四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

八年級數(shù)學(xué)教案

時間:2022-04-28 14:38:33 八年級數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)教案范文集錦十篇

  作為一位優(yōu)秀的人民教師,常常要根據(jù)教學(xué)需要編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。寫教案需要注意哪些格式呢?下面是小編為大家收集的八年級數(shù)學(xué)教案10篇,希望對大家有所幫助。

八年級數(shù)學(xué)教案范文集錦十篇

八年級數(shù)學(xué)教案 篇1

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識點

  1.用分式表示生活中的一些量.

  2.分式的基本性質(zhì)及分式的有關(guān)運算法則.

  3.分式方程的概念及其解法.

  4.列分式方程,建立現(xiàn)實情境中的數(shù)學(xué)模型.

 。ǘ┠芰τ(xùn)練要求

  1.使學(xué)生有目的的梳理知識,形成這一章完整的.知識體系.

  2.進一步體驗“類比”與“轉(zhuǎn)化”在學(xué)習(xí)分式的基本性質(zhì)、分式的運算法則及其分式方程解法過程中的重要作用.

  3.提高學(xué)生的歸納和概括能力,形成反思自己學(xué)習(xí)過程的意識.

 。ㄈ┣楦信c價值觀要求

  使學(xué)生在總結(jié)學(xué)習(xí)經(jīng)驗和活動經(jīng)驗的過程中,體驗因?qū)W習(xí)方法的大力改進而帶來的快樂,成為一個樂于學(xué)習(xí)的人.

  ●教學(xué)重點

  1.分式的概念及其基本性質(zhì).

  2.分式的運算法則.

  3.分式方程的概念及其解法.

  4.分式方程的應(yīng)用.

  ●教學(xué)難點

  1.分式的運算及分式方程的解法.

  2.分式方程的應(yīng)用.

  ●教學(xué)方法

  討論——交流法

  討論交流本章學(xué)習(xí)過程中的經(jīng)驗和收獲,在反思過程中建立知識體系.

  ●教具準(zhǔn)備

  投影片兩張,實物投影儀

  第一張:問題串,(記作§3.5A)

  第二張:例題分析,(記作§3.5B)

  ●教學(xué)過程

 、.提出問題,回顧本章的知識.

  出示投影片(§3.5A)

  問題串:

  1.實際生活中的一些量可以用分式表示,一些問題可以通過列分式方程解決,請舉一例.

  2.分式的性質(zhì)及有關(guān)運算法則與分?jǐn)?shù)有什么異同?

  3.如何解分式方程?它與解一元一次方程有何聯(lián)系與區(qū)別?

 。蹘煟萃瑢W(xué)們可針對以上問題,以小組為單位討論、交流,然后在全班進行交流.

  (教師可參與于學(xué)生的討論中,注意掃除他們學(xué)習(xí)中常犯的錯誤)

 。凵輰嶋H生活中的一些量可以用分式表示,例如(用實物投影)

  某人在外面晨練,有m分鐘,他每分鐘走a米;有n分鐘,他每分鐘跑b米.求此人晨練平均每分鐘行多少米?

 。凵菸覀兘M來回答此問題,此人晨練時平均每分鐘行米.

  我們組也舉出一個例子:長方形的面積為8m2,長為pm,寬為____________m.

 。凵輵(yīng)為m.

 。蹘煟萃瑢W(xué)們舉的例子都很有特色,誰還能舉.

 。凵萑绻成唐方祪rx%后的售價為a元,那么該商品的原價為多少元?

 。凵菰瓋r為元.……

 。蹘煟荻际欠质.分式有什么特點?和整式有何區(qū)別?

 。凵菡紸除以整式B,可表示成的形式,如果除式B中含有字母,則稱是分式.而整式分母中不含字母.

 。凵輰嶋H生活中的一些問題可用分式方程來解決.例如(用實物投影儀)

  某車間加工1200個零件后,采用了新工藝,工效是原來的1.5倍,這樣加工同樣多的零件就少用10h,采用新工藝前、后每時分別加工多少個零件?

  解:設(shè)采用新工藝前、后每時分別加工x個,1.5x個,根據(jù)題意,得

八年級數(shù)學(xué)教案 篇2

  教學(xué)目標(biāo):

  學(xué)會可化為一元一次方程或一元二次方程的分式方程的解法,會用去分母求方程的解、掌握解分式方程的一般步驟。

  教學(xué)重點:

  去分母法解可化為一元一次方程或一元二次方程的分式方程、驗根的方法、

  教學(xué)難點:

  解分式方程的一般步驟。

  教學(xué)過程:

  復(fù)習(xí)引入:

  1、什么叫分式方程?

  2、解分式方程的`基本思想:

  分式方程整式方程

  3、解方程(學(xué)生板演)

  講授新課:

  1、由上述學(xué)生的板演歸納出解分式方程的一般步驟

 。1)去分母:在方程的兩邊都乘以最簡公分母,化為整式方程;

 。2)解這個整式方程;

 。3)檢驗:將所得的解代入原方程的最簡公分母,若最簡公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、

  2、范例講解

 。▽W(xué)生嘗試練習(xí)后,教師講評)

  例1:解方程例2:解方程例3:解方程講評時強調(diào):

  1、怎樣確定最簡公分母?(先將各分母因式分解)

  2、解分式方程的步驟、

  鞏固練習(xí):P1471t,2t、

  課堂小結(jié):解分式方程的一般步驟

  布置作業(yè):見作業(yè)本。

八年級數(shù)學(xué)教案 篇3

  一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個例題介紹了利用根與系數(shù)的關(guān)系簡化一些計算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的`根確定方程的系數(shù)的方法等等。

  根與系數(shù)的關(guān)系也稱為韋達定理(韋達是法國數(shù)學(xué)家)。韋達定理是初中代數(shù)中的一個重要定理。這是因為通過韋達定理的學(xué)習(xí),把一元二次方程的研究推向了高級階段,運用韋達定理可以進一步研究數(shù)學(xué)中的許多問題,如二次三項式的因式分解,解二元二次方程組;韋達定理對后面函數(shù)的學(xué)習(xí)研究也是作用非凡。

  通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。

  通過韋達定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。

  (二)重點、難點

  一元二次方程根與系數(shù)的關(guān)系是重點,讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點。

  (三)教學(xué)目標(biāo)

  1、知識目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運用根與系數(shù)的關(guān)系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。

八年級數(shù)學(xué)教案 篇4

  教學(xué)目標(biāo):

  1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負性。

  2.了解開方與乘方互為逆運算,會用平方運算求某些非負數(shù)的算術(shù)平方根。

  教學(xué)重點:

  算術(shù)平方根的概念。

  教學(xué)難點:

  根據(jù)算術(shù)平方根的概念正確求出非負數(shù)的算術(shù)平方根。

  教學(xué)過程

  一、情境導(dǎo)入

  請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

  這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

  二、導(dǎo)入新課:

  1、提出問題:(書P68頁的問題)

  你是怎樣算出畫框的邊長等于5dm的呢?(學(xué)生思考并交流解法)

  這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值.

  一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

  也就是,在等式 =a (x0)中,規(guī)定x = .

  2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

  3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。

  4、例1 求下列各數(shù)的算術(shù)平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、練習(xí)

  P69練習(xí) 1、2

  四、探究:(課本第69頁)

  怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵學(xué)生探究。

  問題:這個大正方形的.邊長應(yīng)該是多少呢?

  大正方形的邊長是 ,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

  建議學(xué)生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

  五、小結(jié):

  1、這節(jié)課學(xué)習(xí)了什么呢?

  2、算術(shù)平方根的具體意義是怎么樣的?

  3、怎樣求一個正數(shù)的算術(shù)平方根

  六、課外作業(yè):

  P75習(xí)題13.1活動第1、2、3題

八年級數(shù)學(xué)教案 篇5

  一、教學(xué)目標(biāo):

  1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動范圍的一個量.

  2、會求一組數(shù)據(jù)的極差.

  二、重點、難點和難點的突破方法

  1、重點:會求一組數(shù)據(jù)的極差.

  2、難點:本節(jié)課內(nèi)容較容易接受,不存在難點.

  三、課堂引入:

  下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

  從表中你能得到哪些信息?

  比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

  經(jīng)計算可以看出,對于2月下旬的這段時間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

  這是不是說,兩個時段的氣溫情況沒有什么差異呢?

  根據(jù)兩段時間的氣溫情況可繪成的折線圖.

  觀察一下,它們有區(qū)別嗎?說說你觀察得到的'結(jié)果.

  用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

  四、例習(xí)題分析

  本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析

  問題1可由極差計算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個學(xué)期統(tǒng)計知識首先應(yīng)回憶復(fù)習(xí)已學(xué)知識.問題3答案并不唯一,合理即可。

八年級數(shù)學(xué)教案 篇6

  總課時:7課時 使用人:

  備課時間:第八周 上課時間:第十周

  第4課時:5、2平面直角坐標(biāo)系(2)

  教學(xué)目標(biāo)

  知識與技能

  1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點的位置;

  2.通過找點、連線、觀察,確定圖形的大致形狀的問題,能進一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  過程與方法

  1.經(jīng)歷畫坐標(biāo) 系、描點、連線、看圖以及由點找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;

  2.通過由點確定坐標(biāo)到根據(jù)坐標(biāo)描點的轉(zhuǎn)化過程,進一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。

  情感態(tài)度與價值觀

  通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點:在已知的直角坐標(biāo)系下找點、連線、觀察,確定圖形的大致形狀。

  教學(xué)難點:在已知的直角坐標(biāo)系下找點、連線、觀察,確定圖形的大致形狀。

  教學(xué)過程

  第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點)

  在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點的坐標(biāo)有什么特點。

  練習(xí):指出下列 各點以及所在象限或坐標(biāo)軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)

  由點找坐標(biāo)是已知點在直角坐標(biāo) 系中的位置,根據(jù)這點在方格紙上對應(yīng)的.x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點,你能找到嗎?這就是本節(jié)課的內(nèi)容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點,并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學(xué)生操作完畢后)

  2.(出示投影)還是在這個平面直角坐標(biāo)系中,描出下列各組內(nèi)的點用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫小組做得最快?

  (出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨立完成。

  (學(xué)生描點、畫圖)

  (拿出一位做對的學(xué)生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨立完成,后小組討論)

  (補充)1.在直角坐標(biāo)系中描出下列各點,并將各組內(nèi)的點用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動的菱形)

  2.在直角坐標(biāo)系中,設(shè)法找到若干個點使得連接各點所得的封閉圖形是如下圖所示的十字。

  先獨立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)

  本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點、連 線、觀察,確定圖形的大致形狀,進一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點的坐標(biāo)。

  第五環(huán)節(jié) 布置作業(yè)

  習(xí)題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級數(shù)學(xué)教案 篇7

  復(fù)習(xí)第一步::

  勾股定理的有關(guān)計算

  例1:(20xx年甘肅省定西市中考題)下圖陰影部分是一個正方形,則此正方形的面積為.

  析解:圖中陰影是一個正方形,面積正好是直角三角形一條直角邊的平方,因此由勾股定理得正方形邊長平方為:172-152=64,故正方形面積為6

  勾股定理解實際問題

  例2.(20xx年吉林省中考試題)圖①是一面矩形彩旗完全展平時的尺寸圖(單位:cm).其中矩形ABCD是由雙層白布縫制的穿旗桿用的旗褲,陰影部分DCEF為矩形綢緞旗面,將穿好彩旗的旗桿垂直插在操場上,旗桿旗頂?shù)降孛娴母叨葹?20cm.在無風(fēng)的天氣里,彩旗自然下垂,如圖②.求彩旗下垂時最低處離地面的最小高度h.

  析解:彩旗自然下垂的長度就是矩形DCEF

  的對角線DE的長度,連接DE,在Rt△DEF中,根據(jù)勾股定理,

  得DE=h=220-150=70(cm)

  所以彩旗下垂時的最低處離地面的最小高度h為70cm

  與展開圖有關(guān)的計算

  例3、(20xx年青島市中考試題)如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

  析解:正方體是由平面圖形折疊而成,反之,一個正方體也可以把它展開成平面圖形,如圖是正方體展開成平面圖形的一部分,在矩形ACC’A’中,線段AC’是點A到點C’的最短距離.而在正方體中,線段AC’變成了折線,但長度沒有改變,所以頂點A到頂點C’的'最短距離就是在圖2中線段AC’的長度.

  在矩形ACC’A’中,因為AC=2,CC’=1

  所以由勾股定理得AC’=.

  ∴從頂點A到頂點C’的最短距離為

  復(fù)習(xí)第二步:

  1.易錯點:本節(jié)同學(xué)們的易錯點是:在用勾股定理求第三邊時,分不清直角三角形的斜邊和直角邊;另外不論是否是直角三角形就用勾股定理;為了避免這些錯誤的出現(xiàn),在解題中,同學(xué)們一定要找準(zhǔn)直角邊和斜邊,同時要弄清楚解題中的三角形是否為直角三角形.

  例4:在Rt△ABC中,a,b,c分別是三條邊,∠B=90°,已知a=6,b=10,求邊長c.

  錯解:因為a=6,b=10,根據(jù)勾股定理得c=剖析:上面解法,由于審題不仔細,忽視了∠B=90°,這一條件而導(dǎo)致沒有分清直角三角形的斜邊和直角邊,錯把c當(dāng)成了斜邊.

  正解:因為a=6,b=10,根據(jù)勾股定理得,c=溫馨提示:運用勾股定理時,一定分清斜邊和直角邊,不能機械套用c2=a2+b2

  例5:已知一個Rt△ABC的兩邊長分別為3和4,則第三邊長的平方是

  錯解:因為Rt△ABC的兩邊長分別為3和4,根據(jù)勾股定理得:第三邊長的平方是32+42=25

  剖析:此題并沒有告訴我們已知的邊長4一定是直角邊,而4有可能是斜邊,因此要分類討論.

  正解:當(dāng)4為直角邊時,根據(jù)勾股定理第三邊長的平方是25;當(dāng)4為斜邊時,第三邊長的平方為:42-32=7,因此第三邊長的平方為:25或7.

  溫馨提示:在用勾股定理時,當(dāng)斜邊沒有確定時,應(yīng)進行分類討論.

  例6:已知a,b,c為⊿ABC三邊,a=6,b=8,bc,且c為整數(shù),則c=.

  錯解:由勾股定理得c=剖析:此題并沒有告訴你⊿ABC為直角三角形

八年級數(shù)學(xué)教案 篇8

  【教學(xué)目標(biāo)】

  知識目標(biāo):了解中心對稱的概念,了解平行四邊形是中心對稱圖形,掌握中心對稱的性質(zhì)。

  能力目標(biāo):靈活運用中心對稱的性質(zhì),會作關(guān)于已知點對稱的中心對稱圖形。

  情感目標(biāo):通過提問、討論、動手操作等多種教學(xué)活動,樹立自信,自強,自主感,由此激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣,增強學(xué)好數(shù)學(xué)的信心。

  【教學(xué)重點、難點】

  重點:中心對稱圖形的概念和性質(zhì)。

  難點:范例中既有新概念,分析又要仔細、透徹,是教學(xué)的難點。

  關(guān)鍵:已知點A和點O,會作點Aˊ,使點Aˊ與點A關(guān)于點O成中心對稱。

  【課前準(zhǔn)備】

  叫一位剪紙愛好的學(xué)生,剪一幅類似書本第108頁哪樣的圖案。

  【教學(xué)過程】

  一.復(fù)習(xí)

  回顧七下學(xué)過的軸對稱變換、平移變換、旋轉(zhuǎn)變換、相似變換。

  二.創(chuàng)設(shè)情境

  用剪好的圖案,讓學(xué)生欣賞。師:這剪紙有哪些變換?生:軸對稱變換。師:指出對稱軸。生:(能結(jié)合圖案講)。生:還有旋轉(zhuǎn)變換。師:指出旋轉(zhuǎn)中心、旋轉(zhuǎn)的角度?生:90°、180°、270°。

  三、合作學(xué)習(xí)

  1、把圖1、圖2發(fā)給每個學(xué)生,先探索圖1:同桌的兩位同學(xué),把兩個正三角形重合,然后把上面的正三角形繞點O旋轉(zhuǎn)180°,觀察旋轉(zhuǎn)180°前后原圖形和像的位置情況,請學(xué)生說出發(fā)現(xiàn)什么?生(討論后):等邊三角形旋轉(zhuǎn)180°后所得的像與原圖形不重合。

  探索圖形2:把兩個平形四邊形重合,然后把上面一個平形四邊形繞點O旋轉(zhuǎn)180°,學(xué)生動手后發(fā)現(xiàn):平行四邊形ABCD旋轉(zhuǎn)180°后所得的像與原圖形重合。師:為什么重合?師:作適當(dāng)解釋或?qū)W生自己發(fā)現(xiàn):∵OA=OC,∴點A繞點O旋轉(zhuǎn)180°與點C重合。同理可得,點C繞點O旋轉(zhuǎn)180°與點A重合。點B繞點O旋轉(zhuǎn)180°與點D重合。點D繞點O旋轉(zhuǎn)180°與點B重合。

  2、中心對稱圖形的概念:如果一個圖形繞一個點旋轉(zhuǎn)180°后,所得到的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱(pointsymmetry)圖形,這個點叫對稱中心。

  師:等邊三角形是中心對稱圖形嗎?生:不是。

  3、想一想:等邊三角形是軸對稱圖形嗎?答:是軸對稱圖形。

  平形四邊形是軸對稱圖形嗎?答:不是軸對稱圖形。

  4、兩個圖形關(guān)于點O成中心對稱的概念:如果一個圖形繞著一個點O旋轉(zhuǎn)180°后,能夠和另外一個圖形互相重合,我們就稱這兩個圖形關(guān)于點O成中心對稱。

  中心對稱圖形與兩個圖形成中心對稱的不同點:前者是一個圖形,后者是兩個圖形。

  相同點:都有旋轉(zhuǎn)中心,旋轉(zhuǎn)180°后都會重合。

  做一做: P109

  5、根據(jù)中心對稱圖形的定義,得出中心對稱圖形的性質(zhì):

  對稱中心平分連結(jié)兩個對稱點的線段

  通過中心對稱的概念,得到P109性質(zhì)后,主要是理解與應(yīng)用。如右圖,若A、B關(guān)于點O的成中心對稱,∴點O是A、B的對稱中心。

  反之,已知點A、點O,作點B,使點A、B關(guān)于以O(shè)為對稱中心的對稱點。讓學(xué)生練習(xí),多數(shù)學(xué)生會做,若不會做,教師作適當(dāng)?shù)?啟發(fā)。

  做P106例2,讓學(xué)生思考1~2分鐘,然后師生共同解答。

 。≒106)例2 解:∵平行四邊形是中心對稱圖形,O是對稱中心,

  EF經(jīng)過點O,分別交AB、CD于E、F。

  ∴點E、F是關(guān)于點O的對稱點。

  ∴OE=OF。

  四、應(yīng)用新知,拓展提高

  例 如圖,已知△ABC和點O,作△A′B′C′,使△A′B′C′與△ABC關(guān)于點O成中心對稱。

  分析:先讓學(xué)生作點A關(guān)于以點O為對稱中心的對稱點Aˊ,

  同理:作點B關(guān)于以點O為對稱中心的對稱點Bˊ,

  作點C關(guān)于以點O為對稱中心的對稱點Cˊ。

  ∴△AˊBˊCˊ與△ABC關(guān)于點O成中心對稱也會作。解:略。

  課內(nèi)練習(xí)P110

  小結(jié)

  今天我們學(xué)習(xí)了些什么?

  1、中心對稱圖形的概念,兩個圖形成中心對稱的概念,知道它們的相同點與不同點。

  2、會作中心對稱圖形,關(guān)鍵是會作點A關(guān)于以O(shè)為對稱中心的對稱點Aˊ。

  3、我們已學(xué)過的中心對稱圖形有哪些?

  作業(yè)

  P110 A組1、2、3、4,B組5、6必做C組7選做。

八年級數(shù)學(xué)教案 篇9

  單元(章)主題第三章 直棱柱任課教師與班級

  本課(節(jié))課題3.1 認(rèn)識直棱柱第 1 課時 / 共 課時

  教學(xué)目標(biāo)(含重點、難點)及

  設(shè)置依據(jù)教學(xué)目標(biāo)

  1、了解多面體、直棱柱的有關(guān)概念.

  2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.

  3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.

  教學(xué)重點與難點

  教學(xué)重點:直棱柱的有關(guān)概念.

  教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達能力.

  教學(xué)準(zhǔn)備每個學(xué)生準(zhǔn)備一個幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長方體、立方體模型

  教 學(xué) 過 程

  內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)

  一、創(chuàng)設(shè)情景,引入新課

  師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

  析:學(xué)生很容易回答出更多的答案。

  師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點概念:

  師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點?

  析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點

  2.合作交流

  師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

  學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描

  述其特征。)

  師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。

  學(xué)生活動:分小組討論。

  說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的'輕松,學(xué)生學(xué)的愉快。

  師:請大家找出與長方體,立方體類似的物體或模型。

  析:舉出實例。(找出區(qū)別)

  師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  長方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側(cè)棱互相平行且相等。

  4.學(xué)以至用

  出示例題。(先請學(xué)生單獨考慮,再作講解)

  析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)

  最后完成例題中的“想一想”

  5.鞏固練習(xí)(學(xué)生練習(xí))

  完成“課內(nèi)練習(xí)”

  三、小結(jié)回顧,反思提高

  師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?

  合作交流后得到:重點直棱柱的有關(guān)概念。

  直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達能力。這一點比較難。

  板書設(shè)計

  作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)

八年級數(shù)學(xué)教案 篇10

  教學(xué)建議

  知識結(jié)構(gòu)

  重難點分析

  本節(jié)的重點是中位線定理.三角形中位線定理和梯形中位線定理不但給出了三角形或梯形中線段的位置關(guān)系,而且給出了線段的數(shù)量關(guān)系,為平面幾何中證明線段平行和線段相等提供了新的思路.

  本節(jié)的難點是中位線定理的證明.中位線定理的證明教材中采用了同一法,同一法學(xué)生初次接觸,思維上不容易理解,而其他證明方法都需要添加2條或2條以上的輔助線,添加的目的性和必要性,同以前遇到的情況對比有一定的難度.

  教法建議

  1. 對于中位線定理的引入和證明可采用發(fā)現(xiàn)法,由學(xué)生自己觀察、猜想、測量、論證,實際掌握效果比應(yīng)用講授法應(yīng)好些,教師可根據(jù)學(xué)生情況參考采用

  2.對于定理的證明,有條件的教師可考慮利用多媒體課件來進行演示知識的形成及證明過程,效果可能會更直接更易于理解

  教學(xué)設(shè)計示例

  一、教學(xué)目標(biāo)

  1.掌握中位線的概念和三角形中位線定理

  2.掌握定理“過三角形一邊中點且平行另一邊的直線平分第三邊”

  3.能夠應(yīng)用三角形中位線概念及定理進行有關(guān)的論證和計算,進一步提高學(xué)生的計算能力

  4.通過定理證明及一題多解,逐步培養(yǎng)學(xué)生的分析問題和解決問題的能力

  5. 通過一題多解,培養(yǎng)學(xué)生對數(shù)學(xué)的興趣

  二、教學(xué)設(shè)計

  畫圖測量,猜想討論,啟發(fā)引導(dǎo).

  三、重點、難點

  1.教學(xué)重點:三角形中位線的概論與三角形中位線性質(zhì).

  2.教學(xué)難點:三角形中位線定理的證明.

  四、課時安排

  1課時

  五、教具學(xué)具準(zhǔn)備

  投影儀、膠片、常用畫圖工具

  六、教學(xué)步驟

  【復(fù)習(xí)提問】

  1.敘述平行線等分線段定理及推論的內(nèi)容(結(jié)合學(xué)生的敘述,教師畫出草圖,結(jié)合圖形,加以說明).

  2.說明定理的證明思路.

  3.如圖所示,在平行四邊形ABCD中,M、N分別為BC、DA中點,AM、CN分別交BD于點E、F,如何證明 ?

  分析:要證三條線段相等,一般情況下證兩兩線段相等即可.如要證 ,只要 即可.首先證出四邊形AMCN是平行四邊形,然后用平行線等分線段定理即可證出.

  4.什么叫三角形中線?(以上復(fù)習(xí)用投影儀打出)

  【引入新課】

  1.三角形中位線:連結(jié)三角形兩邊中點的線段叫做三角形中位線.

  (結(jié)合三角形中線的定義,讓學(xué)生明確兩者區(qū)別,可做一練習(xí),在 中,畫出中線、中位線)

  2.三角形中位線性質(zhì)

  了解了三角形中位線的定義后,我們來研究一下,三角形中位線有什么性質(zhì).

  如圖所示,DE是 的一條中位線,如果過D作 ,交AC于 ,那么根據(jù)平行線等分線段定理推論2,得 是AC的.中點,可見 與DE重合,所以 .由此得到:三角形中位線平行于第三邊.同樣,過D作 ,且DE FC,所以DE .因此,又得出一個結(jié)論,那就是:三角形中位線等于第三邊的一半.由此得到三角形中位線定理.

  三角形中位線定理:三角形中位城平行于第三邊,并且等于它的一半.

  應(yīng)注意的兩個問題:①為便于同學(xué)對定理能更好的掌握和應(yīng)用,可引導(dǎo)學(xué)生分析此定理的特點,即同一個題設(shè)下有兩個結(jié)論,第一個結(jié)論是表明中位線與第三邊的位置關(guān)系,第二個結(jié)論是說明中位線與第三邊的數(shù)量關(guān)系,在應(yīng)用時可根據(jù)需要來選用其中的結(jié)論(可以單獨用其中結(jié)論).②這個定理的證明方法很多,關(guān)鍵在于如何添加輔助線.可以引導(dǎo)學(xué)生用不同的方法來證明以活躍學(xué)生的思維,開闊學(xué)生思路,從而提高分析問題和解決問題的能力.但也應(yīng)指出,當(dāng)一個命題有多種證明方法時,要選用比較簡捷的方法證明.

  由學(xué)生討論,說出幾種證明方法,然后教師總結(jié)如下圖所示(用投影儀演示).

  (l)延長DE到F,使 ,連結(jié)CF,由 可得AD FC.

  (2)延長DE到F,使 ,利用對角線互相平分的四邊形是平行四邊形,可得AD FC.

  (3)過點C作 ,與DE延長線交于F,通過證 可得AD FC.

  上面通過三種不同方法得出AD FC,再由 得BD FC,所以四邊形DBCF是平行四邊形,DF BC,又因DE ,所以DE .

  (證明過程略)

  例 求證:順次連結(jié)四邊形四條邊的中點,所得的四邊形是平行四邊形.

  (由學(xué)生根據(jù)命題,說出已知、求證)

  已知:如圖所示,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點.

  求證:四邊形EFGH是平行四邊形.‘

  分析:因為已知點分別是四邊形各邊中點,如果連結(jié)對角線就可以把四邊形分成三角形,這樣就可以用三角形中位線定理來證明出四邊形EFGH對邊的關(guān)系,從而證出四邊形EFGH是平行四邊形.

  證明:連結(jié)AC.

  ∴ (三角形中位線定理).

  同理,

  ∴GH EF

  ∴四邊形EFGH是平行四邊形.

  【小結(jié)】

  1.三角形中位線及三角形中位線與三角形中線的區(qū)別.

  2.三角形中位線定理及證明思路.

  七、布置作業(yè)

  教材P188中1(2)、4、7

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

【熱】八年級數(shù)學(xué)教案12-07

八年級的數(shù)學(xué)教案15篇12-14

八年級數(shù)學(xué)教案【推薦】12-04

八年級數(shù)學(xué)教案【薦】12-06

【精】八年級數(shù)學(xué)教案12-04

八年級數(shù)學(xué)教案【精】12-04

【熱門】八年級數(shù)學(xué)教案11-29

【推薦】八年級數(shù)學(xué)教案12-05