四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-04-25 23:48:02 八年級(jí)數(shù)學(xué)教案 我要投稿

八年級(jí)數(shù)學(xué)教案范文十篇

  作為一名默默奉獻(xiàn)的教育工作者,很有必要精心設(shè)計(jì)一份教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?以下是小編整理的八年級(jí)數(shù)學(xué)教案10篇,僅供參考,希望能夠幫助到大家。

八年級(jí)數(shù)學(xué)教案范文十篇

八年級(jí)數(shù)學(xué)教案 篇1

  【教學(xué)目標(biāo)】

  1、了解三角形的中位線的概念

  2、了解三角形的中位線的性質(zhì)

  3、探索三角形的中位線的性質(zhì)的一些簡單的應(yīng)用

  【教學(xué)重點(diǎn)、難點(diǎn)】

  重點(diǎn):三角形的中位線定理。

  難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。

  【教學(xué)過程】

 。ㄒ唬﹦(chuàng)設(shè)情景,引入新課

  1、如圖,為了測量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測出DE的長,就可以求出池塘的寬BC,你知道這是為什么嗎?

  2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>

  (1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?

  (2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?

  3、引導(dǎo)學(xué)生概括出中位線的概念。

  問題:(1)三角形有幾條中位線?(2)三角形的中位線與中線有什么區(qū)別?

  啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。

  4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)

  (二)、師生互動(dòng),探究新知

  1、證明你的猜想

  引導(dǎo)學(xué)生寫出已知,求證,并啟發(fā)分析。

 。ㄒ阎酣SABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)

  啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)

  啟發(fā)2:證明線段的倍分的方法有哪些?(截長或補(bǔ)短)

  學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過分析后,師生共同完成推理過程,板書證明過程,強(qiáng)調(diào)有其他證法。

  證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針方向旋轉(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。

  ∴∠ADE=∠F,AD=CF,

  ∴AB∥CF。

  又∵BD=AD=CF,

  ∴四邊形BCFD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形),

  ∴DF∥BC(根據(jù)什么?),

  ∴DE 1/2BC

  2、啟發(fā)學(xué)生歸納定理,并用文字語言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。

 。ㄈ⿲W(xué)以致用、落實(shí)新知

  1、練一練:已知三角形邊長分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長是多少?

  2、想一想:如果⊿ABC的三邊長分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長是多少?

  3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的`中點(diǎn)。

  求證:四邊形EFGH是平行四邊形。

  啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?

  啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?

  證明:如圖,連接AC。

  ∵EF是⊿ABC的中位線,

  ∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。

  同理,HG 1/2AC。

  ∴EF HG。

  ∴四邊形EFGH是平行四邊形(一組對(duì)邊平行并且相等的四邊形是平行四邊形)

  挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。。。你能得出什么結(jié)論?

 。ㄋ模⿲W(xué)生練習(xí),鞏固新知

  1、請(qǐng)回答引例中的問題(1)

  2、如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC, BD的中點(diǎn)。求證:∠PNM=∠PMN

 。ㄎ澹┬〗Y(jié)回顧,反思提高

  今天你學(xué)到了什么?還有什么困惑?

八年級(jí)數(shù)學(xué)教案 篇2

  教學(xué)目標(biāo):完全平方公式的推導(dǎo)及其應(yīng)用;完全平方公式的幾何解釋;視學(xué)生對(duì)算理的理解,有意識(shí)地培養(yǎng)學(xué)生的思維條理性和表達(dá)能力.

  教學(xué)重點(diǎn)與難點(diǎn):完全平方公式的推導(dǎo)過程、結(jié)構(gòu)特點(diǎn)、幾何解釋,靈活應(yīng)用.

  教學(xué)過程:

  一、提出問題,學(xué)生自學(xué)

  問題:根據(jù)乘方的定義,我們知道:a2=aa,那么(a+b)2應(yīng)該寫成什么樣的形式呢?(a+b)2的運(yùn)算結(jié)果有什么規(guī)律?計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?

 。1)(p+1)2=(p+1)(p+1)=_______;(m+2)2=_______;

  (2)(p1)2=(p1)(p1)=_______;(m2)2=_______;

  學(xué)生討論,教師歸納,得出結(jié)果:

  (1)(p+1)2=(p+1)(p+1)=p2+2p+1

  (m+2)2=(m+2)(m+2)=m2+4m+4

  (2)(p1)2=(p1)(p1)=p22p+1

  (m2)2=(m2)(m2)=m24m+4

  分析推廣:結(jié)果中有兩個(gè)數(shù)的平方和,而2p=2p1,4m=2m2,恰好是兩個(gè)數(shù)乘積的二倍(1)(2)之間只差一個(gè)符號(hào).

  推廣:計(jì)算(a+b)2=__________;(ab)2=__________.

  得到公式,分析公式

  結(jié)論:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2

  即:兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的.2倍.

  二、幾何分析

  你能根據(jù)圖(1)和圖(2)的面積說明完全平方公式嗎?

  圖(1)大正方形的邊長為(a+b),面積就是(a+b)2,同時(shí),大正方形可以分成圖中①②③④四個(gè)部分,它們分別的面積為a2、ab、ab、b2,因此,整個(gè)面積為a2+ab+ab+b2=a2+2ab+b2,即說明(a+b)2=a2+2ab+b2. 請(qǐng)點(diǎn)擊下載Word版完整教案:新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案教案《新人教版八年級(jí)數(shù)學(xué)上冊(cè)《完全平方公式》教案》,來自網(wǎng)!

八年級(jí)數(shù)學(xué)教案 篇3

  一、學(xué)習(xí)目標(biāo):

  1、會(huì)推導(dǎo)兩數(shù)差的平方公式,會(huì)用式子表示及用文字語言敘述;

  2、會(huì)運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。

  二、學(xué)習(xí)過程:

  請(qǐng)同學(xué)們快速閱讀課本第27—28頁的內(nèi)容,并完成下面的練習(xí)題:

  (一)探索

  1、計(jì)算: (a - b) =

  方法一: 方法二:

  方法三:

  2、兩數(shù)差的平方用式子表示為_________________________;

  用文字語言敘述為___________________________ 。

  3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?

 。ǘ┈F(xiàn)學(xué)現(xiàn)用

  利用兩數(shù)差的`平方公式計(jì)算:

  1、(3 - a) 2、 (2a -1) 3、(3y-x)

  4、(2x – 4y) 5、( 3a - )

  (三)合作攻關(guān)

  靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:

  1、(999) 2、( a – b – c )

  3、(a + 1) -(a-1)

  (四)達(dá)標(biāo)訓(xùn)練

  1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )

  A、a -2ab + 4b B、a -4b

  C、a +4b D、 a - 4ab +4b

  2、填空:

  (1)9x + + 16y = (4y - 3x )

  (2) ( ) = m - 8m + 16

  2、計(jì)算:

 。 a - b) ( x -2y )

  3、有一邊長為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?

  (四)提升

  1、本節(jié)課你學(xué)到了什么?

  2、已知a – b = 1,a + b = 25,求ab 的值

八年級(jí)數(shù)學(xué)教案 篇4

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

  本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。

  [教學(xué)目標(biāo)]

  一、 知識(shí)與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡單的實(shí)際問題

  3學(xué)會(huì)簡單的合情推理與數(shù)學(xué)說理

  二、 過程與方法

  引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的'應(yīng)用知識(shí)。

  三、 情感與態(tài)度目標(biāo)

  通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

  四、 重點(diǎn)與難點(diǎn)

  1、探索和證明勾股定理

  2熟練運(yùn)用勾股定理

  [教學(xué)過程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

  第二種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為 的正方形“小洞”。

  因?yàn)檫呴L為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

八年級(jí)數(shù)學(xué)教案 篇5

  一、教學(xué)目標(biāo)

  1.理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;

  2.理解根號(hào)的意義,會(huì)用根號(hào)表示一個(gè)數(shù)的平方根和算術(shù)平方根;

  3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;

  4.通過學(xué)習(xí)乘方和開方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對(duì)立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。

  教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。

  三、教學(xué)方法

  講練結(jié)合

  四、教學(xué)手段

  幻燈片

  五、教學(xué)過程

  (一)提問

  1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?

  2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?

  3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?

  這些問題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的.。下面作一個(gè)小練習(xí):填空

  1、()2=9; 2、()2 =0、25;

  3、

  5、()2=0、0081

  學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。

  由練習(xí)引出平方根的概念。

 。ǘ┢椒礁拍

  如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。

  用數(shù)學(xué)語言表達(dá)即為:若x2=a,則x叫做a的平方根。

  由練習(xí)知:±3是9的平方根;

  ±0.5是0。25的平方根;

  0的平方根是0;

  ±0.09是0。0081的平方根。

  由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:

 。 )2=—4

  學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。

 。ㄈ┢椒礁再|(zhì)

  1.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。

  2.0有一個(gè)平方根,它是0本身。

  3.負(fù)數(shù)沒有平方根。

  (四)開平方

  求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方的運(yùn)算。

  由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運(yùn)算與開平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過平方運(yùn)算來求一個(gè)數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對(duì)非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個(gè)。

 。ㄎ澹┢椒礁谋硎痉椒

  一個(gè)正數(shù)a的正的平方根,用符號(hào)“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號(hào)“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號(hào)”, 讀作“二次根號(hào)下a”。根指數(shù)為2時(shí),通常將這個(gè)2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號(hào)a”。

  練習(xí):1.用正確的符號(hào)表示下列各數(shù)的平方根:

 、26 ②247 ③0。2 ④3 ⑤

  解:①26 的平方根是

 、247的平方根是

  ③0。2的平方根是

 、3的平方根是

 、 的平方根是

  由學(xué)生說出上式的讀法。

  例1。下列各數(shù)的平方根:

 。1)81; (2) ; (3) ; (4)0。49

  解:(1)∵(±9)2=81,

  ∴81的平方根為±9。即:

 。2)

  的平方根是 ,即

 。3)

  的平方根是 ,即

 。4)∵(±0。7)2=0。49,

  ∴0。49的平方根為±0。7。

  小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個(gè)正數(shù)的平方根有兩個(gè)。

  六、總結(jié)

  本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識(shí)。

  七、作業(yè)

  教材P。127練習(xí)1、2、3、4。

  八、板書設(shè)計(jì)

  平方根

 。ㄒ唬└拍 (四)表示方法 例1

  (二)性質(zhì)

 。ㄈ╅_平方

  探究活動(dòng)

  求平方根近似值的一種方法

  求一個(gè)正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。

  例1。求 的值。

  解 ∵92102,

  兩邊平方并整理得

  ∵x1為純小數(shù)。

  18x1≈16,解得x1≈0。9,

  便可依次得到精確度

  為0。01,0。001,……的近似值,如:

  兩邊平方,舍去x2得19.8x2≈—1.01

八年級(jí)數(shù)學(xué)教案 篇6

  一、教學(xué)目標(biāo)

 。ㄒ唬、知識(shí)與技能:

  (1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

 。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

 。ǘ⑦^程與方法:

 。1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

 。2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  (3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

 。ㄈ、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):因式分解的概念及提公因式法。

  難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學(xué)過程

  教學(xué)環(huán)節(jié):

  活動(dòng)1:復(fù)習(xí)引入

  看誰算得快:用簡便方法計(jì)算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

  (3)992–1= 。

  設(shè)計(jì)意圖:

  如果說學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的`掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.

  注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

  活動(dòng)2:導(dǎo)入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設(shè)計(jì)意圖:

  引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

  活動(dòng)3:探究新知

  看誰算得準(zhǔn):

  計(jì)算下列式子:

 。1)3x(x-1)= ;

 。2)(a+b+c)= ;

  (3)(+4)(-4)= ;

 。4)(-3)2= ;

  (5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

  (1)a+b+c= ;

 。2)3x2-3x= ;

 。3)2-16= ;

 。4)a3-a= ;

 。5)2-6+9= 。

  在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  活動(dòng)4:歸納、得出新知

  比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級(jí)數(shù)學(xué)教案 篇7

  5 14.3.2.2 等邊三角形(二)

  教學(xué)目標(biāo)

  掌握等邊三角形的性質(zhì)和判定方法.

  培養(yǎng)分析問題、解決問題的能力.

  教學(xué)重點(diǎn)

  等邊三角形的性質(zhì)和判定方法.

  教學(xué)難點(diǎn)

  等邊三角形性質(zhì)的應(yīng)用

  教學(xué)過程

  I創(chuàng)設(shè)情境,提出問題

  回顧上節(jié)課講過的等邊三角形的有關(guān)知識(shí)

  1.等邊三角形是軸對(duì)稱圖形,它有三條對(duì)稱軸.

  2.等邊三角形每一個(gè)角相等,都等于60°

  3.三個(gè)角都相等的`三角形是等邊三角形.

  4.有一個(gè)角是60°的等腰三角形是等邊三角形.

  其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.

  II例題與練習(xí)

  1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?

 、僭谶匒B、AC上分別截取AD=AE.

 、谧鳌螦DE=60°,D、E分別在邊AB、AC上.

 、圻^邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).

  2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.

  分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.

  III課堂小結(jié)

  1、等腰三角形和性質(zhì)

  2、等腰三角形的條件

  V布置作業(yè)

  1.教科書第147頁練習(xí)1、2

  2.選做題:

  (1)教科書第150頁習(xí)題14.3第ll題.

  (2)已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?

 。3)《課堂感悟與探究》

  5

八年級(jí)數(shù)學(xué)教案 篇8

  知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標(biāo):會(huì)用變化的量描述事物

  情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物

  重點(diǎn):函數(shù)的概念

  難點(diǎn):函數(shù)的概念

  教學(xué)媒體:多媒體電腦,計(jì)算器

  教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍

  教學(xué)設(shè)計(jì):

  引入:

  信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

 、 這張圖告訴我們哪些信息?

 、 這張圖是怎樣來展示這天各時(shí)刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

  (2)收音機(jī)上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對(duì)應(yīng)的數(shù):

 、 這表告訴我們哪些信息?

  ② 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來嗎?

  一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的'值,y都有惟一確定的值與其對(duì)應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

  (5) 長方形的寬一定時(shí),其長與面積;

  (6) 等腰三角形的底邊長與面積;

  (7) 某人的年齡與身高;

  活動(dòng)1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數(shù)關(guān)系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時(shí),油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動(dòng)2:練習(xí)教材9頁練習(xí)

  小結(jié):(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁:2,3,4題

八年級(jí)數(shù)學(xué)教案 篇9

  一、教學(xué)目標(biāo):

  1、會(huì)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題

  2、會(huì)用計(jì)算器求加權(quán)平均數(shù)的值

  3、會(huì)運(yùn)用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí)

  二、重點(diǎn)、難點(diǎn):

  1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  三、教學(xué)過程:

  1、復(fù)習(xí)

  組中值的定義:上限與下限之間的中點(diǎn)數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2.

  因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義.

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問題的`表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010.而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù).所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的最大好處是簡化了計(jì)算量.

  為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會(huì)表格的實(shí)際意義.

  2、教材P140探究欄目的意圖

  ①、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法.

  ②、加深了對(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán).

  這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義.

  3、教材P140的思考的意圖.

  ①、使學(xué)生通過思考這兩個(gè)問題過程中體會(huì)利用統(tǒng)計(jì)知識(shí)可以解決生活中的許多實(shí)際問題.

  ②、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力.

  4、利用計(jì)算器計(jì)算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比.一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時(shí)也說明在今后中考趨勢仍是不允許使用計(jì)算器.所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡單.統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了.

  5、運(yùn)用樣本估計(jì)總體

  要使學(xué)生掌握在哪些情況下需要通過用樣本估計(jì)總體的方法來獲得對(duì)總體的認(rèn)識(shí);一是所要考察的對(duì)象很多,二是考察本身帶有破壞性;教材P142例3,這個(gè)例子就屬于考察本身帶有破壞性的情況.

八年級(jí)數(shù)學(xué)教案 篇10

  教學(xué)目標(biāo):

  (1)理解通分的意義,理解最簡公分母的意義;

  (2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。

  教學(xué)重點(diǎn):分式通分的理解和掌握。

  教學(xué)難點(diǎn):分式通分中最簡公分母的確定。

  教學(xué)工具:投影儀

  教學(xué)方法:啟發(fā)式、討論式

  教學(xué)過程:

  (一)引入

  (1)如何計(jì)算:

  由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。

  (2)如何計(jì)算:

  (3)何計(jì)算:

  引導(dǎo)學(xué)生思考,猜想如何求解?

  (二)新課

  1、類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保證

  (1)各分式與原分式相等;

  (2)各分式分母相等。

  2.通分的依據(jù):分式的基本性質(zhì).

  3.通分的關(guān)鍵:確定幾個(gè)分式的最簡公分母.

  通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

  根據(jù)分式通分和最簡公分母的定義,將分式通分:

  最簡公分母為:

  然后根據(jù)分式的基本性質(zhì),分別對(duì)原來的各分式的分子和分母乘一個(gè)適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx

  通過本例使學(xué)生對(duì)于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。

  例1 通分:xxx

  分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的.系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

  解:∵ 最簡公分母是12xy2,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).

  解:∵最簡公分母是10a2b2c2,

  由學(xué)生歸納最簡公分母的思路。

  分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)的數(shù)學(xué)教案15篇12-14

【推薦】八年級(jí)數(shù)學(xué)教案12-05

【薦】八年級(jí)數(shù)學(xué)教案12-03

八年級(jí)數(shù)學(xué)教案【薦】12-06

八年級(jí)數(shù)學(xué)教案【熱門】12-03

八年級(jí)數(shù)學(xué)教案【推薦】12-04

【精】八年級(jí)數(shù)學(xué)教案12-04