- 相關(guān)推薦
矩陣式變換器雙向開關(guān)四步換流技術(shù)研究
摘要:對(duì)矩陣式變換器(MC)中雙向開關(guān)的安全換流課題進(jìn)行了研究。分析了各種換流方案,進(jìn)而提出采用可編程邏輯元件(GAL)的四步換流方案,仿真和實(shí)驗(yàn)的結(jié)果證實(shí)了這種換流方案的可行性與可靠性。關(guān)鍵詞:矩陣式變換器;雙向開關(guān);可編程邏輯器件;四步換流
引言
1979年,意大利學(xué)者M(jìn).Venturini第一次提出了矩陣式變換器存在理論及控制策略。與傳統(tǒng)的交—交變頻器及交—直—交變頻器相比,矩陣式變頻器具有明顯的優(yōu)點(diǎn):高功率因數(shù)、低諧波污染、可四象限運(yùn)行、無中間儲(chǔ)能環(huán)節(jié)、體積小且效率高。隨著交流變頻調(diào)速技術(shù)成為當(dāng)代電氣傳動(dòng)中實(shí)現(xiàn)自動(dòng)化和節(jié)能的主要技術(shù)手段,矩陣式變換器(MC)的研究已成為電力電子技術(shù)研究的熱點(diǎn)之一。
1矩陣式變換器及雙向開關(guān)
圖1是矩陣式變換器的原理性結(jié)構(gòu),它可用一個(gè)虛擬的整流器和虛擬的逆變器構(gòu)成。采用這樣的結(jié)構(gòu)可以充分利用交—直—交變換器中成熟的PWM技術(shù)。三相矩陣式變換器采用9個(gè)雙向開關(guān)組成3×3的矩陣式結(jié)構(gòu),因而三相輸入中的任意一相可與三相輸出的任意一線相連,采用一定的開關(guān)控制策略可使輸出線間平均輸出電壓為所需頻率下的正弦調(diào)制電壓,同時(shí)可使輸入電流正弦并與輸入電壓同相。調(diào)制過程中,組成雙向開關(guān)的單向器件間的換流是矩陣式變換器實(shí)現(xiàn)中的關(guān)鍵。
目前常用的IGBT組合雙向開關(guān)主要有3種形式,即由單個(gè)IGBT和二極管組合成的橋式雙向開關(guān),共發(fā)射極反向串聯(lián)IGBT組合的雙向開關(guān)和共集電極反向串聯(lián)IGBT組合的雙向開關(guān),如圖2所示。
橋式組合雙向開關(guān)任意時(shí)刻都有三個(gè)器件參與導(dǎo)通,導(dǎo)通壓降較大,損耗較高。共發(fā)射極和共集電極反向串聯(lián)IGBT組合雙向開關(guān)使用兩個(gè)IGBT,利用器件內(nèi)部的續(xù)流二極管以阻擋反向電壓,結(jié)構(gòu)緊湊,方便簡單,開關(guān)損耗也較低,故獲得了廣泛的應(yīng)用。
2三種換流方案的比較
2.1死區(qū)換流方案
安排死區(qū)以避免換流時(shí)刻輸入線間短路,缺點(diǎn)是在有緩沖電路和電感性負(fù)載時(shí)開關(guān)為硬開關(guān)運(yùn)行方式,緩沖能量被釋放時(shí)會(huì)伴隨能量損耗。
2.2重疊換流方案
重疊換流是以輸入線間短暫的短路過程來實(shí)現(xiàn)電流的切換,缺點(diǎn)是限流電感體積大、成本高,同時(shí)又有可能引入新的過電壓。
2.3四步換流方案
為保證MC的輸入電流和輸出電壓都是正弦波,對(duì)9組雙向開關(guān)都實(shí)行PWM控制,各開關(guān)須按一定規(guī)律進(jìn)行切換。為了保證安全切換,同一相輸出的任意兩組開關(guān)不能同時(shí)導(dǎo)通,否則將造成輸入兩相短路;三相開關(guān)也不能同時(shí)斷開,即在兩組開關(guān)切換期間不能插入死區(qū),否則就造成感性負(fù)載開路而感應(yīng)高電壓。這樣,既不能兩組開關(guān)交疊導(dǎo)通,又不允許有切換死區(qū),必須有嚴(yán)格的邏輯控制才行,四步換流方案能很好地滿足這個(gè)要求。
3四步換流過程
圖3是接到同一相負(fù)載的兩組雙向開關(guān)的換流示意圖。u1及u2表示兩相輸入電壓瞬時(shí)值,S1和S2表示兩組雙向開關(guān),p和n表示每組開關(guān)的正向和反向,uL和iL分別是負(fù)載上的輸出電壓和電流。
四步換流要實(shí)現(xiàn)對(duì)兩個(gè)雙向開關(guān)的換流控制,必須既要禁止可能使電源發(fā)生短路的開關(guān)組合,又要保證在任意時(shí)刻給負(fù)載提供至少一條流通路徑,那么,滿足這些條件的開關(guān)組合共有8組,列于表1。
表1安全換流的開關(guān)組合方案
S1p
S1n
S2p
S2n
iL方向
1
1
1
0
0
。
2
0
0
1
1
。
3
1
0
0
0
。
4
0
1
0
0
。
5
0
0
1
0
+
6
0
0
0
1
。
7
1
0
1
0
+
8
0
1
0
1
。
表1中的第一種開關(guān)狀態(tài)直接切換到第二種開關(guān)是不行的,這樣會(huì)造成電源斷路。但當(dāng)iL>0時(shí),由狀態(tài)1經(jīng)過狀態(tài)3、7、5,再切換到狀態(tài)2則是可行的。同理,iL<0時(shí),由狀態(tài)4、8、6也可實(shí)現(xiàn)狀態(tài)1到2的切換。圖4繪出了這兩種四步換流次序。
4四步換流的死區(qū)補(bǔ)償
采用滯環(huán)比較器和過零比較器得到電流方向,并預(yù)測(cè)電流是否在死區(qū)時(shí)間內(nèi)可能過零,如果不會(huì),則第一步可以在DSP發(fā)出PWM信號(hào)之前完成,如圖5所示,則四步換流的死區(qū)共為td=tc1+tc2+tc3,死區(qū)補(bǔ)償后的死區(qū)時(shí)間共為td=tc2+tc3。
5GAL的四步換流方案
GAL22V10是Lattice公司生產(chǎn)的復(fù)雜可編程邏輯器件,其引腳間最大的傳輸時(shí)間為4ns,相應(yīng)的計(jì)數(shù)器頻率可達(dá)250MHz,具有電可擦除的CMOS結(jié)構(gòu)和浮動(dòng)門技術(shù),可100次重復(fù)擦寫,數(shù)據(jù)儲(chǔ)存可達(dá)20年之久。
圖6所示為矩陣式變換器的某一輸出相的三個(gè)雙向開關(guān)狀態(tài)轉(zhuǎn)換圖。1表示為開關(guān)導(dǎo)通,0表示開關(guān)關(guān)斷,前兩位、中間兩位和后兩位分別表示與三個(gè)輸入相連的雙向開關(guān)。圖中,橢圓形框表示穩(wěn)態(tài),矩形框表示暫態(tài)。可見,要正確實(shí)現(xiàn)四步換流需要知道當(dāng)前狀態(tài)、下一時(shí)刻狀態(tài)、負(fù)載電流方向及定時(shí)器換流時(shí)間,判斷得出正確的換流信號(hào)和順序并輸出到每個(gè)IGBT器件的柵極,完成換流所需的時(shí)序邏輯。
6實(shí)驗(yàn)仿真
圖7是實(shí)驗(yàn)中一對(duì)雙向開關(guān)換流過程的實(shí)際波形,圖8是實(shí)驗(yàn)中兩相正向開關(guān)換流過程的實(shí)際波形,可見?過DSP已成功地實(shí)現(xiàn)了開關(guān)之間的安全換流。通過仿真軟件Matlab/Simulink也可以對(duì)矩陣式變換器(MC)雙向開關(guān)的四步換流過程進(jìn)行驗(yàn)證,采用理想開關(guān)對(duì)矩陣式變換器一相電路換流過程進(jìn)行仿真,其輸出電壓仿真波形如圖9所示。
實(shí)驗(yàn)中采用IGBT以集電極反串聯(lián)組合構(gòu)成雙向開關(guān),圖10是輸出線電壓實(shí)驗(yàn)波形。
觀察IGBT器件上集、射極間電壓波形,可見四步換流可以將器件換流時(shí)產(chǎn)生的電壓過沖限制在合理選定的電壓耐量范圍內(nèi),確保器件安全工作。
7結(jié)語
本文針對(duì)GAL控制的矩陣式變換器(MC)雙向開關(guān)四步換流方案進(jìn)行,然后以DSP為核心構(gòu)成了矩陣式變換器的硬件系統(tǒng),設(shè)計(jì)了控制系統(tǒng)軟件,完成了異步電機(jī)拖動(dòng)實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果驗(yàn)證了該方案的有效性。
【矩陣式變換器雙向開關(guān)四步換流技術(shù)研究】相關(guān)文章:
基于DSP控制的數(shù)字式雙向DC/DC變換器的實(shí)現(xiàn)08-06
矩陣式組織——解讀IBM的組織08-17
雙向孤獨(dú)作文04-24
“和”是雙向的作文05-05
雙管反激變換器研究分析08-06
用于機(jī)車空調(diào)的DC/DC變換器08-06