有關(guān)八年級數(shù)學(xué)教案模板合集十篇
作為一名教師,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,教案有助于順利而有效地開展教學(xué)活動。教案應(yīng)該怎么寫才好呢?下面是小編收集整理的八年級數(shù)學(xué)教案10篇,僅供參考,希望能夠幫助到大家。
八年級數(shù)學(xué)教案 篇1
一、學(xué)生起點(diǎn)分析
學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?
反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中
可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。
二、學(xué)習(xí)任務(wù)分析
本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理
并利用該定理根據(jù)邊長判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡單的實(shí)際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):
● 知識與技能目標(biāo)
1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;
2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。
● 過程與方法目標(biāo)
1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;
2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。
● 情感與態(tài)度目標(biāo)
1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;
2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的'自信心。
教學(xué)重點(diǎn)
理解勾股定理逆定理的具體內(nèi)容。
三、教法學(xué)法
1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證
本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強(qiáng),思維活躍,對通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)
但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對學(xué)生進(jìn)行引導(dǎo):
(1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;
(2)從學(xué)生活動出發(fā),通過以舊引新,順勢教學(xué)過程;
(3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。
2.課前準(zhǔn)備
教具:教材、電腦、多媒體課件。
學(xué)具:教材、筆記本、課堂練習(xí)本、文具。
四、教學(xué)過程設(shè)計(jì)
本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):
登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):情境引入
內(nèi)容:
情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?
2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?
意圖:
通過情境的創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。
效果:
從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。
第二環(huán)節(jié):合作探究
內(nèi)容1:探究
下面有三組數(shù),分別是一個(gè)三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問題:
1.這三組數(shù)都滿足 嗎?
2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動小組,每個(gè)小組可以任選其中的一組數(shù)。
意圖:
通過學(xué)生的合作探究,得出若一個(gè)三角形的三邊長 ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
效果:
經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。
從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:
如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形
內(nèi)容2:說理
提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說服力的理由嗎?
意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:
如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形
滿足 的三個(gè)正整數(shù),稱為勾股數(shù)。
注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級,還可利用幾何畫板動畫演示,讓同學(xué)有一個(gè)直觀的認(rèn)識。
活動3:反思總結(jié)
提問:
1.同學(xué)們還能找出哪些勾股數(shù)呢?
2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?
3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?
4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?
意圖:進(jìn)一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系
第三環(huán)節(jié):小試牛刀
內(nèi)容:
1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。
、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一個(gè)三角形的三邊長分別是 ,則這個(gè)三角形的面積是( )
A 250 B 150 C 200 D 不能確定
解答:B
3.如圖1:在 中, 于 , ,則 是( )
A 等腰三角形 B 銳角三角形
C 直角三角形 D 鈍角三角形
解答:C
4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)
得到的三角形是( )
A 直角三角形 B 銳角三角形
C 鈍角三角形 D 不能確定
解答:A
意圖:
通過練習(xí),加強(qiáng)對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用
效果
每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識。
第四環(huán)節(jié):登高望遠(yuǎn)
內(nèi)容:
1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?
解答:由題意畫出相應(yīng)的圖形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船轉(zhuǎn)彎后,是沿正西方向航行的。
意圖:
利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。
效果:
學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。
第五環(huán)節(jié):鞏固提高
內(nèi)容:
1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。
解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF
2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?
圖4 圖5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意圖:
第一題考查學(xué)生充分利用所學(xué)知識解決問題時(shí),考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問題。
效果:
學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。
第六環(huán)節(jié):交流小結(jié)
內(nèi)容:
師生相互交流總結(jié)出:
1.今天所學(xué)內(nèi)容①會利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱為勾股數(shù);
2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。
意圖:
鼓勵學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動的意識。
效果:
學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。
第七環(huán)節(jié):布置作業(yè)
課本習(xí)題1.4第1,2,4題。
五、教學(xué)反思:
1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長 ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。
2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動,從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。
3.在利用今天所學(xué)知識解決實(shí)際問題時(shí),引導(dǎo)學(xué)生善于對公式變形,便于簡便計(jì)算。
4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。
5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。
由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。
附:板書設(shè)計(jì)
能得到直角三角形嗎
情景引入 小試牛刀: 登高望遠(yuǎn)
八年級數(shù)學(xué)教案 篇2
11.1 與三角形有關(guān)的線段
11.1.1 三角形的邊
1.理解三角形的概念,認(rèn)識三角形的頂點(diǎn)、邊、角,會數(shù)三角形的個(gè)數(shù).(重點(diǎn))
2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點(diǎn))
3.三角形在實(shí)際生活中的應(yīng)用.(難點(diǎn))
一、情境導(dǎo)入
出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會生活中處處有數(shù)學(xué).
教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.
問:你能不能給三角形下一個(gè)完整的定義?
二、合作探究
探究點(diǎn)一:三角形的概念
圖中的銳角三角形有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
解析:(1)以A為頂點(diǎn)的銳角三角形有△ABC、△ADC共2個(gè);(2)以E為頂點(diǎn)的銳角三角形有△EDC共1個(gè).所以圖中銳角三角形的個(gè)數(shù)有2+1=3(個(gè)).故選B.
方法總結(jié):數(shù)三角形的個(gè)數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個(gè)點(diǎn),那么就有n(n-1)2條線段,也可以與線段外的一點(diǎn)組成n(n-1)2個(gè)三角形.
探究點(diǎn)二:三角形的三邊關(guān)系
【類型一】 判定三條線段能否組成三角形
以下列各組線段為邊,能組成三角形的是( )
A.2c,3c,5c
B.5c,6c,10c
C.1c,1c,3c
D.3c,4c,9c
解析:選項(xiàng)A中2+3=5,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)B中5+6>10,能組成三角形,故此選項(xiàng)正確;選項(xiàng)C中1+1<3,不能組成三角形,故此選項(xiàng)錯(cuò)誤;選項(xiàng)D中3+4<9,不能組成三角形,故此選項(xiàng)錯(cuò)誤.故選B.
方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.
【類型二】 判斷三角形邊的取值范圍
一個(gè)三角形的三邊長分別為4,7,x,那么x的取值范圍是( )
A.3<x<11 B.4<x<7
C.-3<x<11 D.x>3
解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.
方法總結(jié):判斷三角形邊的取值范圍要同時(shí)運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時(shí)還要結(jié)合不等式的知識進(jìn)行解決.
【類型三】 等腰三角形的三邊關(guān)系
已知一個(gè)等腰三角形的兩邊長分別為4和9,求這個(gè)三角形的周長.
解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.
解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.
方法總結(jié):在求三角形的邊長時(shí),要注意利用三角形的三邊關(guān)系驗(yàn)證所求出的邊長能否組成三角形.
【類型四】 三角形三邊關(guān)系與絕對值的綜合
若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.
解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負(fù),然后去絕對值符號進(jìn)行計(jì)算即可.
解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.
方法總結(jié):絕對值的'化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.
三、板書設(shè)計(jì)
三角形的邊
1.三角形的概念:
由不在同一直線上的三條線段首尾順次相接所組成的圖形.
2.三角形的三邊關(guān)系:
兩邊之和大于第三邊,兩邊之差小于第三邊.
本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問題的過程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動手能力.
八年級數(shù)學(xué)教案 篇3
5 14.3.2.2 等邊三角形(二)
教學(xué)目標(biāo)
掌握等邊三角形的性質(zhì)和判定方法.
培養(yǎng)分析問題、解決問題的能力.
教學(xué)重點(diǎn)
等邊三角形的性質(zhì)和判定方法.
教學(xué)難點(diǎn)
等邊三角形性質(zhì)的應(yīng)用
教學(xué)過程
I創(chuàng)設(shè)情境,提出問題
回顧上節(jié)課講過的等邊三角形的有關(guān)知識
1.等邊三角形是軸對稱圖形,它有三條對稱軸.
2.等邊三角形每一個(gè)角相等,都等于60°
3.三個(gè)角都相等的`三角形是等邊三角形.
4.有一個(gè)角是60°的等腰三角形是等邊三角形.
其中1、2是等邊三角形的性質(zhì);3、4的等邊三角形的判斷方法.
II例題與練習(xí)
1.△ABC是等邊三角形,以下三種方法分別得到的△ADE都是等邊三角形嗎,為什么?
、僭谶匒B、AC上分別截取AD=AE.
、谧鳌螦DE=60°,D、E分別在邊AB、AC上.
③過邊AB上D點(diǎn)作DE∥BC,交邊AC于E點(diǎn).
2.已知:如右圖,P、Q是△ABC的邊BC上的兩點(diǎn),,并且PB=PQ=QC=AP=AQ.求∠BAC的大。
分析:由已知顯然可知三角形APQ是等邊三角形,每個(gè)角都是60°.又知△APB與△AQC都是等腰三角形,兩底角相等,由三角形外角性質(zhì)即可推得∠PAB=30°.
III課堂小結(jié)
1、等腰三角形和性質(zhì)
2、等腰三角形的條件
V布置作業(yè)
1.教科書第147頁練習(xí)1、2
2.選做題:
(1)教科書第150頁習(xí)題14.3第ll題.
(2)已知等邊△ABC,求平面內(nèi)一點(diǎn)P,滿足A,B,C,P四點(diǎn)中的任意三點(diǎn)連線都構(gòu)成等腰三角形.這樣的點(diǎn)有多少個(gè)?
。3)《課堂感悟與探究》
5
八年級數(shù)學(xué)教案 篇4
一元二次方程根與系數(shù)的關(guān)系的知識內(nèi)容主要是以前一單元中的求根公式為基礎(chǔ)的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、2= 得出一元二次方程根與系數(shù)的關(guān)系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后是通過4個(gè)例題介紹了利用根與系數(shù)的關(guān)系簡化一些計(jì)算的知識。例如,求方程中的特定系數(shù),求含有方程根的一些代數(shù)式的值等問題,由方程的根確定方程的'系數(shù)的方法等等。
根與系數(shù)的關(guān)系也稱為韋達(dá)定理(韋達(dá)是法國數(shù)學(xué)家)。韋達(dá)定理是初中代數(shù)中的一個(gè)重要定理。這是因?yàn)橥ㄟ^韋達(dá)定理的學(xué)習(xí),把一元二次方程的研究推向了高級階段,運(yùn)用韋達(dá)定理可以進(jìn)一步研究數(shù)學(xué)中的許多問題,如二次三項(xiàng)式的因式分解,解二元二次方程組;韋達(dá)定理對后面函數(shù)的學(xué)習(xí)研究也是作用非凡。
通過近些年的中考數(shù)學(xué)試卷的分析可以得出:韋達(dá)定理及其應(yīng)用是各地市中考數(shù)學(xué)命題的熱點(diǎn)之一。出現(xiàn)的題型有選擇題、填空題和解答題,有的將其與三角函數(shù)、幾何、二次函數(shù)等內(nèi)容綜合起來,形成難度系數(shù)較大的壓軸題。
通過韋達(dá)定理的教學(xué),可以培養(yǎng)學(xué)生的創(chuàng)新意識、創(chuàng)新精神和綜合分析數(shù)學(xué)問題的能力,也為學(xué)生今后學(xué)習(xí)方程理論打下基礎(chǔ)。
(二)重點(diǎn)、難點(diǎn)
一元二次方程根與系數(shù)的關(guān)系是重點(diǎn),讓學(xué)生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關(guān)系,并用語言表述,以及由一個(gè)已知方程求作新方程,使新方程的根與已知的方程的根有某種關(guān)系,比較抽象,學(xué)生真正掌握有一定的難度,是教學(xué)的難點(diǎn)。
(三)教學(xué)目標(biāo)
1、知識目標(biāo):要求學(xué)生在理解的基礎(chǔ)上掌握一元二次方程根與系數(shù)的關(guān)系式,能運(yùn)用根與系數(shù)的關(guān)系由已知一元二次方程的一個(gè)根求出另一個(gè)根與未知數(shù),會求一元二次方程兩個(gè)根的倒數(shù)和與平方數(shù),兩根之差。
八年級數(shù)學(xué)教案 篇5
一、 教學(xué)目標(biāo)
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件.
2.難點(diǎn):能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.
2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的流速為多少?
請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v /h.
輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.
3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍.
[補(bǔ)充提問]如果題目為:當(dāng)字母為何值時(shí),分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?
(1) (2) (3)
[分析] 分式的'值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當(dāng)x取何值時(shí),下列分式有意義?
(1) (2) (3)
3. 當(dāng)x為何值時(shí),分式的值為0?
。1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
。1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).
。2)輪船在靜水中每小時(shí)走a千米,水流的速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).
。3)x與的差于4的商是 .
2.當(dāng)x取何值時(shí),分式 無意義?
3. 當(dāng)x為何值時(shí),分式 的值為0?
八年級數(shù)學(xué)教案 篇6
一、教學(xué)目標(biāo)
1.理解一個(gè)數(shù)平方根和算術(shù)平方根的意義;
2.理解根號的意義,會用根號表示一個(gè)數(shù)的平方根和算術(shù)平方根;
3.通過本節(jié)的訓(xùn)練,提高學(xué)生的邏輯思維能力;
4.通過學(xué)習(xí)乘方和開方運(yùn)算是互為逆運(yùn)算,體驗(yàn)各事物間的對立統(tǒng)一的辯證關(guān)系,激發(fā)學(xué)生探索數(shù)學(xué)奧秘的興趣。
二、教學(xué)重點(diǎn)和難點(diǎn)
教學(xué)重點(diǎn):平方根和算術(shù)平方根的概念及求法。
教學(xué)難點(diǎn):平方根與算術(shù)平方根聯(lián)系與區(qū)別。
三、教學(xué)方法
講練結(jié)合
四、教學(xué)手段
幻燈片
五、教學(xué)過程
。ㄒ唬┨釂
1、已知一正方形面積為50平方米,那么它的邊長應(yīng)為多少?
2、已知一個(gè)數(shù)的平方等于1000,那么這個(gè)數(shù)是多少?
3、一只容積為0。125立方米的正方體容器,它的棱長應(yīng)為多少?
這些問題的共同特點(diǎn)是:已知乘方的結(jié)果,求底數(shù)的值,如何解決這些問題呢?這就是本節(jié)內(nèi)容所要學(xué)習(xí)的。下面作一個(gè)小練習(xí):填空
1、()2=9; 2、()2 =0、25;
3、
5、()2=0、0081
學(xué)生在完成此練習(xí)時(shí),最容易出現(xiàn)的錯(cuò)誤是丟掉負(fù)數(shù)解,在教學(xué)時(shí)應(yīng)注意糾正。
由練習(xí)引出平方根的概念。
。ǘ┢椒礁拍
如果一個(gè)數(shù)的平方等于a,那么這個(gè)數(shù)就叫做a的平方根(二次方根)。
用數(shù)學(xué)語言表達(dá)即為:若x2=a,則x叫做a的平方根。
由練習(xí)知:±3是9的平方根;
±0.5是0。25的平方根;
0的平方根是0;
±0.09是0。0081的平方根。
由此我們看到+3與—3均為9的平方根,0的平方根是0,下面看這樣一道題,填空:
。 )2=—4
學(xué)生思考后,得到結(jié)論此題無答案。反問學(xué)生為什么?因?yàn)檎龜?shù)、0、負(fù)數(shù)的平方為非負(fù)數(shù)。由此我們可以得到結(jié)論,負(fù)數(shù)是沒有平方根的。下面總結(jié)一下平方根的性質(zhì)(可由學(xué)生總結(jié),教師整理)。
。ㄈ┢椒礁再|(zhì)
1.一個(gè)正數(shù)有兩個(gè)平方根,它們互為相反數(shù)。
2.0有一個(gè)平方根,它是0本身。
3.負(fù)數(shù)沒有平方根。
(四)開平方
求一個(gè)數(shù)a的平方根的運(yùn)算,叫做開平方的運(yùn)算。
由練習(xí)我們看到+3與—3的平方是9,9的平方根是+3和—3,可見平方運(yùn)算與開平方運(yùn)算互為逆運(yùn)算。根據(jù)這種關(guān)系,我們可以通過平方運(yùn)算來求一個(gè)數(shù)的平方根。與其他運(yùn)算法則不同之處在于只能對非負(fù)數(shù)進(jìn)行運(yùn)算,而且正數(shù)的運(yùn)算結(jié)果是兩個(gè)。
(五)平方根的表示方法
一個(gè)正數(shù)a的正的平方根,用符號“ ”表示,a叫做被開方數(shù),2叫做根指數(shù),正數(shù)a的負(fù)的平方根用符號“— ”表示,a的平方根合起來記作 ,其中 讀作“二次根號”, 讀作“二次根號下a”。根指數(shù)為2時(shí),通常將這個(gè)2省略不寫,所以正數(shù)a的平方根也可記作“ ”讀作“正、負(fù)根號a”。
練習(xí):1.用正確的符號表示下列各數(shù)的平方根:
、26 ②247 ③0。2 ④3 ⑤
解:①26 的平方根是
、247的.平方根是
、0。2的平方根是
、3的平方根是
、 的平方根是
由學(xué)生說出上式的讀法。
例1。下列各數(shù)的平方根:
。1)81; (2) ; (3) ; (4)0。49
解:(1)∵(±9)2=81,
∴81的平方根為±9。即:
。2)
的平方根是 ,即
。3)
的平方根是 ,即
。4)∵(±0。7)2=0。49,
∴0。49的平方根為±0。7。
小結(jié):讓學(xué)生熟悉平方根的概念,掌握一個(gè)正數(shù)的平方根有兩個(gè)。
六、總結(jié)
本節(jié)課主要學(xué)習(xí)了平方根的概念、性質(zhì),以及表示方法,回去后要仔細(xì)閱讀教科書,鞏固所學(xué)知識。
七、作業(yè)
教材P。127練習(xí)1、2、3、4。
八、板書設(shè)計(jì)
平方根
。ㄒ唬└拍 (四)表示方法 例1
。ǘ┬再|(zhì)
。ㄈ╅_平方
探究活動
求平方根近似值的一種方法
求一個(gè)正數(shù)的平方根的近似值,通常是查表。這里研究一種筆算求法。
例1。求 的值。
解 ∵92102,
兩邊平方并整理得
∵x1為純小數(shù)。
18x1≈16,解得x1≈0。9,
便可依次得到精確度
為0。01,0。001,……的近似值,如:
兩邊平方,舍去x2得19.8x2≈—1.01
八年級數(shù)學(xué)教案 篇7
總課時(shí):7課時(shí) 使用人:
備課時(shí)間:第八周 上課時(shí)間:第十周
第4課時(shí):5、2平面直角坐標(biāo)系(2)
教學(xué)目標(biāo)
知識與技能
1.在給定的直角坐標(biāo)系下,會根據(jù)坐標(biāo)描出點(diǎn)的位置;
2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
過程與方法
1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;
2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識。
情感態(tài)度與價(jià)值觀
通過生動有趣的教學(xué)活動,發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。
教學(xué)過程
第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))
在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的.定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。
練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:
A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)
由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。
第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)
1.請同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。
(-9,3),(-9,0),(-3,0),( -3,3)
( 學(xué)生操作完畢后)
2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。
(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);
(2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);
(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);
(4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。
觀察所得的圖形,你覺得它像什么?
分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?
(出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?
這個(gè)圖形像一棟房子旁邊還有一棵大樹。
3.做一做
(出示投影)
在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。
(學(xué)生描點(diǎn)、畫圖)
(拿出一位做對的學(xué)生的作品投影)
你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?
(像貓臉)
第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)
(補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。
(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);
(2)(0,0),(4,-3),(8,0),(4,3),(0,0);
(3)(2,0)
觀察所得的圖形,你覺得它像什么?(像移動的菱形)
2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。
先獨(dú)立完成,然后小組討論是否正確。
第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)
本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。
在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。
第五環(huán)節(jié) 布置作業(yè)
習(xí)題5、4
A組(優(yōu)等生)1、2、3
B組(中等生)1、2
C組(后三分之一生)1、2
八年級數(shù)學(xué)教案 篇8
數(shù)據(jù)的波動
教學(xué)目標(biāo):
1、經(jīng)歷數(shù)據(jù)離散程度的探索過程
2、了解刻畫數(shù)據(jù)離散程度的三個(gè)量度極差、標(biāo)準(zhǔn)差和方差,能借助計(jì)算器求出相應(yīng)的數(shù)值。
教學(xué)重點(diǎn):會計(jì)算某些數(shù)據(jù)的極差、標(biāo)準(zhǔn)差和方差。
教學(xué)難點(diǎn):理解數(shù)據(jù)離散程度與三個(gè)差之間的關(guān)系。
教學(xué)準(zhǔn)備:計(jì)算器,投影片等
教學(xué)過程:
一、創(chuàng)設(shè)情境
1、投影課本P138引例。
(通過對問題串的解決,使學(xué)生直觀地估計(jì)從甲、乙兩廠抽取的20只雞腿的平均質(zhì)量,同時(shí)讓學(xué)生初步體會平均水平相近時(shí),兩者的離散程度未必相同,從而順理成章地引入刻畫數(shù)據(jù)離散程度的一個(gè)量度極差)
2、極差:是指一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差,極差是用來刻畫數(shù)據(jù)離散程度的一個(gè)統(tǒng)計(jì)量。
二、活動與探究
如果丙廠也參加了競爭,從該廠抽樣調(diào)查了20只雞腿,數(shù)據(jù)如圖(投影課本159頁圖)
問題:1、丙廠這20只雞腿質(zhì)量的平均數(shù)和極差是多少?
2、如何刻畫丙廠這20只雞腿質(zhì)量與其平均數(shù)的差距?分別求出甲、丙兩廠的20只雞腿質(zhì)量與對應(yīng)平均數(shù)的差距。
3、在甲、丙兩廠中,你認(rèn)為哪個(gè)廠雞腿質(zhì)量更符合要求?為什么?
(在上面的情境中,學(xué)生很容易比較甲、乙兩廠被抽取雞腿質(zhì)量的極差,即可得出結(jié)論。這里增加一個(gè)丙廠,其平均質(zhì)量和極差與甲廠相同,此時(shí)導(dǎo)致學(xué)生思想認(rèn)識上的矛盾,為引出另兩個(gè)刻畫數(shù)據(jù)離散程度的量度標(biāo)準(zhǔn)差和方差作鋪墊。
三、講解概念:
方差:各個(gè)數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),記作s2
設(shè)有一組數(shù)據(jù):x1, x2, x3,,xn,其平均數(shù)為
則s2= ,
而s= 稱為該數(shù)據(jù)的標(biāo)準(zhǔn)差(既方差的.算術(shù)平方根)
從上面計(jì)算公式可以看出:一組數(shù)據(jù)的極差,方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定。
四、做一做
你能用計(jì)算器計(jì)算上述甲、丙兩廠分別抽取的20只雞腿質(zhì)量的方差和標(biāo)準(zhǔn)差嗎?你認(rèn)為選哪個(gè)廠的雞腿規(guī)格更好一些?說說你是怎樣算的?
(通過對此問題的解決,使學(xué)生回顧了用計(jì)算器求平均數(shù)的步驟,并自由探索求方差的詳細(xì)步驟)
五、鞏固練習(xí):課本第172頁隨堂練習(xí)
六、課堂小結(jié):
1、怎樣刻畫一組數(shù)據(jù)的離散程度?
2、怎樣求方差和標(biāo)準(zhǔn)差?
七、布置作業(yè):習(xí)題5.5第1、2題。
八年級數(shù)學(xué)教案 篇9
教學(xué)目的
1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。
2. 熟識等邊三角形的性質(zhì)及判定.
2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。
教學(xué)重點(diǎn)
等腰三角形的性質(zhì)及其應(yīng)用。
教學(xué)難點(diǎn)
簡潔的邏輯推理。
教學(xué)過程
一、復(fù)習(xí)鞏固
1.敘述等腰三角形的性質(zhì),它是怎么得到的?
等腰三角形的兩個(gè)底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。
等腰三角形的'頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。
2.若等腰三角形的兩邊長為3和4,則其周長為多少?
二、新課
在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時(shí),三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。
等邊三角形具有什么性質(zhì)呢?
1.請同學(xué)們畫一個(gè)等邊三角形,用量角器量出各個(gè)內(nèi)角的度數(shù),并提出猜想。
2.你能否用已知的知識,通過推理得到你的猜想是正確的?
等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。
3.上面的條件和結(jié)論如何敘述?
等邊三角形的各角都相等,并且每一個(gè)角都等于60。
等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?
等邊三角形也稱為正三角形。
例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。
分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。
問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?
問題2:求1是否還有其它方法?
三、練習(xí)鞏固
1.判斷下列命題,對的打,錯(cuò)的打。
a.等腰三角形的角平分線,中線和高互相重合( )
b.有一個(gè)角是60的等腰三角形,其它兩個(gè)內(nèi)角也為60( )
2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。
四、小結(jié)
由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個(gè)結(jié)論成立,其他兩個(gè)結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個(gè)結(jié)論成立的條件。
五、作業(yè)
1.課本P127─7,9
2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,
EOD的度數(shù)。
(一)課本P127─1、3、4、8題.
八年級數(shù)學(xué)教案 篇10
活動一、創(chuàng)設(shè)情境
引入:首先我們來看幾道練習(xí)題(幻燈片)
。◤(fù)習(xí):平行線及三角形全等的知識)
下面我們一起來欣賞一組圖片(幻燈片)
[學(xué)生活動]觀看后答問題:你看到了哪些圖形?
。ǜ魇礁鳂拥膱D案裝點(diǎn)著我們的生活,使我們這個(gè)世界變得如此美麗,那么,請你用兩個(gè)相同的300的三角板,看能拼出哪些圖案?)
[學(xué)生活動]小組合作交流,拼出圖案的類型。
同學(xué)們所拼的圖形中,除了有我們學(xué)過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)
活動二、合作交流,探求新知
問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)
[學(xué)生活動]認(rèn)真觀察、討論、思考、推理。
鼓勵學(xué)生交流,并是試著用自己的語言概括出平行四邊形的定義。
學(xué)生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。
并說明:平行四邊形不相鄰的兩個(gè)頂點(diǎn)連成的線段叫它的對角線。
平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)
問題(2):由平行四邊形的定義,我們知道平行四邊形的`兩組對邊分別平行,平行四邊形還有什么特征呢?
[學(xué)生活動]動手操作,小組演示交流。鼓勵學(xué)生用多種方法探究。
小結(jié)平行四邊形的性質(zhì):
平行四邊形的對邊相等
平行四邊形的對角相等(這里要弄清對角、對邊兩個(gè)名詞)
你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)
你能證明嗎?(幻燈片出示證明題)
[學(xué)生活動]先分析思路尤其是輔助線,請學(xué)生上黑板證明。
自己完成性質(zhì)2的證明。
活動三、運(yùn)用新知
性質(zhì)掌握了嗎?一起來看一道題目:
嘗試練習(xí)(幻燈片)例1
[學(xué)生活動]作嘗試性解答。
【八年級數(shù)學(xué)教案】相關(guān)文章:
八年級的數(shù)學(xué)教案12-14
八年級數(shù)學(xué)教案06-18
八年級下冊數(shù)學(xué)教案01-01
人教版八年級數(shù)學(xué)教案11-04
初中八年級數(shù)學(xué)教案11-03
【精】八年級數(shù)學(xué)教案12-04
八年級數(shù)學(xué)教案【精】12-04
八年級數(shù)學(xué)教案【薦】12-06