四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-12-04 09:17:44 八年級(jí)數(shù)學(xué)教案 我要投稿

【精】八年級(jí)數(shù)學(xué)教案

  作為一位優(yōu)秀的人民教師,總不可避免地需要編寫教案,教案是教學(xué)藍(lán)圖,可以有效提高教學(xué)效率。那么教案應(yīng)該怎么寫才合適呢?以下是小編收集整理的八年級(jí)數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

【精】八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案1

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會(huì)用分式的基本性質(zhì)將分式變形。

  二、重點(diǎn)、難點(diǎn)

  1、重點(diǎn):理解分式的基本性質(zhì)。

  2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認(rèn)知難點(diǎn)與突破方法

  教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號(hào)里作為答案,使分式的值不變。

  2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的'是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡(jiǎn)分式;通分是要正確地確定各個(gè)分母的最簡(jiǎn)公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

  教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯(cuò)誤,使學(xué)生在做提示加深對(duì)相應(yīng)概念及方法的理解。

  3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號(hào)。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號(hào),改變其中任何兩個(gè),分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘-’號(hào)”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

  四、課堂引入

  1、請(qǐng)同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2.填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。

  P11例3.約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡(jiǎn)分式。

  P11例4.通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡(jiǎn)公分母。

八年級(jí)數(shù)學(xué)教案2

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形中相關(guān)元素的概念、按邊分類及三角形的三邊關(guān)系.

  2.內(nèi)容解析

  三角形是一種最基本的幾何圖形,是認(rèn)識(shí)其他圖形的基礎(chǔ),在本章中,學(xué)好了三角形的有關(guān)概念和性質(zhì),為進(jìn)一步學(xué)習(xí)多邊形的相關(guān)內(nèi)容打好基礎(chǔ),本節(jié)主要介紹與三角形的的概念、按邊分類和三角形三邊關(guān)系,使學(xué)生對(duì)三角形的有關(guān)知識(shí)有更為深刻的理解.

  本節(jié)課的教學(xué)重點(diǎn):三角形中的`相關(guān)概念和三角形三邊關(guān)系.

  本節(jié)課的教學(xué)難點(diǎn):三角形的三邊關(guān)系.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)了解三角形中的相關(guān)概念,學(xué)會(huì)用符號(hào)語言表示三角形中的對(duì)應(yīng)元素.

  (2)理解并且靈活應(yīng)用三角形三邊關(guān)系.

  2.教學(xué)目標(biāo)解析

  (1)結(jié)合具體圖形,識(shí)三角形的概念及其基本元素.

  (2)會(huì)用符號(hào)、字母表示三角形中的相關(guān)元素,并會(huì)按邊對(duì)三角形進(jìn)行分類.

  (3)理解三角形兩邊之和大于第三邊這一性質(zhì),并會(huì)運(yùn)用這一性質(zhì)來解決問題.

  三、教學(xué)問題診斷分析

  在探索三角形三邊關(guān)系的過程中,讓學(xué)生經(jīng)歷觀察、探究、推理、交流等活動(dòng)過程,培養(yǎng)學(xué)生的和推理能力和合作學(xué)習(xí)的精神.

  四、教學(xué)過程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問題

  問題回憶生活中的三角形實(shí)例,結(jié)合你以前對(duì)三角形的了解,請(qǐng)你給三角形下一個(gè)定義.

  師生活動(dòng):先讓學(xué)生分組討論,然后各小組派代表發(fā)言,針對(duì)學(xué)生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學(xué)生對(duì)三角形概念的理解.

  【設(shè)計(jì)意圖】三角形概念的獲得,要讓學(xué)生經(jīng)歷其描述的過程,借此培養(yǎng)學(xué)生的語言表述能力,加深學(xué)生對(duì)三角形概念的理解.

  2.抽象概括,形成概念

  動(dòng)態(tài)演示“首尾順次相接”這個(gè)的動(dòng)畫,歸納出三角形的定義.

  師生活動(dòng):

  三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

  【設(shè)計(jì)意圖】讓學(xué)生體會(huì)由抽象到具體的過程,培養(yǎng)學(xué)生的語言表述能力.

  補(bǔ)充說明:要求學(xué)生學(xué)會(huì)三角形、三角形的頂點(diǎn)、邊、角的概念以及幾何表達(dá)方法.

  師生活動(dòng):結(jié)合具體圖形,教師引導(dǎo)學(xué)生分析,讓學(xué)生學(xué)會(huì)由文字語言向幾何語言的過渡.

  【設(shè)計(jì)意圖】進(jìn)一步加深學(xué)生對(duì)三角形中相關(guān)元素的認(rèn)知,并進(jìn)一步熟悉幾何語言在學(xué)習(xí)中的應(yīng)用.

  3.概念辨析,應(yīng)用鞏固

  如圖,不重復(fù),且不遺漏地識(shí)別所有三角形,并用符號(hào)語言表示出來.

  1.以AB為一邊的三角形有哪些?

  2.以∠D為一個(gè)內(nèi)角的三角形有哪些?

  3.以E為一個(gè)頂點(diǎn)的三角形有哪些?

  4.說出ΔBCD的三個(gè)角.

  師生活動(dòng):引導(dǎo)學(xué)生從概念出發(fā)進(jìn)行思考,加深學(xué)生對(duì)三角形中相關(guān)元素概念的理解.

  4.拓廣延伸,探究分類

  我們知道,按照三個(gè)內(nèi)角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關(guān)系對(duì)三角形進(jìn)行分類,又應(yīng)該如何分呢?小組之間同學(xué)進(jìn)行交流并說說你們的想法.

  師生活動(dòng):通過討論,學(xué)生類比按角的分類方法按邊對(duì)三角形進(jìn)行分類,接著引出等腰三角形及等邊三角形的概念,引導(dǎo)學(xué)生了解等腰三角形與等邊三角形的聯(lián)系,強(qiáng)化學(xué)生對(duì)三角形按邊分類的理解.

八年級(jí)數(shù)學(xué)教案3

  八年級(jí)下數(shù)學(xué)教案-變量與函數(shù)(2)

  一、教學(xué)目的

  1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。

  2.使學(xué)生理解求自變量的取值范圍的兩個(gè)依據(jù)。

  3.使學(xué)生掌握關(guān)于解析式為只含有一個(gè)自變量的簡(jiǎn)單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會(huì)求其函數(shù)值。

  4.通過求函數(shù)中自變量的取值范圍使學(xué)生進(jìn)一步理解函數(shù)概念。

  二、教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):函數(shù)自變量取值的求法。

  難點(diǎn):函靈敏處變量取值的確定。

  三、教學(xué)過程

  復(fù)習(xí)提問

  1.函數(shù)的定義是什么?函數(shù)概念包含哪三個(gè)方面的內(nèi)容?

  2.什么叫分式?當(dāng)x取什么數(shù)時(shí),分式x+2/2x+3有意義?

 。ù穑悍帜咐锖凶帜傅挠欣硎浇蟹质,分母≠0,即x≠3/2。)

  3.什么叫二次根式?使二次根式成立的條件是什么?

 。ù穑焊笖(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)

  4.舉出一個(gè)函數(shù)的實(shí)例,并指出式中的變量與常量、自變量與函數(shù)。

  新課

  1.結(jié)合同學(xué)舉出的實(shí)例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。

  2.結(jié)合同學(xué)舉出的實(shí)例,說明函數(shù)的自變量取值范圍有時(shí)要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個(gè)依據(jù)是:

 。1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達(dá)式)有意義。

 。2)自變量取值范圍要使實(shí)際問題有意義。

  3.講解P93中例2。并指出例2四個(gè)小題代表三類題型:(1),(2)題給出的是只含有一個(gè)自變量的整式;(3)題給出的是只含有一個(gè)自變量的分式;(4)題給出的是只含有一個(gè)自變量的二次根式。

  推廣與聯(lián)想:請(qǐng)同學(xué)按上述三類題型自編3個(gè)題,并寫出解答,同桌互對(duì)答案,老師評(píng)講。

  4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點(diǎn):

 。1)例3中的4個(gè)小題歸納起來仍是三類題型。

  (2)求函數(shù)值的問題實(shí)際是求代數(shù)式值的問題。

  補(bǔ)充例題

  求下列函數(shù)當(dāng)x=3時(shí)的函數(shù)值:

 。1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

 。ù穑海1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

  小結(jié)

  1.解析法的`意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。

  2.求函數(shù)自變量取值范圍的兩個(gè)方法(依據(jù)):

 。1)要使函數(shù)的解析式有意義。

  ①函數(shù)的解析式是整式時(shí),自變量可取全體實(shí)數(shù);

 、诤瘮(shù)的解析式是分式時(shí),自變量的取值應(yīng)使分母≠0;

  ③函數(shù)的解析式是二次根式時(shí),自變量的取值應(yīng)使被開方數(shù)≥0。

  (2)對(duì)于反映實(shí)際問題的函數(shù)關(guān)系,應(yīng)使實(shí)際問題有意義。

  3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。

  練習(xí):P94中1,2,3。

  作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。

  四、教學(xué)注意問題

  1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個(gè)小題,對(duì)每一個(gè)例題均可歸納為三類題型。而對(duì)于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。

  2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。

  3.注意培養(yǎng)學(xué)生對(duì)于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對(duì)于有實(shí)際意義來確定,由于實(shí)際問題千差萬別,所以我們就要具體分析,靈活處置。

八年級(jí)數(shù)學(xué)教案4

  知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標(biāo):會(huì)用變化的量描述事物

  情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物

  重點(diǎn):函數(shù)的概念

  難點(diǎn):函數(shù)的概念

  教學(xué)媒體:多媒體電腦,計(jì)算器

  教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍

  教學(xué)設(shè)計(jì):

  引入:

  信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

  ① 這張圖告訴我們哪些信息?

 、 這張圖是怎樣來展示這天各時(shí)刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

  (2)收音機(jī)上的刻度盤的波長(zhǎng)和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對(duì)應(yīng)的數(shù):

 、 這表告訴我們哪些信息?

  ② 這張表是怎樣刻畫波長(zhǎng)和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來嗎?

  一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有惟一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

  (5) 長(zhǎng)方形的'寬一定時(shí),其長(zhǎng)與面積;

  (6) 等腰三角形的底邊長(zhǎng)與面積;

  (7) 某人的年齡與身高;

  活動(dòng)1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數(shù)關(guān)系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時(shí),油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動(dòng)2:練習(xí)教材9頁練習(xí)

  小結(jié):(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁:2,3,4題

八年級(jí)數(shù)學(xué)教案5

  一、學(xué)習(xí)目標(biāo):

  讓學(xué)生了解多項(xiàng)式公因式的意義,初步會(huì)用提公因式法分解因式

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):能觀察出多項(xiàng)式的公因式,并根據(jù)分配律把公因式提出來

  難點(diǎn):讓學(xué)生識(shí)別多項(xiàng)式的公因式.

  三、合作學(xué)習(xí):

  公因式與提公因式法分解因式的概念.

  三個(gè)矩形的長(zhǎng)分別為a、b、c,寬都是m,則這塊場(chǎng)地的`面積為ma+mb+mc,或m(a+b+c)

  既ma+mb+mc = m(a+b+c)

  由上式可知,把多項(xiàng)式ma+mb+mc寫成m與(a+b+c)的乘積的形式,相當(dāng)于把公因式m從各項(xiàng)中提出來,作為多項(xiàng)式ma+mb+mc的一個(gè)因式,把m從多項(xiàng)式ma+mb+mc各項(xiàng)中提出后形成的多項(xiàng)式(a+b+c),作為多項(xiàng)式ma+mb+mc的另一個(gè)因式,這種分解因式的方法叫做提公因式法。

  四、精講精練

  例1、將下列各式分解因式:

  (1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.

  例2把下列各式分解因式:

  (1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.

  (3) a(x-3)+2b(x-3)

  通過剛才的練習(xí),下面大家互相交流,總結(jié)出找公因式的一般步驟.

  首先找各項(xiàng)系數(shù)的____________________,如8和12的公約數(shù)是4.

  其次找各項(xiàng)中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指數(shù)取次數(shù)最___________的

  課堂練習(xí)

  1.寫出下列多項(xiàng)式各項(xiàng)的公因式.

  (1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab

  2.把下列各式分解因式

  (1)8x-72 (2)a2b-5ab

  (3)4m3-6m2 (4)a2b-5ab+9b

  (5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2

  五、小結(jié):

  總結(jié)出找公因式的一般步驟.:

  首先找各項(xiàng)系數(shù)的大公約數(shù),

  其次找各項(xiàng)中含有的相同的字母,相同字母的指數(shù)取次數(shù)最小的

  注意:(a-b)2=(b-a)2

  六、作業(yè)

  1、教科書習(xí)題

  2、已知2x-y=1/3,xy=2,求2x4y3-x3y4 3、(-2)20xx+(-2)20xx

  4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3

八年級(jí)數(shù)學(xué)教案6

  教學(xué)目標(biāo):

  1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會(huì)求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

  2、在加權(quán)平均數(shù)中,知道權(quán)的差異對(duì)平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡(jiǎn)單的現(xiàn)象。

  3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會(huì)它們?cè)诓煌榫持械膽?yīng)用。

  4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

  教學(xué)重點(diǎn):

  體會(huì)平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

  教學(xué)難點(diǎn):

  對(duì)于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

  教學(xué)方法:

  歸納教學(xué)法。

  教學(xué)過程:

  一、知識(shí)回顧與思考

  1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

  一般地對(duì)于n個(gè)數(shù)X1……Xn把(X1+X2+…Xn)叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡(jiǎn)稱平均數(shù)。

  如某公司要招工,測(cè)試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績(jī),滿分都為100分,且這三門課分別按25%、25%、50%的比例計(jì)入總成績(jī),這樣計(jì)算出的成績(jī)?yōu)閿?shù)學(xué),語文、外語成績(jī)的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項(xiàng)測(cè)試成績(jī)的權(quán)。

  中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的.數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

  眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)。

  如3,2,3,5,3,4中3是眾數(shù)。

  2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

  (1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

  (2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。

  (3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡(jiǎn)單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

  (4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡(jiǎn)便,當(dāng)一組數(shù)據(jù)中個(gè)別數(shù)據(jù)變動(dòng)較大時(shí),適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢(shì)”。

  3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

  算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。

  4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。

  利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。

  二、例題講解:

  某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績(jī)分別按40%、20%、40%的比例計(jì)入學(xué)期總評(píng)成績(jī),小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績(jī)依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評(píng)成績(jī)是多少?

  三、課堂練習(xí):

  復(fù)習(xí)題A組

  四、小結(jié):

  1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。

  2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

  五、作業(yè):

  復(fù)習(xí)題B組、C組(選做)

八年級(jí)數(shù)學(xué)教案7

  一、教學(xué)目標(biāo):

  1、理解極差的定義,知道極差是用來反映數(shù)據(jù)波動(dòng)范圍的一個(gè)量.

  2、會(huì)求一組數(shù)據(jù)的極差.

  二、重點(diǎn)、難點(diǎn)和難點(diǎn)的突破方法

  1、重點(diǎn):會(huì)求一組數(shù)據(jù)的極差.

  2、難點(diǎn):本節(jié)課內(nèi)容較容易接受,不存在難點(diǎn).

  三、課堂引入:

  下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對(duì)這兩段時(shí)間的氣溫進(jìn)行比較呢?

  從表中你能得到哪些信息?

  比較兩段時(shí)間氣溫的高低,求平均氣溫是一種常用的方法.

  經(jīng)計(jì)算可以看出,對(duì)于2月下旬的這段時(shí)間而言,20xx年和20xx年上海地區(qū)的平均氣溫相等,都是12度.

  這是不是說,兩個(gè)時(shí)段的氣溫情況沒有什么差異呢?

  根據(jù)兩段時(shí)間的'氣溫情況可繪成的折線圖.

  觀察一下,它們有區(qū)別嗎?說說你觀察得到的結(jié)果.

  用一組數(shù)據(jù)中的最大值減去最小值所得到的差來反映這組數(shù)據(jù)的變化范圍.用這種方法得到的差稱為極差(range).

  四、例習(xí)題分析

  本節(jié)課在教材中沒有相應(yīng)的例題,教材P152習(xí)題分析

  問題1可由極差計(jì)算公式直接得出,由于差值較大,結(jié)合本題背景可以說明該村貧富差距較大.問題2涉及前一個(gè)學(xué)期統(tǒng)計(jì)知識(shí)首先應(yīng)回憶復(fù)習(xí)已學(xué)知識(shí).問題3答案并不唯一,合理即可。

八年級(jí)數(shù)學(xué)教案8

  【教學(xué)目標(biāo)】

  一、教學(xué)知識(shí)點(diǎn)

  1.命題的組成.

  2.命題真假的判斷。

  二、能力訓(xùn)練要求:

  1.使學(xué)生能夠分清命題的條件和結(jié)論,能判斷命題的真假

  2.通過舉例判定一個(gè)命題是假命題,使學(xué)生學(xué)會(huì)反面思考問題的方法

  三、情感與價(jià)值觀要求:

  1.通過反例說明假命題,使學(xué)生認(rèn)識(shí)到任何事情都是正反兩方面對(duì)立統(tǒng)一

  2.幫助學(xué)生了解數(shù)學(xué)發(fā)展史,拓展視野,激發(fā)學(xué)習(xí)興趣

  3.通過對(duì)《原本》介紹,使學(xué)生感受數(shù)學(xué)發(fā)展史和人類文明價(jià)值

  【教學(xué)重點(diǎn)】準(zhǔn)確的找出命題的條件和結(jié)論

  【教學(xué)難點(diǎn)】理解判斷一個(gè)真命題需要證明

  【教學(xué)方】探討、合作交流

  【教具準(zhǔn)備】投影片

  【教學(xué)過程】

  一、情景創(chuàng)設(shè)、引入新課

  師:如果這個(gè)星期不下雨,我們就去郊游,這是命題嗎?分析這句話,這個(gè)周日,我們郊游一定能成行嗎?為什么?

  新課:

 。1)觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同結(jié)構(gòu)特征?與同伴交流。

  1.如果兩個(gè)三角形的三條邊對(duì)應(yīng)相等,那么這兩個(gè)三角形全等。

  2.如果一個(gè)四邊形的一組對(duì)邊平行且相等,那么這個(gè)四邊形是平行四邊形。

  3.如果一個(gè)三角形是等腰三角形,那么這個(gè)三角形的兩個(gè)底角相等。

  4.如果一個(gè)四邊形的對(duì)角線相等,那么這個(gè)四邊形是矩形。

  5.如果一個(gè)四邊形的兩條對(duì)角線相互垂直,那么這個(gè)四邊形是菱形。

  師:由此可見,每個(gè)命題都是由條件和結(jié)論兩部分組成的,條件是已知的事項(xiàng),結(jié)論是由已知事項(xiàng)推出的事項(xiàng)。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結(jié)論。

  二、例題講解:

  例1:師:下列命題的條件是什么?結(jié)論是什么?

  1.如果兩個(gè)角相等,那么他們是對(duì)頂角;

  2.如果a>b,b>c,那么a=c;

  3.兩角和其中一角的對(duì)邊對(duì)應(yīng)相等的兩個(gè)三角形全等;

  4.菱形的四條邊都相等;

  5.全等三角形的面積相等。

  例題教學(xué)建議:1:其中(1)、(2)請(qǐng)學(xué)生直接回答,(3)、(4)、(5)請(qǐng)學(xué)生分成小組交流然后回答。

  2:有的命題的描述沒有用“如果……那么……”的形式,在分析時(shí)可以擴(kuò)展成這種形式,以分清條件和結(jié)論。

  例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

  師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個(gè)命題是假命題,通常可以舉一個(gè)例子,使之具備命題的條件,卻不具備命題的結(jié)論,即反例。

  教學(xué)建議:對(duì)于反例的`要求可以采取啟發(fā)式層層遞進(jìn)方式給出,即:說明命題錯(cuò)誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結(jié)論不吻合→給出如何舉反例要求。

  三、思維拓展:

  拓展1.師:如何證實(shí)一個(gè)命題是真命題呢?請(qǐng)同學(xué)們分小組交流一下。

  教學(xué)建議:不急于解決學(xué)生怎么證實(shí)真命題的問題,可按以下程序設(shè)計(jì)教學(xué)過程

 。1)首先給學(xué)生介紹歐幾里得的《原本》

 。2)引出概念:公理、定理,證明

  (3)啟發(fā)學(xué)生,現(xiàn)在如何證實(shí)一個(gè)命題的正確性

 。4)給出本套教材所選用如下6個(gè)命題作為公理

 。5)等式性質(zhì)、不等式有關(guān)性質(zhì),等量代換也看作定理。

  拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什么?

  建議:在學(xué)生回答后歸納總結(jié):公理是經(jīng)過長(zhǎng)期實(shí)踐驗(yàn)證的,不需要再進(jìn)行推理論證都承認(rèn)的真命題。定理是經(jīng)過推理論證的真命題。

  練習(xí)書p197習(xí)題6.31

  四、問題式總結(jié)

  師:經(jīng)過本節(jié)課我們?cè)谝黄鸸餐接懡涣鳎懔私饬擞嘘P(guān)命題的哪些知識(shí)?

  建議:可對(duì)學(xué)生進(jìn)行提示性引導(dǎo),如:命題的構(gòu)成特點(diǎn)、命題是否都正確、如何判斷一個(gè)命題是假命題、如何證實(shí)一個(gè)命題是真命題。

  作業(yè):書p197習(xí)題6.32、3

  板書設(shè)計(jì):

  定義與命題

  課時(shí)2

  條件

  1.命題的結(jié)構(gòu)特征

  結(jié)論

  1.假命題——可以舉反例

  2.命題真假的判別

  2.真命題——需要證明 學(xué)生活動(dòng)一——

  探索命題的結(jié)構(gòu)特征

  學(xué)生觀察、分組討論,得出結(jié)論:

  (1)這五個(gè)命題都是用“如果……那么……”形式敘述的

 。2)這五個(gè)命題都是由已知得到結(jié)論

  (3)這五個(gè)命題都有條件和結(jié)論

  學(xué)生活動(dòng)二——

  探索命題的條件和結(jié)論

  生:命題1、2如果部分是條件,那么部分是結(jié)論;命題3如果兩個(gè)三角形兩角和其中一角對(duì)邊對(duì)應(yīng)相等是條件,那么這兩個(gè)三角形全等是結(jié)論;命題4如果是菱形是條件,那么四條邊相等是結(jié)論;命題5如果兩三角形全等是條件,那么面積相等是結(jié)論。

  學(xué)生活動(dòng)三

  探索命題的真假——如何判斷假命題

  生:可以舉一個(gè)例子,說明命題1是不正確的,如圖:

  已知:∠AOB,∠1=∠2,∠1,∠2不是對(duì)頂角

  生:命題2,若a=10,b=8,c=5,此時(shí)a>b,b>c,但a≠c

  生:由此說明:命題1、2是不正確的

  生:命題3、4、5是正確的

  學(xué)生活動(dòng)四

  探索命題的真假——如何證實(shí)一個(gè)命題是真命題

  學(xué)生交流:

  生:用我們以前學(xué)過的觀察、實(shí)驗(yàn)、驗(yàn)證特例等方法

  生:這些方法往往并不可靠

  生:能夠根據(jù)已知道的真命題證實(shí)呢?

  生:那已經(jīng)知道的真命題又是如何證實(shí)的?

  生:那可怎么辦呢?

  生:可通過證明的方法

  學(xué)生分小組討論得出結(jié)論

  生:命題的結(jié)構(gòu)特征:條件和結(jié)論

  生:命題有真假之分

  生:可以通過舉反例的方法判斷假命題

  生:可通過證明的方法證實(shí)真命題

八年級(jí)數(shù)學(xué)教案9

  一、教材分析:

  《正方形》這節(jié)課是九年義務(wù)教育人教版數(shù)學(xué)教材八年級(jí)下冊(cè)第十九章第二節(jié)的內(nèi)容?v觀整個(gè)初中教材,《正方形》是在學(xué)生掌握了平行線、三角形、平行四邊形、矩形、菱形等有關(guān)知識(shí)及簡(jiǎn)單圖形的平移和旋轉(zhuǎn)等平面幾何知識(shí),并且具備有初步的觀察、操作等活動(dòng)經(jīng)驗(yàn)的基礎(chǔ)上出現(xiàn)的。既是前面所學(xué)知識(shí)的延續(xù),又是對(duì)平行四邊形、菱形、矩形進(jìn)行綜合的不可缺少的重要環(huán)節(jié)。

  本節(jié)課的重點(diǎn)是正方形的概念和性質(zhì),難點(diǎn)是理解正方形與平行四邊形、矩形、菱形之間的內(nèi)在聯(lián)系。根據(jù)大綱要求,本節(jié)課制定了知識(shí)、能力、情感三方面的目標(biāo)。

  (一)知識(shí)目標(biāo):

  1、要求學(xué)生掌握正方形的概念及性質(zhì);

  2、能正確運(yùn)用正方形的性質(zhì)進(jìn)行簡(jiǎn)單的計(jì)算、推理、論證;

  (二)能力目標(biāo):

  1、通過本節(jié)課培養(yǎng)學(xué)生觀察、動(dòng)手、探究、分析、歸納、總結(jié)等能力;

  2、發(fā)展學(xué)生合情推理意識(shí),主動(dòng)探究的習(xí)慣,逐步掌握說理的基本方法;

  (三)情感目標(biāo):

  1、讓學(xué)生樹立科學(xué)、嚴(yán)謹(jǐn)、理論聯(lián)系實(shí)際的良好學(xué)風(fēng);

  2、培養(yǎng)學(xué)生互相幫助、團(tuán)結(jié)協(xié)作、相互討論的團(tuán)隊(duì)精神;

  3、通過正方形圖形的完美性,培養(yǎng)學(xué)生品格的完美性。

  二、學(xué)生分析:

  該段學(xué)生具有一定的獨(dú)立思考和探究的能力,但語言表達(dá)能力方面稍有欠缺,所以在本節(jié)課的'教學(xué)過程中,特意設(shè)計(jì)了讓學(xué)生自己組織語言培養(yǎng)說理能力,讓學(xué)生們能逐步提高。

  三、教法分析:

  針對(duì)本節(jié)課的特點(diǎn),采用"實(shí)踐--觀察--總結(jié)歸納--運(yùn)用"為主線的教學(xué)方法。

  通過學(xué)生動(dòng)手,采取幾種不同的方法構(gòu)造出正方形,然后引導(dǎo)學(xué)生探究正方形的概念。通過觀察、討論、歸納、總結(jié)出正方形性質(zhì)定理,最后以課堂練習(xí)加以鞏固定理,并通過一道拔高題對(duì)定義、性質(zhì)理解、鞏固加以升華。

  四、學(xué)法分析:

  本節(jié)課重點(diǎn)是從培養(yǎng)學(xué)生探索精神和分析歸納總結(jié)能力為出發(fā)點(diǎn),著重指導(dǎo)學(xué)生動(dòng)手、觀察、思考、分析、總結(jié)得出結(jié)論。在小組討論中通過互相學(xué)習(xí),讓學(xué)生體驗(yàn)合作學(xué)習(xí)的樂趣。

  五、教學(xué)程序:

  第一環(huán)節(jié):相關(guān)知識(shí)回顧

  以提問的形式復(fù)習(xí)的平行四邊形、矩形、菱形的定義及性質(zhì)之后,引導(dǎo)學(xué)生發(fā)現(xiàn)矩形、菱形的實(shí)質(zhì)是由平行四邊形角度、邊長(zhǎng)的變化得到的。并啟發(fā)學(xué)生考慮,若這兩種變化同時(shí)發(fā)生在平行四邊形上,則會(huì)得到什么樣的圖形?讓學(xué)生們通過手上的學(xué)具演示以上兩種變化,從而得出結(jié)論。

  第二環(huán)節(jié):新課講解通過學(xué)生們的發(fā)現(xiàn)引出課題“正方形”

  1、正方形的定義

  引導(dǎo)學(xué)生說出自己變化出正方形的過程,并再次利用課件形象演示出由平行四邊形的邊、角的變化演變出正方形的過程。請(qǐng)同學(xué)們舉手發(fā)言,歸納總結(jié)出正方形定義:一組鄰邊相等,且一個(gè)角是直角的平行四邊形是正方形。再由此定義啟發(fā)學(xué)生們發(fā)現(xiàn)正方形的三個(gè)必要條件,并且由這三個(gè)條件通過重新組合即一組鄰邊相等與平行四邊形組成菱形再加上一個(gè)角是直角可得到正方形的另兩個(gè)定義:一個(gè)角是直角的菱形是正方形;一組鄰邊相等的矩形是正方形。此內(nèi)容借助課件演示其變化過程,進(jìn)一步啟發(fā)學(xué)生發(fā)現(xiàn),正方形既是特殊的菱形,又是特殊的矩形,從而總結(jié)出正方形的性質(zhì)。

  2、正方形的性質(zhì)

  定理1:正方形的四個(gè)角都是直角,四條邊都相等;

  定理2:正方形的兩條對(duì)角線相等,并且互相垂直、平分,每條對(duì)角線平分一組對(duì)角。

  以上是對(duì)正方形定義和性質(zhì)的學(xué)習(xí),之后是進(jìn)行例題講解。

  3、例題講解

  求證:正方形的兩條對(duì)角線把正方形分成四個(gè)全等的等腰直角三角形。此題是文字證明題,由學(xué)生們分組相互探討,共同研究此題的已知、求證部分,然后由小組派代表闡述證明過程,教師板書,在板書的過程中,請(qǐng)其它小組的同學(xué)提出合理化建議,使此題證明過程條理更加清晰,更加符合邏輯,同時(shí)強(qiáng)調(diào)證明格式的書寫。從而培養(yǎng)他們語言表達(dá)能力,讓學(xué)生的個(gè)性得到充分的展示

  4、課堂練習(xí)

  第一部分采用三道有關(guān)正方形的周長(zhǎng)、面積、對(duì)角線、邊長(zhǎng)計(jì)算的填空題,目的是對(duì)正方形性質(zhì)的進(jìn)一步理解,并考察學(xué)生掌握的情況。

  第二部分是選擇題,通過體現(xiàn)生活中實(shí)際問題,來提升學(xué)生所學(xué)的知識(shí),并加以綜合練習(xí),提高他們的綜合素質(zhì),使他們充分認(rèn)識(shí)到數(shù)學(xué)實(shí)質(zhì)是來源于生活并要服務(wù)于生活。

  5、課堂小結(jié)

  此環(huán)節(jié)我是通過圖框的形式小結(jié)正方形和前階段所學(xué)特殊四邊形之間的內(nèi)在聯(lián)系,通過對(duì)所學(xué)幾種四邊形內(nèi)在聯(lián)系體現(xiàn)正方形完美的本質(zhì),渲染學(xué)生們應(yīng)追求象正方形一樣方正的品質(zhì),從而要努力學(xué)習(xí)以豐富的知識(shí)充實(shí)自己,達(dá)到理想中的完美。

  6、作業(yè)設(shè)計(jì)

  作業(yè)是教材159頁,第12、14兩小道證明題,通過此作業(yè)讓同學(xué)們進(jìn)一步鞏固有關(guān)正方形的知識(shí)。

八年級(jí)數(shù)學(xué)教案10

  教學(xué)目標(biāo):

  1. 掌握三角形內(nèi)角和定理及其推論;

  2. 弄清三角形按角的分類, 會(huì)按角的大小對(duì)三角形進(jìn)行分類;

  3.通過對(duì)三角形分類的學(xué)習(xí),使學(xué)生了解數(shù)學(xué)分類的基本思想,并會(huì)用方程思想去解決一些圖形中求角的問題。

  4.通過三角形內(nèi)角和定理的證明,提高學(xué)生的邏輯思維能力,同時(shí)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)

  5. 通過對(duì)定理及推論的分析與討論,發(fā)展學(xué)生的求同和求異的思維能力,培養(yǎng)學(xué)生聯(lián)系與轉(zhuǎn)化的辯證思想。

  教學(xué)重點(diǎn):

  三角形內(nèi)角和定理及其推論。

  教學(xué)難點(diǎn):

  三角形內(nèi)角和定理的證明

  教學(xué)用具:

  直尺、微機(jī)

  教學(xué)方法:

  互動(dòng)式,談話法

  教學(xué)過程:

  1、創(chuàng)設(shè)情境,自然引入

  把問題作為教學(xué)的出發(fā)點(diǎn),創(chuàng)設(shè)問題情境,激發(fā)學(xué)生學(xué)習(xí)興趣和求知欲,為發(fā)現(xiàn)新知識(shí)創(chuàng)造一個(gè)最佳的心理和認(rèn)知環(huán)境。

  問題1 三角形三條邊的關(guān)系我們已經(jīng)明確了,而且利用上述關(guān)系解決了一些幾何問題,那么三角形的三個(gè)內(nèi)角有何關(guān)系呢?

  問題2 你能用幾何推理來論證得到的關(guān)系嗎?

  對(duì)于問題1絕大多數(shù)學(xué)生都能回答出來(小學(xué)學(xué)過的),問題2學(xué)生會(huì)感到困難,因?yàn)檫@個(gè)證明需添加輔助線,這是同學(xué)們第一次接觸的新知識(shí)―――“輔助線 ”。教師可以趁機(jī)告訴學(xué)生這節(jié)課將要學(xué)習(xí)的一個(gè)重要內(nèi)容(板書課題)

  新課引入的好壞在某種程度上關(guān)系到課堂教學(xué)的成敗,本節(jié)課從舊知識(shí)切入,特別是從知識(shí)體系考慮引入,“學(xué)習(xí)了三角形邊的關(guān)系,自然想到三角形角的關(guān)系怎樣呢?”使學(xué)生感覺本節(jié)課學(xué)習(xí)的內(nèi)容自然合理。

  2、設(shè)問質(zhì)疑,探究嘗試

  (1)求證:三角形三個(gè)內(nèi)角的和等于

  讓學(xué)生剪一個(gè)三角形,并把它的三個(gè)內(nèi)角分別剪下來,再拼成一個(gè)平面圖形。這里教師設(shè)計(jì)了電腦動(dòng)畫顯示具體情景。然后,圍繞問題設(shè)計(jì)以下幾個(gè)問題讓學(xué)生思考,教師進(jìn)行學(xué)法指導(dǎo)。

  問題1 觀察:三個(gè)內(nèi)角拼成了一個(gè)

  什么角?問題2 此實(shí)驗(yàn)給我們一個(gè)什么啟示?

  (把三角形的三個(gè)內(nèi)角之和轉(zhuǎn)化為一個(gè)平角)

  問題3 由圖中AB與CD的'關(guān)系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

  其中問題2是解決本題的關(guān)鍵,教師可引導(dǎo)學(xué)生分析。對(duì)于問題3學(xué)生經(jīng)過思考會(huì)畫出此線的。這里教師要重點(diǎn)講解“輔助線”的有關(guān)知識(shí)。比如:為什么要畫這條線?畫這條線有什么作用?要讓學(xué)生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當(dāng)轉(zhuǎn)化條件;恰當(dāng)轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關(guān)系,達(dá)到化難為易解決問題的目的。

  (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學(xué)生回答后,電腦顯示圖表。

  (3)三角形中三個(gè)內(nèi)角之和為定值

  ,那么對(duì)三角形的其它角還有哪些特殊的關(guān)系呢?問題1 直角三角形中,直角與其它兩個(gè)銳角有何關(guān)系?

  問題2 三角形一個(gè)外角與它不相鄰的兩個(gè)內(nèi)角有何關(guān)系?

  問題3 三角形一個(gè)外角與其中的一個(gè)不相鄰內(nèi)角有何關(guān)系?

  其中問題1學(xué)生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學(xué)生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。

  這樣安排的目的有三點(diǎn):第一,理解定理之后的延伸――推論,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。第二,模仿定理的證明書寫格式,加強(qiáng)學(xué)生書寫能力。第三,提高學(xué)生靈活運(yùn)用所學(xué)知識(shí)的能力。

  3、三角形三個(gè)內(nèi)角關(guān)系的定理及推論

  引導(dǎo)學(xué)生分析并嚴(yán)格書寫解題過程

八年級(jí)數(shù)學(xué)教案11

  第三十四學(xué)時(shí):14.2.1平方差公式

  一、學(xué)習(xí)目標(biāo):

  1.經(jīng)歷探索平方差公式的過程。

  2.會(huì)推導(dǎo)平方差公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的運(yùn)算。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):平方差公式的推導(dǎo)和應(yīng)用;

  難點(diǎn):理解平方差公式的結(jié)構(gòu)特征,靈活應(yīng)用平方差公式。

  三、合作學(xué)習(xí)

  你能用簡(jiǎn)便方法計(jì)算下列各題嗎?

  (1)20xx×1999(2)998×1002

  導(dǎo)入新課:計(jì)算下列多項(xiàng)式的`積.

 。1)(x+1)(x—1);

 。2)(m+2)(m—2)

  (3)(2x+1)(2x—1);

 。4)(x+5y)(x—5y)。

  結(jié)論:兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,等于這兩個(gè)數(shù)的平方差。

  即:(a+b)(a—b)=a2—b2

  四、精講精練

  例1:運(yùn)用平方差公式計(jì)算:

 。1)(3x+2)(3x—2);

 。2)(b+2a)(2a—b);

 。3)(—x+2y)(—x—2y)。

  例2:計(jì)算:

 。1)102×98;

  (2)(y+2)(y—2)—(y—1)(y+5)。

  隨堂練習(xí)

  計(jì)算:

  (1)(a+b)(—b+a);

 。2)(—a—b)(a—b);

 。3)(3a+2b)(3a—2b);

 。4)(a5—b2)(a5+b2);

 。5)(a+2b+2c)(a+2b—2c);

  (6)(a—b)(a+b)(a2+b2)。

  五、小結(jié)

 。╝+b)(a—b)=a2—b2

八年級(jí)數(shù)學(xué)教案12

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識(shí)點(diǎn)

  1、等腰三角形的概念、

  2、等腰三角形的性質(zhì)、

  3、等腰三角形的概念及性質(zhì)的應(yīng)用、

  1、經(jīng)歷作(畫)出等腰三角形的過程,從軸對(duì)稱的角度去體會(huì)等腰三角形的特點(diǎn)、

  2、探索并掌握等腰三角形的性質(zhì)、

 。ㄈ┣楦信c價(jià)值觀要求

  通過學(xué)生的操作和思考,使學(xué)生掌握等腰三角形的相關(guān)概念,并在探究等腰三角形性質(zhì)的過程中培養(yǎng)學(xué)生認(rèn)真思考的習(xí)慣、

  教學(xué)重點(diǎn)

  1、等腰三角形的概念及性質(zhì)、

  2、等腰三角形性質(zhì)的應(yīng)用、

  教學(xué)難點(diǎn)

  等腰三角形三線合一的性質(zhì)的理解及其應(yīng)用、

  教學(xué)方法

  探究歸納法、

  教具準(zhǔn)備

  師:多媒體課件、投影儀;

  生:硬紙、剪刀、

  教學(xué)過程

  1、提出問題,創(chuàng)設(shè)情境

  (師)在前面的學(xué)習(xí)中,我們認(rèn)識(shí)了軸對(duì)稱圖形,探究了軸對(duì)稱的性質(zhì),并且能夠作出一個(gè)簡(jiǎn)單平面圖形關(guān)于某一直線的軸對(duì)稱圖形,還能夠通過軸對(duì)稱變換來設(shè)計(jì)一些美麗的圖案、這節(jié)課我們就是從軸對(duì)稱的角度來認(rèn)識(shí)一些我們熟悉的幾何圖形、來研究:

 、偃切问禽S對(duì)稱圖形嗎?

  ②什么樣的三角形是軸對(duì)稱圖形?

  (生)有的三角形是軸對(duì)稱圖形,有的三角形不是。

  (師)那什么樣的三角形是軸對(duì)稱圖形?

 。ㄉM足軸對(duì)稱的條件的三角形就是軸對(duì)稱圖形,也就是將三角形沿某一條直線對(duì)折后兩部分能夠完全重合的就是軸對(duì)稱圖形。

 。◣煟┖芎,我們這節(jié)課就來認(rèn)識(shí)一種成軸對(duì)稱圖形的三角形──等腰三角形。

  2、導(dǎo)入新課

 。◣煟┩瑢W(xué)們通過自己的思考來做一個(gè)等腰三角形。作一條直線L,在L上取點(diǎn)A,在L外取點(diǎn)B,作出點(diǎn)B關(guān)于直線L的對(duì)稱點(diǎn)C,連結(jié)AB、BC、CA,則可得到一個(gè)等腰三角形。

 。ㄉ遥┰诩淄瑢W(xué)的做法中,A點(diǎn)可以取直線L上的任意一點(diǎn)。

 。◣煟⿲(duì),按這種方法我們可以得到一系列的等腰三角形、現(xiàn)在同學(xué)們拿出自己準(zhǔn)備的硬紙和剪刀,按自己設(shè)計(jì)的方法,也可以用課本P138探究中的方法,剪出一個(gè)等腰三角形。

 。◣煟┌凑瘴覀兊淖龇,可以得到等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形、相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角、同學(xué)們?cè)谧约鹤鞒龅牡妊切沃校⒚魉难、底邊、頂角和底角?/p>

 。◣煟┯辛松鲜龈拍,同學(xué)們來想一想。

 。ㄑ菔菊n件)

  1、等腰三角形是軸對(duì)稱圖形嗎?請(qǐng)找出它的對(duì)稱軸。

  2、等腰三角形的兩底角有什么關(guān)系?

  3、頂角的平分線所在的直線是等腰三角形的對(duì)稱軸嗎?

  4、底邊上的中線所在的直線是等腰三角形的對(duì)稱軸嗎?底邊上的高所在的直線呢?

 。ㄉ祝┑妊切问禽S對(duì)稱圖形、它的對(duì)稱軸是頂角的平分線所在的直線、因?yàn)榈妊切蔚膬裳嗟龋园堰@兩條腰重合對(duì)折三角形便知:等腰三角形是軸對(duì)稱圖形,它的對(duì)稱軸是頂角的平分線所在的直線。

  (師)同學(xué)們把自己做的等腰三角形進(jìn)行折疊,找出它的對(duì)稱軸,并看它的兩個(gè)底角有什么關(guān)系。

  (生乙)我把自己做的等腰三角形折疊后,發(fā)現(xiàn)等腰三角形的兩個(gè)底角相等。

 。ㄉ┪野训妊切握郫B,使兩腰重合,這樣頂角平分線兩旁的部分就可以重合,所以可以驗(yàn)證等腰三角形的對(duì)稱軸是頂角的平分線所在的直線。

 。ㄉ。┪野训妊切窝氐走吷系腵中線對(duì)折,可以看到它兩旁的部分互相重合,說明底邊上的中線所在的直線是等腰三角形的對(duì)稱軸。

 。ㄉ欤├蠋煟野l(fā)現(xiàn)底邊上的高所在的直線也是等腰三角形的對(duì)稱軸。

 。◣煟┠銈冋f的是同一條直線嗎?大家來動(dòng)手折疊、觀察。

 。ㄉR聲)它們是同一條直線。

 。◣煟┖芎、現(xiàn)在同學(xué)們來歸納等腰三角形的性質(zhì)。。

 。ㄉ┪已氐妊切蔚捻斀堑钠椒志對(duì)折,發(fā)現(xiàn)它兩旁的部分互相重合,由此可知這個(gè)等腰三角形的兩個(gè)底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高。

 。◣煟┖芎,大家看屏幕。

  (演示課件)

  等腰三角形的性質(zhì):

  1、等腰三角形的兩個(gè)底角相等(簡(jiǎn)寫成“等邊對(duì)等角”)

  2、等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作“三線合一”)、

 。◣煟┯缮厦嬲郫B的過程獲得啟發(fā),我們可以通過作出等腰三角形的對(duì)稱軸,得到兩個(gè)全等的三角形,從而利用三角形的全等來證明這些性質(zhì)、同學(xué)們現(xiàn)在就動(dòng)手來寫出這些證明過程)

 。ㄍ队皟x演示學(xué)生證明過程)

 。ㄉ祝┤缬覉D,在ABC中,AB=AC,作底邊BC的中線AD,因?yàn)?/p>

  所以BAD≌CAD(SSS)、

  所以∠B=∠C、

 。ㄉ遥┤缬覉D,在ABC中,AB=AC,作頂角∠BAC的角平分線AD,因?yàn)?/p>

  所以BAD≌CAD、

  所以BD=CD,∠BDA=∠CDA=∠BDC=90°。

  (師)很好,甲、乙兩同學(xué)給出了等腰三角形兩個(gè)性質(zhì)的證明,過程也寫得很條理、很規(guī)范、下面我們來看大屏幕。

 。ㄑ菔菊n件)

  (例1)如圖,在ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求:ABC各角的度數(shù)、

  (師)同學(xué)們先思考一下,我們?cè)賮矸治鲞@個(gè)題、

 。ㄉ└鶕(jù)等邊對(duì)等角的性質(zhì),我們可以得到

  ∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A。再由三角形內(nèi)角和為180°,就可求出ABC的三個(gè)內(nèi)角。

 。◣煟┻@位同學(xué)分析得很好,對(duì)我們以前學(xué)過的定理也很熟悉、如果我們?cè)诮獾倪^程中把∠A設(shè)為x的話,那么∠ABC、∠C都可以用x來表示,這樣過程就更簡(jiǎn)捷。

 。ㄕn件演示)

 。ɡ┮?yàn)锳B=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC、∠A=∠ABD(等邊對(duì)等角)、

  設(shè)∠A=x,則∠BDC=∠A+∠ABD=2x,從而∠ABC=∠C=∠BDC=2x、

  于是在ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°。

  在ABC中,∠A=35°,∠ABC=∠C=72°、

 。◣煟┫旅嫖覀兺ㄟ^練習(xí)來鞏固這節(jié)課所學(xué)的知識(shí)、

  3、隨堂練習(xí)

 。ㄒ唬┱n本P141練習(xí)1、2、3。

  練習(xí)

  1、如下圖,在下列等腰三角形中,分別求出它們的底角的度數(shù)、

  答案:(1)72°(2)30°

  2、如右圖,ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底邊BC上的高,標(biāo)出∠B、∠C、∠BAD、∠DAC的度數(shù),圖中有哪些相等線段?

  答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC,BD=DC=AD、

  3、如右圖,在ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度數(shù)、

  答:∠B=77°,∠C=38、5°、

 。ǘ╅喿x課本P138~P140,然后小結(jié)、

  4、課時(shí)小結(jié)

  這節(jié)課我們主要探討了等腰三角形的性質(zhì),并對(duì)性質(zhì)作了簡(jiǎn)單的應(yīng)用、等腰三角形是軸對(duì)稱圖形,它的兩個(gè)底角相等(等邊對(duì)等角),等腰三角形的對(duì)稱軸是它頂角的平分線,并且它的頂角平分線既是底邊上的中線,又是底邊上的高、

  我們通過這節(jié)課的學(xué)習(xí),首先就是要理解并掌握這些性質(zhì),并且能夠靈活應(yīng)用它們、

  5、課后作業(yè)

 。ㄒ唬┱n本P147─1、3、4、8題、

 。ǘ1、預(yù)習(xí)課本P141~P143、

  2、預(yù)習(xí)提綱:等腰三角形的判定、

  6、活動(dòng)與探究

  如右圖,在ABC中,過C作∠BAC的平分線AD的垂線,垂足為D,DE∥AB交AC于E、

  求證:AE=CE、

  過程:通過分析、討論,讓學(xué)生進(jìn)一步了解全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì)、

  結(jié)果:

  證明:延長(zhǎng)CD交AB的延長(zhǎng)線于P,如右圖,在ADP和ADC中

  ADP≌ADC、

  ∠P=∠ACD、

  又DE∥AP,

  ∠4=∠P、

  ∠4=∠ACD、

  DE=EC、

  同理可證:AE=DE、

  AE=CE、

  板書設(shè)計(jì)

八年級(jí)數(shù)學(xué)教案13

  一、學(xué)習(xí)目標(biāo)

  1.使學(xué)生了解運(yùn)用公式法分解因式的意義;

  2.使學(xué)生掌握用平方差公式分解因式

  二、重點(diǎn)難點(diǎn)

  重點(diǎn):掌握運(yùn)用平方差公式分解因式。

  難點(diǎn):將單項(xiàng)式化為平方形式,再用平方差公式分解因式。

  學(xué)習(xí)方法:歸納、概括、總結(jié)。

  三、合作學(xué)習(xí)

  創(chuàng)設(shè)問題情境,引入新課

  在前兩學(xué)時(shí)中我們學(xué)習(xí)了因式分解的定義,即把一個(gè)多項(xiàng)式分解成幾個(gè)整式的積的形式,還學(xué)習(xí)了提公因式法分解因式,即在一個(gè)多項(xiàng)式中,若各項(xiàng)都含有相同的因式,即公因式,就可以把這個(gè)公因式提出來,從而將多項(xiàng)式化成幾個(gè)因式乘積的形式。

  如果一個(gè)多項(xiàng)式的各項(xiàng),不具備相同的因式,是否就不能分解因式了呢?當(dāng)然不是,只要我們記住因式分解是多項(xiàng)式乘法的相反過程,就能利用這種關(guān)系找到新的因式分解的方法,本學(xué)時(shí)我們就來學(xué)習(xí)另外的一種因式分解的'方法——公式法。

  1.請(qǐng)看乘法公式

  左邊是整式乘法,右邊是一個(gè)多項(xiàng)式,把這個(gè)等式反過來就是左邊是一個(gè)多項(xiàng)式,右邊是整式的乘積。大家判斷一下,第二個(gè)式子從左邊到右邊是否是因式分解?

  利用平方差公式進(jìn)行的因式分解,第(2)個(gè)等式可以看作是因式分解中的平方差公式。

  a2—b2=(a+b)(a—b)

  2.公式講解

  如x2—16

  =(x)2—42

  =(x+4)(x—4)。

  9m2—4n2

  =(3m)2—(2n)2

  =(3m+2n)(3m—2n)。

  四、精講精練

  例1、把下列各式分解因式:

  (1)25—16x2;(2)9a2—b2。

  例2、把下列各式分解因式:

 。1)9(m+n)2—(m—n)2;(2)2x3—8x。

  補(bǔ)充例題:判斷下列分解因式是否正確。

  (1)(a+b)2—c2=a2+2ab+b2—c2。

 。2)a4—1=(a2)2—1=(a2+1)?(a2—1)。

  五、課堂練習(xí)

  教科書練習(xí)。

  六、作業(yè)

  1、教科書習(xí)題。

  2、分解因式:x4—16x3—4x4x2—(y—z)2。

  3、若x2—y2=30,x—y=—5求x+y。

八年級(jí)數(shù)學(xué)教案14

  課題:一元二次方程實(shí)數(shù)根錯(cuò)例剖析課

  【教學(xué)目的】 精選學(xué)生在解一元二次方程有關(guān)問題時(shí)出現(xiàn)的典型錯(cuò)例加以剖析,幫助學(xué)生找出產(chǎn)生錯(cuò)誤的原因和糾正錯(cuò)誤的方法,使學(xué)生在解題時(shí)少犯錯(cuò)誤,從而培養(yǎng)學(xué)生思維的批判性和深刻性。

  【課前練習(xí)】

  1、關(guān)于x的方程ax2+bx+c=0,當(dāng)a_____時(shí),方程為一元一次方程;當(dāng) a_____時(shí),方程為一元二次方程。

  2、一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=_______,當(dāng)△_______時(shí),方程有兩個(gè)相等的實(shí)數(shù)根,當(dāng)△_______時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根,當(dāng)△________時(shí),方程沒有實(shí)數(shù)根。

  【典型例題】

  例1 下列方程中兩實(shí)數(shù)根之和為2的方程是()

  (A) x2+2x+3=0 (B) x2-2x+3=0 (c) x2-2x-3=0 (D) x2+2x+3=0

  錯(cuò)答: B

  正解: C

  錯(cuò)因剖析:由根與系數(shù)的關(guān)系得x1+x2=2,極易誤選B,又考慮到方程有實(shí)數(shù)根,故由△可知,方程B無實(shí)數(shù)根,方程C合適。

  例2 若關(guān)于x的方程x2+2(k+2)x+k2=0 兩個(gè)實(shí)數(shù)根之和大于-4,則k的取值范圍是( )

  (A) k>-1 (B) k<0 (c) -1< k<0 (D) -1≤k<0

  錯(cuò)解 :B

  正解:D

  錯(cuò)因剖析:漏掉了方程有實(shí)數(shù)根的前提是△≥0

  例3(20xx廣西中考題) 已知關(guān)于x的一元二次方程(1-2k)x2-2 x-1=0有兩個(gè)不相等的實(shí)根,求k的取值范圍。

  錯(cuò)解: 由△=(-2 )2-4(1-2k)(-1) =-4k+8>0得 k<2又∵k+1≥0∴k≥ -1。即 k的取值范圍是 -1≤k<2

  錯(cuò)因剖析:漏掉了二次項(xiàng)系數(shù)1-2k≠0這個(gè)前提。事實(shí)上,當(dāng)1-2k=0即k= 時(shí),原方程變?yōu)橐淮畏匠,不可能有兩個(gè)實(shí)根。

  正解: -1≤k<2且k≠

  例4 (20xx山東太原中考題) 已知x1,x2是關(guān)于x的一元二次方程x2+(2m+1)x+m2+1=0的兩個(gè)實(shí)數(shù)根,當(dāng)x12+x22=15時(shí),求m的值。

  錯(cuò)解:由根與系數(shù)的關(guān)系得

  x1+x2= -(2m+1), x1x2=m2+1,

  ∵x12+x22=(x1+x2)2-2 x1x2

 。絒-(2m+1)]2-2(m2+1)

 。2 m2+4 m-1

  又∵ x12+x22=15

  ∴ 2 m2+4 m-1=15

  ∴ m1 = -4 m2 = 2

  錯(cuò)因剖析:漏掉了一元二次方程有兩個(gè)實(shí)根的前提條件是判別式△≥0。因?yàn)楫?dāng)m = -4時(shí),方程為x2-7x+17=0,此時(shí)△=(-7)2-4×17×1= -19<0,方程無實(shí)數(shù)根,不符合題意。

  正解:m = 2

  例5 若關(guān)于 x的方程(m2-1)x2-2 (m+2)x+1=0有實(shí)數(shù)根,求m的取值范圍。

  錯(cuò)解:△=[-2(m+2)]2-4(m2-1) =16 m+20

  ∵ △≥0

  ∴ 16 m+20≥0,

  ∴ m≥ -5/4

  又 ∵ m2-1≠0,

  ∴ m≠±1

  ∴ m的取值范圍是m≠±1且m≥ -

  錯(cuò)因剖析:此題只說(m2-1)x2-2 (m+2)x+1=0是關(guān)于未知數(shù)x的方程,而未限定方程的次數(shù),所以在解題時(shí)就必須考慮m2-1=0和m2-1≠0兩種情況。當(dāng)m2-1=0時(shí),即m=±1時(shí),方程變?yōu)橐辉淮畏匠蹋杂袑?shí)數(shù)根。

  正解:m的取值范圍是m≥-

  例6 已知二次方程x2+3 x+a=0有整數(shù)根,a是非負(fù)數(shù),求方程的整數(shù)根。

  錯(cuò)解:∵方程有整數(shù)根,

  ∴△=9-4a>0,則a<2.25

  又∵a是非負(fù)數(shù),∴a=1或a=2

  令a=1,則x= -3± ,舍去;令a=2,則x1= -1、 x2= -2

  ∴方程的整數(shù)根是x1= -1, x2= -2

  錯(cuò)因剖析:概念模糊。非負(fù)整數(shù)應(yīng)包括零和正整數(shù)。上面答案僅是一部分,當(dāng)a=0時(shí),還可以求出方程的另兩個(gè)整數(shù)根,x3=0, x4= -3

  正解:方程的整數(shù)根是x1= -1, x2= -2 , x3=0, x4= -3

  【練習(xí)】

  練習(xí)1、(01濟(jì)南中考題)已知關(guān)于x的方程k2x2+(2k-1)x+1=0有兩個(gè)不相等的實(shí)數(shù)根x1、x2。

 。1)求k的取值范圍;

 。2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由。

  解:(1)根據(jù)題意,得△=(2k-1)2-4 k2>0 解得k<

  ∴當(dāng)k< 時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

 。2)存在。

  如果方程的兩實(shí)數(shù)根x1、x2互為相反數(shù),則x1+ x2=- =0,得k= 。經(jīng)檢驗(yàn)k= 是方程- 的解。

  ∴當(dāng)k= 時(shí),方程的兩實(shí)數(shù)根x1、x2互為相反數(shù)。

  讀了上面的解題過程,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確答案。

  解:上面解法錯(cuò)在如下兩個(gè)方面:

  (1)漏掉k≠0,正確答案為:當(dāng)k< 時(shí)且k≠0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根。

 。2)k= 。不滿足△>0,正確答案為:不存在實(shí)數(shù)k,使方程的'兩實(shí)數(shù)根互為相反數(shù)

  練習(xí)2(02廣州市)當(dāng)a取什么值時(shí),關(guān)于未知數(shù)x的方程ax2+4x-1=0只有正實(shí)數(shù)根 ?

  解:(1)當(dāng)a=0時(shí),方程為4x-1=0,∴x=

 。2)當(dāng)a≠0時(shí),∵△=16+4a≥0 ∴a≥ -4

  ∴當(dāng)a≥ -4且a≠0時(shí),方程有實(shí)數(shù)根。

  又因?yàn)榉匠讨挥姓龑?shí)數(shù)根,設(shè)為x1,x2,則:

  x1+x2=- >0 ;

  x1. x2=- >0 解得 :a<0

  綜上所述,當(dāng)a=0、a≥ -4、a<0時(shí),即當(dāng)-4≤a≤0時(shí),原方程只有正實(shí)數(shù)根。

  【小結(jié)】

  以上數(shù)例,說明我們?cè)谇蠼庥嘘P(guān)二次方程的問題時(shí),往往急于尋求結(jié)論而忽視了實(shí)數(shù)根的存在與“△”之間的關(guān)系。

  1、運(yùn)用根的判別式時(shí),若二次項(xiàng)系數(shù)為字母,要注意字母不為零的條件。

  2、運(yùn)用根與系數(shù)關(guān)系時(shí),△≥0是前提條件。

  3、條件多面時(shí)(如例5、例6)考慮要周全。

  【布置作業(yè)】

  1、當(dāng)m為何值時(shí),關(guān)于x的方程x2+2(m-1)x+ m2-9=0有兩個(gè)正根?

  2、已知,關(guān)于x的方程mx2-2(m+2)x+ m+5=0(m≠0)沒有實(shí)數(shù)根。

  求證:關(guān)于x的方程

 。╩-5)x2-2(m+2)x + m=0一定有一個(gè)或兩個(gè)實(shí)數(shù)根。

  考題匯編

  1、(20xx年廣東省中考題)設(shè)x1、 x2是方程x2-5x+3=0的兩個(gè)根,不解方程,利用根與系數(shù)的關(guān)系,求(x1-x2)2的值。

  2、(20xx年廣東省中考題)已知關(guān)于x的方程x2-2x+m-1=0

 。1)若方程的一個(gè)根為1,求m的值。

  (2)m=5時(shí),原方程是否有實(shí)數(shù)根,如果有,求出它的實(shí)數(shù)根;如果沒有,請(qǐng)說明理由。

  3、(20xx年廣東省中考題)已知關(guān)于x的方程x2+2(m-2)x+ m2=0有兩個(gè)實(shí)數(shù)根,且兩根的平方和比兩根的積大33,求m的值。

  4、(20xx年廣東省中考題)已知x1、x2為方程x2+px+q=0的兩個(gè)根,且x1+x2=6,x12+x22=20,求p和q的值。

八年級(jí)數(shù)學(xué)教案15

  學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。

  學(xué)習(xí)難點(diǎn):認(rèn)識(shí)函數(shù),領(lǐng)會(huì)函數(shù)的意義。

  【自主復(fù)習(xí)知識(shí)準(zhǔn)備】

  請(qǐng)你舉出生活中含有兩個(gè)變量的變化過程,說明其中的常量和變量。

  【自主探究知識(shí)應(yīng)用】

  請(qǐng)看書72——74頁內(nèi)容,完成下列問題:

  1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

  2、 完成書上第73頁的思考,體會(huì)圖形中體現(xiàn)的變量和變量之間的關(guān)系。

  3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

  歸納:一般的,在一個(gè)變化過程中,如果有______變量x和y,并且對(duì)于x的_______,y都有_________與其對(duì)應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  補(bǔ)充小結(jié):

  (1)函數(shù)的定義:

  (2)必須是一個(gè)變化過程;

  (3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對(duì)它對(duì)應(yīng)。

  三、鞏固與拓展:

  例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

  (1)寫出表示y與x的函數(shù)關(guān)系式.

  (2)指出自變量x的取值范圍.

  (3) 汽車行駛200千米時(shí),油箱中還有多少汽油?

  【當(dāng)堂檢測(cè)知識(shí)升華】

  1、判斷下列變量之間是不是函數(shù)關(guān)系:

  (1)長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;

  (2)等腰三角形的底邊長(zhǎng)與面積;

  (3)某人的年齡與身高;

  2、寫出下列函數(shù)的解析式.

  (1)一個(gè)長(zhǎng)方體盒子高3cm,底面是正方形,這個(gè)長(zhǎng)方體的體積為y(cm3),底面邊長(zhǎng)為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.

  (2)汽車加油時(shí),加油槍的流量為10L/min.

  ①如果加油前,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;

 、谌绻佑蜁r(shí),油箱是空的,寫出在加油過程中,油箱中的`油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.

  (3)某種活期儲(chǔ)蓄的月利率為0.16%,存入10000元本金,按國(guó)家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲(chǔ)蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

  (4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

  八年級(jí)變量與函數(shù)(2)數(shù)學(xué)教案的全部?jī)?nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對(duì)性的設(shè)置,希望大家喜歡!

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

【薦】八年級(jí)數(shù)學(xué)教案12-03

八年級(jí)數(shù)學(xué)教案【熱門】12-03

八年級(jí)數(shù)學(xué)教案【熱】11-29

八年級(jí)數(shù)學(xué)教案【薦】12-06

【熱】八年級(jí)數(shù)學(xué)教案12-07

【推薦】八年級(jí)數(shù)學(xué)教案12-05

【熱門】八年級(jí)數(shù)學(xué)教案11-29