四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

八年級數(shù)學(xué)教案

時間:2022-08-23 10:35:33 八年級數(shù)學(xué)教案 我要投稿

有關(guān)八年級數(shù)學(xué)教案模板集合9篇

  作為一位杰出的老師,往往需要進(jìn)行教案編寫工作,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。優(yōu)秀的教案都具備一些什么特點呢?以下是小編精心整理的八年級數(shù)學(xué)教案9篇,僅供參考,大家一起來看看吧。

有關(guān)八年級數(shù)學(xué)教案模板集合9篇

八年級數(shù)學(xué)教案 篇1

  1.展示生活中一些平行四邊形的實際應(yīng)用圖片(推拉門,活動衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

  2.思考:拿一個活動的平行四邊形教具,輕輕拉動一個點,觀察不管怎么拉,它還是一個平行四邊形嗎?為什么?(動畫演示拉動過程如圖)

  3.再次演示平行四邊形的移動過程,當(dāng)移動到一個角是直角時停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長方形)引出本課題及矩形定義.

  矩形定義:有一個角是直角的平行四邊形叫做矩形(通常也叫長方形).

  矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

  【探究】在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點上(作出對角線),拉動一對不相鄰的頂點,改變平行四邊形的'形狀.

 、匐S著∠α的變化,兩條對角線的長度分別是怎樣變化的?

  ②當(dāng)∠α是直角時,平行四邊形變成矩形,此時它的其他內(nèi)角是什么樣的角?它的兩條對角線的長度有什么關(guān)系?

  操作,思考、交流、歸納后得到矩形的性質(zhì).

  矩形性質(zhì)1 矩形的四個角都是直角.

  矩形性質(zhì)2 矩形的對角線相等.

  如圖,在矩形ABCD中,AC、BD相交于點O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

  例習(xí)題分析

  例1(教材P104例1)已知:如圖,矩形ABCD的兩條對角線相交于點O,∠AOB=60°,AB=4cm,求矩形對角線的長.

  分析:因為矩形是特殊的平行四邊形,所以它具有對角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個特性和已知,可得△OAB是等邊三角形,因此對角線的長度可求.

  解:∵ 四邊形ABCD是矩形,

  ∴ AC與BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等邊三角形.

  ∴矩形的對角線長AC=BD=2OA=2×4=8(cm).

  例2(補充)已知:如圖,矩形ABCD,AB長8cm,對角線比AD邊長4cm.求AD的長及點A到BD的距離AE的長.

  分析:(1)因為矩形四個角都是直角,因此矩形中的計算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計算,這是幾何計算題中常用的方法

八年級數(shù)學(xué)教案 篇2

  教學(xué)目標(biāo):

  1.了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。

  2.了解開方與乘方互為逆運算,會用平方運算求某些非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)重點:

  算術(shù)平方根的概念。

  教學(xué)難點:

  根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。

  教學(xué)過程

  一、情境導(dǎo)入

  請同學(xué)們欣賞本節(jié)導(dǎo)圖,并回答問題,學(xué)校要舉行金秋美術(shù)作品比賽,小歐很高興,他想裁出一塊面積為25 的正方形畫布,畫上自己的得意之作參加比賽,這塊正方形畫布的邊長應(yīng)取多少 ?如果這塊畫布的面積是 ?這個問題實際上是已知一個正數(shù)的平方,求這個正數(shù)的問題?

  這就要用到平方根的概念,也就是本章的主要學(xué)習(xí)內(nèi)容.這節(jié)課我們先學(xué)習(xí)有關(guān)算術(shù)平方根的概念.

  二、導(dǎo)入新課:

  1、提出問題:(書P68頁的問題)

  你是怎樣算出畫框的邊長等于5dm的.呢?(學(xué)生思考并交流解法)

  這個問題相當(dāng)于在等式擴=25中求出正數(shù)x的值.

  一般地,如果一個正數(shù)x的平方等于a,即 =a,那么這個正數(shù)x叫做a的算術(shù)平方根.a的算術(shù)平方根記為 ,讀作根號a,a叫做被開方數(shù).規(guī)定:0的算術(shù)平方根是0.

  也就是,在等式 =a (x0)中,規(guī)定x = .

  2、 試一試:你能根據(jù)等式: =144說出144的算術(shù)平方根是多少嗎?并用等式表示出來.

  3、 想一想:下列式子表示什么意思?你能求出它們的值嗎?

  建議:求值時,要按照算術(shù)平方根的意義,寫出應(yīng)該滿足的關(guān)系式,然后按照算術(shù)平方根的記法寫出對應(yīng)的值.例如 表示25的算術(shù)平方根。

  4、例1 求下列各數(shù)的算術(shù)平方根:

  (1)100;(2)1;(3) ;(4)0.0001

  三、練習(xí)

  P69練習(xí) 1、2

  四、探究:(課本第69頁)

  怎樣用兩個面積為1的小正方形拼成一個面積為2的大正方形?

  方法1:課本中的方法,略;

  方法2:

  可還有其他方法,鼓勵學(xué)生探究。

  問題:這個大正方形的邊長應(yīng)該是多少呢?

  大正方形的邊長是 ,表示2的算術(shù)平方根,它到底是個多大的數(shù)?你能求出它的值嗎?

  建議學(xué)生觀察圖形感受 的大小.小正方形的對角線的長是多少呢?(用刻度尺測量它與大正方形的邊長的大小)它的近似值我們將在下節(jié)課探究.

  五、小結(jié):

  1、這節(jié)課學(xué)習(xí)了什么呢?

  2、算術(shù)平方根的具體意義是怎么樣的?

  3、怎樣求一個正數(shù)的算術(shù)平方根

  六、課外作業(yè):

  P75習(xí)題13.1活動第1、2、3題

八年級數(shù)學(xué)教案 篇3

  教學(xué)目標(biāo):

  1、掌握一次函數(shù)解析式的特點及意義

  2、知道一次函數(shù)與正比例函數(shù)的關(guān)系

  3、理解一次函數(shù)圖象特點與解析式的聯(lián)系規(guī)律

  教學(xué)重點:

  1、 一次函數(shù)解析式特點

  2、 一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律

  教學(xué)難點:

  1、一次函數(shù)與正比例函數(shù)關(guān)系

  2、根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

  教學(xué)過程:

 、瘢岢鰡栴},創(chuàng)設(shè)情境

  問題1 小明暑假第一次去北京.汽車駛上A地的高速公路后,小明觀察里程碑,發(fā)現(xiàn)汽車的平均車速是95千米/小時.已知A地直達(dá)北京的高速公路全程為570千米,小明想知道汽車從A地駛出后,距北京的路程和汽車在高速公路上行駛的時間有什么關(guān)系,以便根據(jù)時間估計自己和北京的距離.

  分析 我們知道汽車距北京的路程隨著行車時間而變化,要想找出這兩個變化著的量的關(guān)系,并據(jù)此得出相應(yīng)的值,顯然,應(yīng)該探求這兩個變量的變化規(guī)律.為此,我們設(shè)汽車在高速公路上行駛時間為t小時,汽車距北京的路程為s千米,根據(jù)題意,s和t的函數(shù)關(guān)系式是

  s=570-95t.

  說明 找出問題中的變量并用字母表示是探求函數(shù)關(guān)系的第一步,這里的s、t是兩個變量,s是t的函數(shù),t是自變量,s是因變量.

  問題2 小張準(zhǔn)備將平時的零用錢節(jié)約一些儲存起來.他已存有50元,從現(xiàn)在起每個月節(jié)存12元.試寫出小張的存款與從現(xiàn)在開始的.月份之間的函數(shù)關(guān)系式.

  分析 我們設(shè)從現(xiàn)在開始的月份數(shù)為x,小張的存款數(shù)為y元,得到所求的函數(shù)關(guān)系式為:y=50+12x.

  問題3 以上問題1和問題2表示的這兩個函數(shù)有什么共同點?

  Ⅱ.導(dǎo)入新課

  上面的兩個函數(shù)關(guān)系式都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時,稱

  y是x的正比例函數(shù)。

  例1:下列函數(shù)中,y是x的一次函數(shù)的是( )

 、賧=x-6;②y=2x;③y=;④y=7-x x8

  A、①②③B、①③④ C、①②③④ D、②③④

  例2 下列函數(shù)關(guān)系中,哪些屬于一次函數(shù),其中哪些又屬于正比例函數(shù)?

  (1)面積為10cm2的三角形的底a(cm)與這邊上的高h(yuǎn)(cm);

  (2)長為8(cm)的平行四邊形的周長L(cm)與寬b(cm);

  (3)食堂原有煤120噸,每天要用去5噸,x天后還剩下煤y噸;

  (4)汽車每小時行40千米,行駛的路程s(千米)和時間t(小時).

 。5)汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;

 。6)圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

 。7)一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米) 分析 確定函數(shù)是否為一次函數(shù)或正比例函數(shù),就是看它們的解析式經(jīng)過整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此題必須先寫出函數(shù)解析式后解答. 解 (1)a?20,不是一次函數(shù). h

  (2)L=2b+16,L是b的一次函數(shù).

  (3)y=150-5x,y是x的一次函數(shù).

  (4)s=40t,s既是t的一次函數(shù)又是正比例函數(shù).

 。5)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

  (6)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

 。7)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)

  例3 已知函數(shù)y=(k-2)x+2k+1,若它是正比例函數(shù),求k的值.若它是一次函數(shù),求k的值.

  分析 根據(jù)一次函數(shù)和正比例函數(shù)的定義,易求得k的值.

  解 若y=(k-2)x+2k+1是正比例函數(shù),則2k+1=0,即k=?

  若y=(k-2)x+2k+1是一次函數(shù),則k-2≠0,即k≠2.

  例4 已知y與x-3成正比例,當(dāng)x=4時,y=3.

  (1)寫出y與x之間的函數(shù)關(guān)系式;

  (2)y與x之間是什么函數(shù)關(guān)系;

  (3)求x=2.5時,y的值.

  解 (1)因為 y與x-3成正比例,所以y=k(x-3).

  又因為x=4時,y=3,所以3= k(4-3),解得k=3,

  所以y=3(x-3)=3x-9.

  (2) y是x的一次函數(shù).

  (3)當(dāng)x=2.5時,y=3×2.5=7.5.

  1. 2

  例5 已知A、B兩地相距30千米,B、C兩地相距48千米.某人騎自行車以每小時12千米的速度從A地出發(fā),經(jīng)過B地到達(dá)C地.設(shè)此人騎行時間為x(時),離B地距離為y(千米).

  (1)當(dāng)此人在A、B兩地之間時,求y與x的函數(shù)關(guān)系及自變量x取值范圍.

  (2)當(dāng)此人在B、C兩地之間時,求y與x的函數(shù)關(guān)系及自變量x的取值范圍.

  分析 (1)當(dāng)此人在A、B兩地之間時,離B地距離y為A、B兩地的距離與某人所走的路程的差.

  (2)當(dāng)此人在B、C兩地之間時,離B地距離y為某人所走的路程與A、B兩地的距離的差.

  解 (1) y=30-12x.(0≤x≤2.5)

  (2) y=12x-30.(2.5≤x≤6.5)

  例6 某油庫有一沒儲油的儲油罐,在開始的8分鐘時間內(nèi),只開進(jìn)油管,不開出油管,油罐的進(jìn)油至24噸后,將進(jìn)油管和出油管同時打開16分鐘,油罐中的油從24噸增至40噸.隨后又關(guān)閉進(jìn)油管,只開出油管,直至將油罐內(nèi)的油放完.假設(shè)在單位時間內(nèi)進(jìn)油管與出油管的流量分別保持不變.寫出這段時間內(nèi)油罐的儲油量y(噸)與進(jìn)出油時間x(分)的函數(shù)式及相應(yīng)的x取值范圍.

  分析 因為在只打開進(jìn)油管的8分鐘內(nèi)、后又打開進(jìn)油管和出油管的16分鐘和最后的只開出油管的三個階級中,儲油罐的儲油量與進(jìn)出油時間的函數(shù)關(guān)系式是不同的,所以此題因分三個時間段來考慮.但在這三個階段中,兩變量之間均為一次函數(shù)關(guān)系.

  解 在第一階段:y=3x(0≤x≤8);

  在第二階段:y=16+x(8≤x≤16);

  在第三階段:y=-2x+88(24≤x≤44).

  Ⅲ.隨堂練習(xí)

  根據(jù)上表寫出y與x之間的關(guān)系式是:________________,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

  2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應(yīng)繳水費y元。(1)寫出每月用水量不

  超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

 、簦n時小結(jié)

  1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

  2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達(dá)式。

 、酰n后作業(yè)

  1、已知y-3與x成正比例,且x=2時,y=7

  (1)寫出y與x之間的函數(shù)關(guān)系.

  (2)y與x之間是什么函數(shù)關(guān)系.

  (3)計算y=-4時x的值.

  2.甲市到乙市的包裹郵資為每千克0.9元,每件另加手續(xù)費0.2元,求總郵資y(元)與包裹重量x(千克)之間的函數(shù)解析式,并計算5千克重的包裹的郵資.

  3.倉庫內(nèi)原有粉筆400盒.如果每個星期領(lǐng)出36盒,求倉庫內(nèi)余下的粉筆盒數(shù)Q與星期數(shù)t之間的函數(shù)關(guān)系.

  4.今年植樹節(jié),同學(xué)們種的樹苗高約1.80米.據(jù)介紹,這種樹苗在10年內(nèi)平均每年長高0.35米.求樹高與年數(shù)之間的函數(shù)關(guān)系式.并算一算4年后同學(xué)們中學(xué)畢業(yè)時這些樹約有多高.

  5.按照我國稅法規(guī)定:個人月收入不超過800元,免交個人所得稅.超過800元不超過1300元部分需繳納5%的個人所得稅.試寫出月收入在800元到1300元之間的人應(yīng)繳納的稅金y(元)和月收入x(元)之間的函數(shù)關(guān)系式.

八年級數(shù)學(xué)教案 篇4

  教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識技能

  一、類比同分母分?jǐn)?shù)的加減,熟練掌握同分母分式的加減運算.

  二、類比異分母分?jǐn)?shù)的加減及通分過程,熟練掌握異分母分式的加減及通分過程與方法.

  數(shù)學(xué)思考

  在分式的加減運算中,體驗知識的化歸聯(lián)系和思維靈活性,培養(yǎng)學(xué)生整體思考的分析問題能力.

  解決問題

  一、會進(jìn)行同分母和異分母分式的加減運算.

  二、會解決與分式的加減有關(guān)的簡單實際問題.

  三、能進(jìn)行分式的加、剪、乘、除、乘方的混合運算.

  情感態(tài)度

  通過師生活動、學(xué)生自我探究,讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,使學(xué)生在整體思考中開闊視野,養(yǎng)成良好品德,滲透化歸對立統(tǒng)一的辯證觀點.

  重點

  分式的加減法.

  難點

  異分母分式的加減法及簡單的分式混合運算.

  教學(xué)流程安排

  活動流程圖

  活動內(nèi)容和目的

  活動1:問題引入

  活動2:學(xué)習(xí)同分母分式的加減

  活動3:探究異分母分式的加減

  活動4:發(fā)現(xiàn)分式加減運算法則

  活動5:鞏固練習(xí)、總結(jié)、作業(yè)

  向?qū)W生提出兩個實際問題,使學(xué)生體會學(xué)習(xí)分式加減的必要性及迫切性,創(chuàng)始問題情境,激發(fā)學(xué)生的學(xué)習(xí)熱情.

  類比同分母分?jǐn)?shù)的加減,讓學(xué)生歸納同分母分式的加減的方法并進(jìn)行簡單運算.

  回憶異分母分?jǐn)?shù)的加減,使學(xué)生歸納異分母分式的加減的方法.

  通過以上探究過程,讓學(xué)生發(fā)現(xiàn)分式加減運算的法則,通過分式在物理學(xué)的應(yīng)用及簡單混合運算,使學(xué)生深化對分式加減運算法則的理解.

  通過練習(xí)、作業(yè)進(jìn)一步鞏固分式的運算.

  課前準(zhǔn)備

  教具

  學(xué)具

  補充材料

  課件

  教學(xué)過程設(shè)計

  問題與情境

  師生行為

  設(shè)計意圖

  [活動1]

  1.問題一:比較電腦與手抄的錄入時間.

  2.問題二;幫幫小明算算時間

  所需時間為,

  如何求出的值?

  3.這里用到了分式的加減,提出本節(jié)課的主題.

  教師通過課件展示問題.學(xué)生積極動腦解決問題,提出困惑:

  分式如何進(jìn)行加減?

  通過實際問題中要用到分式的加減,從而提出問題,讓學(xué)生思考,可以激發(fā)學(xué)生探究的熱情.

 。刍顒樱玻

  1.提出小學(xué)數(shù)學(xué)中一道簡單的分?jǐn)?shù)加法題目.

  2.用課件引導(dǎo)學(xué)生用類比法,歸納總結(jié)同分母分式加法法則.

  3.教師使用課件展示[例1]

  4.教師通過課件出兩個小練習(xí).

  教師提出問題,學(xué)生回答,進(jìn)一步回憶同分母分?jǐn)?shù)加減的運算法則.

  學(xué)生在教師的引導(dǎo)下,探索同分母分式加減的運算方法.

  通過例題,讓學(xué)生和教師一起體會同分母分式加減運算,同時教師指出運算中的.注意事項.

  由兩個學(xué)生板書自主完成練習(xí),教師巡視指導(dǎo)學(xué)生練習(xí).

  運用類比的方法,從學(xué)生熟知的知識入手,有利于學(xué)生接受新知識.

  師生共同完成例題,使學(xué)生感受到自己很棒,自己能夠通過思考學(xué)會新知識,提高自信心.

  讓學(xué)生進(jìn)一步體會同分母分式的加減運算.

  [活動3]

  1.教師以練習(xí)的形式通過“自我發(fā)展的平臺”,向?qū)W生展示這樣一道題.

  2.教師提出思考題:

  異分母的分式加減法要遵守什么法則呢?

  教師展示一道異分母分式的加減題目,學(xué)生自然就想到異分母分?jǐn)?shù)的加減.

  教師通過課件引導(dǎo)學(xué)生思考,學(xué)生會想到小學(xué)數(shù)學(xué)中,異分母分?jǐn)?shù)的加減法則,從而聯(lián)想到異分母分式的加減法則,教師引導(dǎo)學(xué)生歸納出異分母分式加減運算的`方法思路.

  由學(xué)生主動提出解決問題的方法,從而激發(fā)了學(xué)生探究問題的興趣.

  通過學(xué)生的自我探究、歸納總結(jié),讓學(xué)生充分參與到數(shù)學(xué)學(xué)習(xí)的過程中來,體會學(xué)習(xí)的樂趣.

 。刍顒樱矗

 。保谡Z言敘述分式加減法則的基礎(chǔ)上,用字母表示分式的加減法法則.

  2.教師使用課件展示[例2]

  3.教師通過課件出4個小練習(xí).

  4.[例3]在圖的電路中,已測定CAD支路的電阻是R1歐姆,又知CBD支路的電阻R2比R1大50歐姆,根據(jù)電學(xué)的有關(guān)定律可知總電阻R與R1R2滿足關(guān)系式 ;

  試用含有R1的式子表示總電阻R

 。担處熓褂谜n件展示[例4]

  教師提出要求,由學(xué)生說出分式加減法則的字母表示形式.

  通過例題,讓學(xué)生和教師一起體會異分母分式加減運算,同時教師重點演示通分的過程.

  教師引導(dǎo)學(xué)生找出每道題的方法、如何找最簡公分母及時指出學(xué)生在通分中出現(xiàn)的問題,由學(xué)生自己完成.

  教師引導(dǎo)學(xué)生尋找解決問題的突破口,由師生共同完成,對比物理學(xué)中的計算,體會各學(xué)科知識之間的聯(lián)系.

  分式的混合運算,師生共同完成,教師提醒學(xué)生注意運算順序,通分要仔細(xì).

  由此練習(xí)學(xué)生的抽象表達(dá)能力,讓學(xué)生體會數(shù)學(xué)符號語言的精練.

  讓學(xué)生體會運用的公式解決問題的過程.

  鍛煉學(xué)生運用法則解決問題的能力,既準(zhǔn)確又有速度.

  提高學(xué)生的計算能力.

  通過分式在物理學(xué)中的應(yīng)用,加強了學(xué)科之間的聯(lián)系,使學(xué)生開闊了視野,讓學(xué)生體會到學(xué)習(xí)數(shù)學(xué)的重要性,體會各學(xué)科全面發(fā)展的重要性,提高學(xué)習(xí)的興趣.

  提高學(xué)生綜合應(yīng)用知識的能力.

  [活動5]

  1.教師通過課件出2個分式混合運算的小練習(xí).

  2.總結(jié):

  a)這節(jié)課我們學(xué)習(xí)了哪些知識?你能說一說嗎?

  b)⑴方法思路;

  c)⑵計算中的主意事項;

  d)⑶結(jié)果要化簡.

  3.作業(yè):

  a)教科書習(xí)題16.2第4、5、6題.

  學(xué)生練習(xí)、鞏固.

  教師巡視指導(dǎo).

  學(xué)生完成、交流.,師生評價.

  教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,學(xué)生回憶交流,師生共同補充完善.

  教師布置作業(yè).

  鍛煉學(xué)生運用法則進(jìn)行運算的能力,提高準(zhǔn)確性及速度.

  提高學(xué)生歸納總結(jié)的能力.

八年級數(shù)學(xué)教案 篇5

  教學(xué)建議

  1、平行線等分線段定理

  定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

  注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

  定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

  2、平行線等分線段定理的推論

  推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

  推論2:經(jīng)過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

  記憶方法:“中點”+“平行”得“中點”。

  推論的用途:(1)平分已知線段;(2)證明線段的倍分。

  重難點分析

  本節(jié)的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎(chǔ),而且是第五章中“平行線分線段成比例定理”的基礎(chǔ)。

  本節(jié)的難點也是平行線等分線段定理。由于學(xué)生初次接觸到平行線等分線段定理,在認(rèn)識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學(xué)生難免會有應(yīng)接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發(fā)生,教師在教學(xué)中要加以注意。

  教法建議

  平行線等分線段定理的引入

  生活中有許多平行線等分線段定理的例子,并不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

 、購纳顚嵗,如刻度尺、作業(yè)本、柵欄、等等;

 、诳捎脝栴}式引入,開始時設(shè)計一系列與平行線等分線段定理概念相關(guān)的問題由學(xué)生進(jìn)行思考、研究,然后給出平行線等分線段定理和推論。

  教學(xué)設(shè)計示例

  一、教學(xué)目標(biāo)

  1、使學(xué)生掌握平行線等分線段定理及推論。

  2、能夠利用平行線等分線段定理任意等分一條已知線段,進(jìn)一步培養(yǎng)學(xué)生的作圖能力。

  3、通過定理的變式圖形,進(jìn)一步提高學(xué)生分析問題和解決問題的能力。

  4、通過本節(jié)學(xué)習(xí),體會圖形語言和符號語言的和諧美

  二、教法設(shè)計

  學(xué)生觀察發(fā)現(xiàn)、討論研究,教師引導(dǎo)分析

  三、重點、難點

  1、教學(xué)重點:平行線等分線段定理

  2、教學(xué)難點:平行線等分線段定理

  四、課時安排

  l課時

  五、教具學(xué)具

  計算機、投影儀、膠片、常用畫圖工具

  六、師生互動活動設(shè)計

  教師復(fù)習(xí)引入,學(xué)生畫圖探索;師生共同歸納結(jié)論;教師示范作圖,學(xué)生板演練習(xí)

  七、教學(xué)步驟

  【復(fù)習(xí)提問】

  1、什么叫平行線?平行線有什么性質(zhì)。

  2、什么叫平行四邊形?平行四邊形有什么性質(zhì)?

  【引入新課】

  由學(xué)生動手做一實驗:每個同學(xué)拿一張橫格紙,首先觀察橫線之間有什么關(guān)系?(橫線是互相平等的,并且它們之間的距離是相等的),然后在橫格紙上畫一條垂直于橫線的直線 ,看看這條直線被相鄰橫線截成的各線段有什么關(guān)系?(相等,為什么?)這時在橫格紙上再任畫一條與橫線相交的直線 ,測量它被相鄰橫線截得的線段是否也相等?

 。ㄒ龑(dǎo)學(xué)生把做實驗的條件和得到的結(jié)論寫成一個命題,教師總結(jié),由此得到平行線等分線段定理)

  平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

  注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學(xué)生明確。

  下面我們以三條平行線為例來證明這個定理(由學(xué)生口述已知,求證)。

  已知:如圖,直線 , 。

  求證: 。

  分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可應(yīng)用平行線間的平行線段相等得 ),通過全等三角形性質(zhì),即可得到要證的結(jié)論。

 。ㄒ龑(dǎo)學(xué)生找出另一種證法)

  分析2:要證的兩條線段分別是梯形的腰,我們借助于前面常用的輔助線,把梯形轉(zhuǎn)化為平行四邊形和三角形,然后再利用這些熟悉的知識即可證得 。

  證明:過 點作 分別交 、 于點 、 ,得 和 ,如圖。

  ∴

  ∵ ,

  ∴

  又∵ , ,

  ∴

  ∴

  為使學(xué)生對定理加深理解和掌握,把知識學(xué)活,可讓學(xué)生認(rèn)識幾種定理的變式圖形,如圖(用計算機動態(tài)演示)。

  引導(dǎo)學(xué)生觀察下圖,在梯形 中, , ,則可得到 ,由此得出推論 1。

  推論1:經(jīng)過梯形一腰的中點與底平行的直線,必平分另一腰。

  再引導(dǎo)學(xué)生觀察下圖,在 中, , ,則可得到 ,由此得出推論2。

  推論2:經(jīng)過三角形一邊的.中點與另一邊平行的直線必平分第三邊。

  注意:推論1和推論2也都是很重要的定理,在今后的論證和計算中經(jīng)常用到,因此,要求學(xué)生必須掌握好。

  接下來講如何利用平行線等分線段定理來任意等分一條線段。

  例 已知:如圖,線段 。

  求作:線段 的五等分點。

  作法:①作射線 。

 、谠谏渚 上以任意長順次截取 。

 、圻B結(jié) 。

  ④過點 。 、 、 分別作 的平行線 、 、 、 ,分別交 于點 、 、 、 。

  、 、 、 就是所求的五等分點。

  (說明略,由學(xué)生口述即可)

  【總結(jié)、擴展】

  小結(jié):

 。╨)平行線等分線段定理及推論。

 。2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對于多于三條的平行線的情況,也可用同樣方法證明。

 。3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

  (4)應(yīng)用定理任意等分一條線段。

  八、布置作業(yè)

  教材P188中A組2、9

  九、板書設(shè)計

  十、隨堂練習(xí)

  教材P182中1、2

八年級數(shù)學(xué)教案 篇6

  單元(章)主題第三章 直棱柱任課教師與班級

  本課(節(jié))課題3.1 認(rèn)識直棱柱第 1 課時 / 共 課時

  教學(xué)目標(biāo)(含重點、難點)及

  設(shè)置依據(jù)教學(xué)目標(biāo)

  1、了解多面體、直棱柱的有關(guān)概念.

  2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.

  3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.

  教學(xué)重點與難點

  教學(xué)重點:直棱柱的有關(guān)概念.

  教學(xué)難點:本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.

  教學(xué)準(zhǔn)備每個學(xué)生準(zhǔn)備一個幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長方體、立方體模型

  教 學(xué) 過 程

  內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計意圖二度備課(即時反思與糾正)

  一、創(chuàng)設(shè)情景,引入新課

  師:在現(xiàn)實生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

  析:學(xué)生很容易回答出更多的答案。

  師:(繼續(xù)補充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點概念:

  師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的.?都有什么相同特點?

  析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點叫做多面體的頂點

  2.合作交流

  師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

  學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描

  述其特征。)

  師:同學(xué)們再討論一下,能否把自己的語言轉(zhuǎn)化為數(shù)學(xué)語言。

  學(xué)生活動:分小組討論。

  說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

  師:請大家找出與長方體,立方體類似的物體或模型。

  析:舉出實例。(找出區(qū)別)

  師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  長方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側(cè)棱互相平行且相等。

  4.學(xué)以至用

  出示例題。(先請學(xué)生單獨考慮,再作講解)

  析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)

  最后完成例題中的“想一想”

  5.鞏固練習(xí)(學(xué)生練習(xí))

  完成“課內(nèi)練習(xí)”

  三、小結(jié)回顧,反思提高

  師:我們這節(jié)課的重點是什么?哪些地方比較難學(xué)呢?

  合作交流后得到:重點直棱柱的有關(guān)概念。

  直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點比較難。

  板書設(shè)計

  作業(yè)布置或設(shè)計作業(yè)本及課時特訓(xùn)

八年級數(shù)學(xué)教案 篇7

  教學(xué)準(zhǔn)備

  教師準(zhǔn)備:投影儀,教具:課本“探究”內(nèi)容;補充材料制成投影片.

  學(xué)生準(zhǔn)備:復(fù)習(xí)平行四邊形性質(zhì);學(xué)具:課本“探究”內(nèi)容.

  學(xué)法解析

  1.認(rèn)知題后:學(xué)習(xí)了三角形全等、平行四邊形定義、性質(zhì)以后學(xué)習(xí)本節(jié)課內(nèi)容.

  2.知識線索:

  3.學(xué)習(xí)方式:采用動手操作來發(fā)現(xiàn)新的知識,通過交流形成知識體系.

  教學(xué)過程

  一、回顧交流,逆向思索

  教師提問:

  1.平行四邊形定義是什么?如何表示?

  2.平行四邊形性質(zhì)是什么?如何概括?

  學(xué)生活動:思考后舉手回答:

  回答:1.兩組對邊分別平行的四邊形叫做平行四邊形(教師在黑板上畫出下圖:幫助學(xué)生直觀理解)

  回答:2.平行四邊形性質(zhì)從邊考慮:(1)對邊平行,(2)對邊相等,(3)對邊平行且相等(“”);從角考慮:對角相等;從對角線考慮:兩條對角線互相平分.(借助上圖直觀理解).

  教師歸納:(投影顯示)

  平行四邊形【活動方略】

  教師活動:操作投影儀,顯示課本P96和P97“探究”的問題.用問題牽引學(xué)生動手操作、思考、發(fā)現(xiàn)、歸納、論證,可以讓學(xué)生分成4人小組討論,然后再進(jìn)行小組匯報,教師同時也拿出教具同學(xué)在一起探索.

  學(xué)生活動:分四人小組,拿出準(zhǔn)備好的學(xué)具探究.在活動中發(fā)現(xiàn):

  (1)將兩長兩短的.四根細(xì)木條(或用硬紙片),用小釘鉸合在一起,做成四邊形,如果等長的木條成對邊,那么無論如何轉(zhuǎn)動這四邊形,它的形狀都是平行四邊形;

 。2)若將兩根細(xì)木條中點用釘子釘合在一起,用像皮筋連接木條的頂點,做成一個四邊形,轉(zhuǎn)動兩根木條,這個四邊形是平行四邊形.

 。3)將兩條等長的木條平行放置,另外用兩根木條(不一定等長)用釘子予以加固,得到的四邊形一定是平行四邊形。

八年級數(shù)學(xué)教案 篇8

  第一步;理解體驗:

  1、復(fù)習(xí)平均數(shù)、中位數(shù)和眾數(shù)定義

  2、引入課本P146R的例子

  思路點撥:商場統(tǒng)計每位營業(yè)員在某月的銷售額組成一個樣本,從樣本數(shù)據(jù)中的平均數(shù)、中位數(shù)、眾數(shù)中得到信息估計總體的趨勢,達(dá)到問題的解決。

  由例題中(2)問和(3)問的不同,導(dǎo)致結(jié)果的不同,其目的是告訴學(xué)生應(yīng)該根據(jù)題目具體要求來靈活運用三個數(shù)據(jù)代表解決問題。

  本例題也客觀的反映了數(shù)學(xué)知識對生活實踐的指導(dǎo)有重要的意義,也體現(xiàn)了統(tǒng)計知識與生活實踐是緊密聯(lián)系的。

  第二步:總結(jié)提升:

  平均數(shù)、眾數(shù)和中位數(shù)這三個數(shù)據(jù)代表的異同:

  平均數(shù)、中位數(shù)和眾數(shù)都可以作為一組數(shù)據(jù)的'代表,主要描述一組數(shù)據(jù)集中趨勢的量。平均數(shù)是應(yīng)用較多的一種量

  平均數(shù)計算要用到所有的數(shù)據(jù),它能夠充分利用所有的數(shù)據(jù)信息,但它受極端值的影響較大.

  眾數(shù)是當(dāng)一組數(shù)據(jù)中某一數(shù)據(jù)重復(fù)出現(xiàn)較多時,人們往往關(guān)心的一個量,眾數(shù)不受極端值的影響,這是它的一個優(yōu)勢,中位數(shù)的計算很少也不受極端值的影響.

  平均數(shù)的大小與一組數(shù)據(jù)中的每個數(shù)據(jù)均有關(guān)系,任何一個數(shù)據(jù)的變動都會相應(yīng)引起平均數(shù)的變動.

  中位數(shù)僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的移動對中位數(shù)沒有影響,中位數(shù)可能出現(xiàn)在所給數(shù)據(jù)中也可能不在所給的數(shù)據(jù)中,當(dāng)一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)描述其趨勢.

  實際問題中求得的平均數(shù),眾數(shù),中位數(shù)應(yīng)帶上單位.

  第三步:隨堂練習(xí):

  1、在一次環(huán)保知識競賽中,某班50名學(xué)生成績?nèi)缦卤硭荆?/p>

  得分5060708090100110120

  人數(shù)2361415541

  分別求出這些學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù).

  2、公園里有甲、乙兩群游客正在做團體游戲,兩群游客的年齡如下:(單位:歲)

  甲群:13、13、14、15、15、15、16、17、17。

  乙群:3、4、4、5、5、6、6、54、57。

 。1)、甲群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲,其中能較好反映甲群游客年齡特征的是。

  (2)、乙群游客的平均年齡是歲,中位數(shù)是歲,眾數(shù)是歲。其中能較好反映乙群游客年齡特征的是。

  答案:1.眾數(shù)90中位數(shù)85平均數(shù)84.6

  2.(1)15、15、15、眾數(shù)(2).15、5.5、6、中位數(shù)

  第四步:課后練習(xí):

  1、某公司的33名職工的月工資(以元為單位)如下:

  職員董事長副董事長董事總經(jīng)理經(jīng)理管理員職員

  人數(shù)11215320

  工資5500500035003000250020001500

 。1)、求該公司職員月工資的平均數(shù)、中位數(shù)、眾數(shù)?

 。2)、假設(shè)副董事長的工資從5000元提升到20000元,董事長的工資從5500元提升到30000元,那么新的平均數(shù)、中位數(shù)、眾數(shù)又是什么?(精確到元)

 。3)、你認(rèn)為應(yīng)該使用平均數(shù)和中位數(shù)中哪一個來描述該公司職工的工資水平?

  2、某公司有15名員工,它們所在的部門及相應(yīng)每人所創(chuàng)的年利潤如下表示

八年級數(shù)學(xué)教案 篇9

  分式方程

  教學(xué)目標(biāo)

  1.經(jīng)歷分式方程的概念,能將實際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

  2.經(jīng)歷實際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的.應(yīng)用意識。

  3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價值.

  教學(xué)重點:

  將實際問題中的等量 關(guān)系用分式方程表示

  教學(xué)難點:

  找實際問題中的等量關(guān)系

  教學(xué)過程:

  情境導(dǎo)入:

  有兩塊面積相同的小麥試驗田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

  如果設(shè)第一塊試驗田 每公頃的產(chǎn)量為 kg,那么第二塊試驗田每公頃的產(chǎn)量是________kg。

  根據(jù)題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時間 是由普通公路從甲地到乙地所需時間的一半。求該客車由高速公路從 甲地到乙地所需的時間。

  這 一問題中有哪些等量關(guān)系?

  如果設(shè)客車由高速公路從甲地到乙地 所需的時間為 h,那么它由普通公路從甲地到乙地所需的時間為_________h。

  根據(jù)題意,可得方程_ _____________________。

  學(xué)生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點?

  分母中含有未知數(shù)的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習(xí)

  (1)據(jù)聯(lián)合國《20xx年全球投資 報告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個方程?其中哪一個是分式方程?

  (2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時間相同,水流速度為2. 5千米/小時,求輪船的靜水速度

  (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

  六、學(xué) 習(xí)小結(jié)

  本節(jié)課你學(xué)到了哪些知識?有什么感想?

  七.作業(yè)布置

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

八年級數(shù)學(xué)教案【熱門】12-03

【精】八年級數(shù)學(xué)教案12-04

八年級數(shù)學(xué)教案【精】12-04

八年級數(shù)學(xué)教案【薦】12-06

【推薦】八年級數(shù)學(xué)教案12-05

八年級數(shù)學(xué)教案【推薦】12-04

【熱】八年級數(shù)學(xué)教案12-07

八年級下冊數(shù)學(xué)教案01-01