(guān)頻率的前提下,可使輸出波形質(zhì)量有較大的改善,輸出dv/dt也相應(yīng)下降,因此,中點(diǎn)鉗位型變流器顯然比普通二電平變流器更具優(yōu)勢(shì)。
圖4
圖2中DA,DA′,DB,DB′為鉗位二極管,分壓電容C1=C2。開關(guān)管SA1,SA1′和SB1,SB1′等互補(bǔ)。
增加分壓電容、鉗位二極管,功率開關(guān)管可以得到多電平變換電路。若要得到m電平,則需要(m-l)個(gè)直流分壓電容,每一橋臂需要2(m-l)個(gè)主開關(guān)器件和(m-l)(m-2)個(gè)鉗位二極管。在需要四象限可逆運(yùn)行的場(chǎng)合,可將兩組相同的多電平變換器按照“背靠背”的方式進(jìn)行連接。
二極管鉗位型變流器同時(shí)具有多重化和脈寬調(diào)制的優(yōu)點(diǎn),即輸出功率大,器件開關(guān)頻率低,等效開關(guān)頻率高;交流側(cè)不需要變壓器連接;動(dòng)態(tài)響應(yīng)好,傳輸帶寬較寬;便于雙向功率流控制。其缺點(diǎn)是
1)鉗位二極管的耐壓要求較高,數(shù)量龐大。對(duì)于m電平變流器,如果使每個(gè)二極管的耐壓等級(jí)相同,每相所需的二極管數(shù)量為(m-1)(m-2),不但大大提高了成本,而且在線路安裝方面相當(dāng)困難。因此,在實(shí)際應(yīng)用中一般僅限于7電平或9電平變流器的研究。
2)開關(guān)器?的導(dǎo)通負(fù)荷不一致。最靠近母線的開關(guān)SA1僅在Va0=Vdc時(shí)開通。而最靠近輸出端的SAm僅在Va0=0時(shí)不開通。導(dǎo)通負(fù)荷不平衡導(dǎo)致開關(guān)器件的電流等級(jí)不同。在電路中,如果按導(dǎo)通負(fù)荷最嚴(yán)重的情況設(shè)計(jì)器件的電流等級(jí),則每相有2(m-2)個(gè)外層器件的電流等級(jí)過大,造成浪費(fèi)。
3)在變流器進(jìn)行有功功率傳送的時(shí)候,直流側(cè)各電容的充放電時(shí)間各不相同,從而造成電容電壓不平衡,增加了系統(tǒng)動(dòng)態(tài)控制的難度。
3.2.2 飛跨電容多電平變換器結(jié)構(gòu)
圖3所示為單相飛跨電容三電平變換器的拓?fù)浣Y(jié)構(gòu),C1及C2為直流側(cè)串聯(lián)電容,CA及CB為鉗位電容。假定每個(gè)電容的電壓等級(jí)與開關(guān)器件相同,那么一個(gè)m電平變流器在直流側(cè)需要m-1個(gè)電容。通過比較不難看出,直流側(cè)電容不變,用飛跨電容取代鉗位二極管,工作原理與二極管鉗位電路相似。這種拓?fù)浣Y(jié)構(gòu)雖省去了大量的二極管,但又引入了不少電容。對(duì)高壓系統(tǒng)而言,電容體積大、成本高、封裝難。不過在電壓合成方面,由于電容的引進(jìn),開關(guān)狀態(tài)的選擇更加靈活,使電壓合成的選擇增多,通過在同一電平上不同開關(guān)狀態(tài)的組合,可使電容電壓保持均衡。由此可知,電容鉗位型多電平變流器的電平合成自由度和靈活性高于二極管多電平變流器。電容鉗位型多電平變流器的優(yōu)點(diǎn)是開關(guān)方式靈活,對(duì)功率器件保護(hù)能力較強(qiáng);既能控制有功功率,又能控制無功功率,但控制方法非常復(fù)雜,而且開關(guān)頻率增高,開關(guān)損耗增大,效率隨之降低。其主要缺點(diǎn)是
1)需要大量的存儲(chǔ)電容。如果所有電容的電壓等級(jí)都與主功率器件的相同,那么一個(gè)m電平的電容鉗位型多電平變流器每相橋臂需要(m-1)(m-2)/2個(gè)輔助電容,而直流側(cè)上還需要(m-1)個(gè)電容。電平數(shù)較高時(shí)就增加了安裝的難度,同時(shí)也增加了造價(jià)。
2)為了使電容的充放電保持平衡,對(duì)于中間值電平需要采用不同的開關(guān)組合,這就增加了系統(tǒng)控制的復(fù)雜性,器件的開關(guān)頻率和開關(guān)損耗。
3)與二極管鉗位型多電平變流器一樣,電容鉗位型多電平變流器也存在導(dǎo)通負(fù)荷不一致的問題。
4 以變流單元電路串聯(lián)為基礎(chǔ)的多單元變流器結(jié)構(gòu)
4.1 級(jí)聯(lián)型多電平拓?fù)浣Y(jié)構(gòu)
這是一種較為新穎的多電平變換器拓?fù)浣Y(jié)構(gòu)。級(jí)聯(lián)型多電平變流器,采用若干個(gè)低壓PWM變流單元直接級(jí)聯(lián)的方式實(shí)現(xiàn)高壓輸出。由這種拓?fù)浣Y(jié)構(gòu)組成的電壓源型變頻器系由美國(guó)羅賓康公司發(fā)明并申請(qǐng)專利,取名為完美無諧波變頻器。我國(guó)北京利德華福生產(chǎn)的高壓變頻器也是采用這種結(jié)構(gòu)。該變頻器結(jié)構(gòu)具有對(duì)電網(wǎng)諧波污染小,輸入功率因數(shù)高,不必采用輸入諧波濾波器和功率因數(shù)補(bǔ)償裝置,輸出波形好,不存在由諧波引起的電動(dòng)機(jī)附加發(fā)熱,轉(zhuǎn)矩脈動(dòng),噪聲,共模電壓等問題,可以使用普通的異步電動(dòng)機(jī)。
4.1.1 單元串聯(lián)多電平變換器原理[3]
單元串聯(lián)多電平變換器采用若干個(gè)獨(dú)立的低壓功率單元串聯(lián)的方式來實(shí)現(xiàn)高壓輸出,其原理如圖4(a)所示。6kV輸出電壓等級(jí)的變頻器主電路拓?fù)浣Y(jié)構(gòu)如圖4(b)所示。電網(wǎng)電壓經(jīng)過二次側(cè)多重化的隔離變壓器降壓后給功率單元供電,功率單元為三相輸入,單相輸出的交—直—交PWM電壓源型逆變器結(jié)構(gòu)〔見圖4(c)〕,將相鄰功率單元的輸出端串接起來,形成丫聯(lián)結(jié)結(jié)構(gòu),實(shí)現(xiàn)變壓變頻的高壓直接輸出,供給高壓電動(dòng)機(jī)。每個(gè)功率單元分別由輸入變壓器的一組二次繞組供電,功率單元之間及變壓器二次繞組之間相互絕緣。對(duì)于額定輸出電壓為6kV的變頻器,每相由5個(gè)額定電壓為690V的功率單元串聯(lián)而成,輸出相電壓最高可達(dá)3450V,線電壓可達(dá)6kV左右,每個(gè)功率單元承受全部的輸出電流,但只提供1/5的相電壓和1/l5的輸出功率,所以,單元的電壓等級(jí)和串聯(lián)數(shù)量決定變領(lǐng)器輸出電壓,單元的額定電流決定變頻器的輸出電流。
由于不是采用傳統(tǒng)器件串聯(lián)方式來實(shí)現(xiàn)高壓輸出,而是采用整個(gè)功率單元串聯(lián),所以,不存在器件串聯(lián)引起的均壓?jiǎn)栴}。由于串聯(lián)功率單元較多,對(duì)單元本身的可靠性要求很高。輸入變壓器實(shí)行多重化設(shè)計(jì),達(dá)到降低諧波電流的目的。
4.1.2 同其他拓?fù)浣Y(jié)構(gòu)的比較
與采用高壓器件直接串聯(lián)的變頻器相比,采用這種主電路拓?fù)浣Y(jié)構(gòu)會(huì)使器件的數(shù)量增加。但低壓IGBT門極驅(qū)動(dòng)功率較低,其峰值驅(qū)動(dòng)功率不到5W,平均驅(qū)動(dòng)功率不到1W,驅(qū)動(dòng)電路非常簡(jiǎn)單。由于開關(guān)頻率低,且不必采用均壓電路和浪涌吸收電路,所以系統(tǒng)在效率方面具有較大的優(yōu)勢(shì)。功率單元采用目前低壓變頻器中廣泛使用的低壓IGBT功率模塊,技術(shù)成熟、可靠。由于采用二極管不可控整流電路結(jié)構(gòu),所以,變頻器對(duì)浪涌電壓的承受能力較強(qiáng)。
相對(duì)于二極管鉗位型和電容鉗位型多電平變流器,這種結(jié)構(gòu)避免了使用大量的鉗位二極管或電壓平衡電容。每個(gè)獨(dú)立直流源與一個(gè)單相全橋變流器相連。交流側(cè)的端電壓通過串聯(lián)方式疊加,形成多電平變流器的輸出電壓。每個(gè)單相全橋變流器可以產(chǎn)生一個(gè)三電平的輸出電壓。由m個(gè)變流器單元級(jí)聯(lián)而成的多電平變流器的電平數(shù)為(2m+1)。
單元級(jí)聯(lián)多電平拓?fù)浣Y(jié)構(gòu)的優(yōu)點(diǎn)是:1)使用串聯(lián)的方法可以將耐壓低、開關(guān)頻率也不高的功率器件直接應(yīng)用到高壓大功率場(chǎng)合;
2)基于單元串聯(lián)結(jié)構(gòu),每個(gè)單元的控制邏輯都是獨(dú)立的,從而解決了中點(diǎn)鉗位逆變電路在電平數(shù)增加時(shí),開關(guān)邏輯越來越復(fù)雜的問題;
3)各單元互相隔離,串級(jí)電路結(jié)構(gòu)不存在靜、動(dòng)態(tài)均壓?jiǎn)栴};
4)在串級(jí)電路設(shè)計(jì)上可以使用功率單元旁路技術(shù),這樣當(dāng)某個(gè)單元發(fā)生故障時(shí),控制系統(tǒng)可以直接將故障單元旁路,電路仍可繼續(xù)工作,只是輸出電壓略有下降;
5)串級(jí)電路的單元模塊化為實(shí)際安裝和使用提供了很大便利;
6)串級(jí)電路使用多副邊繞組變壓器,通過副邊繞組的移相聯(lián)接可以將電流諧波影響幾乎減小到零,從而改善了電路的功率因數(shù)。
然而,串級(jí)電路結(jié)構(gòu)的缺點(diǎn)也比較明顯:
1)每個(gè)基本單元都用一個(gè)獨(dú)立的直流電源供電,雖然使各個(gè)單元彼此隔離,但隨著電平數(shù)增加,直流電源數(shù)也將增加;
2)使用的功率單元及功率器件數(shù)量較多,增加了投入,造價(jià)昂貴,且裝置的體積大,需要占用一定的安裝空間;
3)無法實(shí)現(xiàn)能量回饋及四象限運(yùn)行,只適用于風(fēng)機(jī)、水泵等一般不要求四象限運(yùn)行的設(shè)備。
4.2 改進(jìn)的級(jí)聯(lián)型多電平變換器[1][2]
當(dāng)獨(dú)立的直流電源電壓相等,并且取E時(shí),由m個(gè)單相全橋逆變單元組成的單相級(jí)聯(lián)型多電平電路輸出電平數(shù)為2m+1。若將級(jí)聯(lián)多電平變換器中各獨(dú)立直流電源的電壓分別取E,2E,4E,2mE,則其輸出電平數(shù)大幅度地增加到2m-1,這就是改進(jìn)的級(jí)聯(lián)多電平變換器的思想,從更嚴(yán)格的意義上講,它不是一種新的電路拓?fù)浣Y(jié)構(gòu),說是一種控制策略更為合適。
圖5為采用改進(jìn)的級(jí)聯(lián)多電平結(jié)構(gòu)的GTO和IGBT混合型逆變電路。該逆變器的直流側(cè)總電壓為4.5kV,由GTO組成的高壓?jiǎn)卧袚?dān)3kV,由IGBT構(gòu)成低壓?jiǎn)卧袚?dān)1.5kV。采用合適的控制策略,可以在輸出合成由-4.5kV,-3kV,
-1.5kV,0,1.5kV,3kV,4.5kV等7電平構(gòu)成的階梯波,如表1所列。和電壓相等的普通級(jí)聯(lián)多電平電路相比,輸出電壓的級(jí)數(shù)由5增加到7。將波形合成策略和脈沖寬度調(diào)制PWM策略相結(jié)合,可以得到一種非常適合于該種混合型級(jí)聯(lián)多電平逆變器的控制策略,即較高電壓的GTO逆變單元以輸出電壓的基波頻率為切換頻率;而較低電壓的IGBT逆變單元?jiǎng)t在較高的頻率下進(jìn)行脈沖寬度調(diào)制,以此來改善輸出波形。GTO和IGBT在電路中的作用有所不同,GTO主要用來承擔(dān)電壓,而IGBT用來改善波形。圖6為混合逆變電路仿真輸出波形,其中圖6(a)為GTO輸出波形,開關(guān)頻率為基波頻率,圖6(b)為IGBT輸出波形,載波頻率為4kHz。級(jí)聯(lián)型多電平變換器中各獨(dú)立直流電源的電壓還可以分別取E,3E,9E,3mE,則其輸出的電平數(shù)大幅度地增加到3m。但由于電壓以2m或者3m倍數(shù)增加,而器件的耐壓有限,所以,改進(jìn)型級(jí)聯(lián)多電平電路的串聯(lián)級(jí)數(shù)不能無限增加,實(shí)際系統(tǒng)的級(jí)聯(lián)數(shù)目最多不會(huì)超過3。
表1 改進(jìn)的級(jí)聯(lián)多電平變流器各輸出電平組合情況(Vdc=2Vdc=2E)
Vdc
GTO單元的輸出電壓
IGBT單元的輸出電壓
3E
2E
E
2E
2E
0
E
0
E
E
2E
-E
0
0
0
-E
0
-E
-E
-2E
E
-2E
-2E
0
-3E
-2E
-E
5 結(jié)語
近年來,多電平變換器在高壓大功率場(chǎng)合越來越受到重視。在這些拓?fù)浣Y(jié)構(gòu)中,級(jí)聯(lián)型H橋拓?fù)浣Y(jié)構(gòu)特別有吸引力,因?yàn),它可以?shí)現(xiàn)模塊化以及控制簡(jiǎn)單等優(yōu)點(diǎn),但是,存在需要很多獨(dú)立直流電壓源的缺點(diǎn),因此,發(fā)展了混合級(jí)聯(lián)型等拓?fù)浣Y(jié)構(gòu),在相同情況下,可以大量提高電平數(shù)量。隨著變頻技術(shù)的發(fā)展,以后會(huì)出現(xiàn)更新、更好的新型電路拓?fù)浣Y(jié)構(gòu),特別是近年來“電力電子積木”PEBB(PowerElectronicsBuildingBlock)技術(shù)的興起,使多個(gè)功率器件的集成化和低成本化逐步成為可能,這也為多電平變換電路拓?fù)涞陌l(fā)展提供了有力的技術(shù)支持,這必將會(huì)促進(jìn)中高壓功率變換技術(shù)的進(jìn)一步發(fā)展。
【高壓大功率變換器拓?fù)浣Y(jié)構(gòu)的演化及分析和比較】相關(guān)文章:
改進(jìn)的單級(jí)功率因數(shù)校正AC/DC變換器的拓?fù)渚C述08-06
雙管反激變換器研究分析08-06
大功率變頻電源輸出特性和實(shí)驗(yàn)分析08-06
關(guān)系營(yíng)銷和交易營(yíng)銷的演化與兼容08-06