四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-08-23 10:21:07 八年級(jí)數(shù)學(xué)教案 我要投稿

精選八年級(jí)數(shù)學(xué)教案范文5篇

  作為一名無私奉獻(xiàn)的老師,可能需要進(jìn)行教案編寫工作,通過教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整。那么寫教案需要注意哪些問題呢?下面是小編為大家收集的八年級(jí)數(shù)學(xué)教案5篇,歡迎大家分享。

精選八年級(jí)數(shù)學(xué)教案范文5篇

八年級(jí)數(shù)學(xué)教案 篇1

  教學(xué)目標(biāo):

  1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).

  2.掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).

  3.會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).

  教學(xué)重點(diǎn):

  掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).

  難點(diǎn):

  會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).

  情感態(tài)度與價(jià)值觀:

  通過學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐.能利用事物之間的類比性解決問題.

  教學(xué)過程:

  一、課堂引入

  1.回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的乘方:()n = (n是正整數(shù));

  2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1.

  3.你還記得1納米=10?9米,即1納米=米嗎?

  4.計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的`運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

  二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立. 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.

  三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1.

八年級(jí)數(shù)學(xué)教案 篇2

  一、教學(xué)目標(biāo)

 。ㄒ唬⒅R(shí)與技能:

 。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

 。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

  (二)、過程與方法:

 。1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

 。2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  (3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

 。ㄈ、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):因式分解的概念及提公因式法。

  難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學(xué)過程

  教學(xué)環(huán)節(jié):

  活動(dòng)1:復(fù)習(xí)引入

  看誰算得快:用簡(jiǎn)便方法計(jì)算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設(shè)計(jì)意圖:

  如果說學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.

  注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

  活動(dòng)2:導(dǎo)入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設(shè)計(jì)意圖:

  引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

  活動(dòng)3:探究新知

  看誰算得準(zhǔn):

  計(jì)算下列式子:

 。1)3x(x-1)= ;

 。2)(a+b+c)= ;

 。3)(+4)(-4)= ;

 。4)(-3)2= ;

 。5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

  (1)a+b+c= ;

  (2)3x2-3x= ;

 。3)2-16= ;

 。4)a3-a= ;

 。5)2-6+9= 。

  在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的`觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  活動(dòng)4:歸納、得出新知

  比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級(jí)數(shù)學(xué)教案 篇3

  一、創(chuàng)設(shè)情境

  1.一次函數(shù)的圖象是什么,如何簡(jiǎn)便地畫出一次函數(shù)的圖象?

  (一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時(shí),取兩點(diǎn)即可畫出函數(shù)的圖象).

  2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點(diǎn)的直線?

  (正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過原點(diǎn)(0,0)的一條直線).

  3.平面直角坐標(biāo)系中,x軸、y軸上的.點(diǎn)的坐標(biāo)有什么特征?

  4.在平面直角坐標(biāo)系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時(shí),所選取的兩個(gè)點(diǎn)有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個(gè)點(diǎn)在坐標(biāo)系的什么地方?

  二、探究歸納

  1.在畫函數(shù)的圖象時(shí),通過列表,可知我們選取的點(diǎn)是(0,-1)和(2,0),這兩點(diǎn)都在坐標(biāo)軸上,其中點(diǎn)(0,-1)在y軸上,點(diǎn)(2,0)在x軸上,我們把這兩個(gè)點(diǎn)依次叫做直線與y軸與x軸的交點(diǎn).

  2.求直線y=-2x-3與x軸和y軸的交點(diǎn),并畫出這條直線.

  分析x軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0.由此可求x軸上點(diǎn)的橫坐標(biāo)值和y軸上點(diǎn)的縱坐標(biāo)值.

  解因?yàn)閤軸上點(diǎn)的縱坐標(biāo)是0,y軸上點(diǎn)的橫坐標(biāo)0,所以當(dāng)y=0時(shí),x=-1.5,點(diǎn)(-1.5,0)就是直線與x軸的交點(diǎn);當(dāng)x=0時(shí),y=-3,點(diǎn)(0,-3)就是直線與y軸的交點(diǎn).

  過點(diǎn)(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.

  所以一次函數(shù)y=kx+b,當(dāng)x=0時(shí),y=b;當(dāng)y=0時(shí),.所以直線y=kx+b與y軸的交點(diǎn)坐標(biāo)是(0,b),與x軸的交點(diǎn)坐標(biāo)是.

  三、實(shí)踐應(yīng)用

  例1若直線y=-kx+b與直線y=-x平行,且與y軸交點(diǎn)的縱坐標(biāo)為-2;求直線的表達(dá)式.

  分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點(diǎn)的縱坐標(biāo)為-2,可求出b的值.

  解因?yàn)橹本y=-kx+b與直線y=-x平行,所以k=-1,又因?yàn)橹本與y軸交點(diǎn)的縱坐標(biāo)為-2,所以b=-2,因此所求的直線的表達(dá)式為y=-x-2.

  例2求函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo),并求這條直線與兩坐標(biāo)軸圍成的三角形的面積.

  分析求直線與x軸、y軸的交點(diǎn)坐標(biāo),根據(jù)x軸、y軸上點(diǎn)的縱坐標(biāo)和橫坐標(biāo)分別為0,可求出相應(yīng)的橫坐標(biāo)和縱坐標(biāo)?

八年級(jí)數(shù)學(xué)教案 篇4

  一、知識(shí)與技能

  1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā)、討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)、函數(shù)概念的理解.

  2.經(jīng)歷抽象反比例函數(shù)概念的過程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.

  二、過程與方法

  1、經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).

  2、經(jīng)歷抽象反比例函數(shù)概念的過程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí).

  三、情感態(tài)度與價(jià)值觀

  1、經(jīng)歷抽象反比例函數(shù)概念的過程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.

  2、通過分組討論,培養(yǎng)學(xué)生合作交流意識(shí)和探索精神.

  教學(xué)重點(diǎn):理解和領(lǐng)會(huì)反比例函數(shù)的概念.

  教學(xué)難點(diǎn):領(lǐng)悟反比例的概念.

  教學(xué)過程

  一、創(chuàng)設(shè)情境,導(dǎo)入新課

  活動(dòng)1

  問題:下列問題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?

  (1)京滬線鐵路全程為1463km,乘坐某次列車所用時(shí)間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;

  (2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;

  (3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.

  師生行為:

  先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問答或交流.學(xué)生用自己的語言說明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.

  教師組織學(xué)生討論,提問學(xué)生,師生互動(dòng).

  在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:

 、倌芊穹e極主動(dòng)地合作交流.

 、谀芊裼谜Z言說明兩個(gè)變量間的關(guān)系.

  ③能否了解所討論的函數(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.

  分析及解答:(1)

  ;(2)

  ;(3)

  其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);

  上面的函數(shù)關(guān)系式,都具有

  的形式,其中k是常數(shù).

  二、聯(lián)系生活,豐富聯(lián)想

  活動(dòng)2

  下列問題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?

 。1)一個(gè)游泳池的容積為20xxm3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;

 。2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;

 。3)一個(gè)物體重100牛頓,物體對(duì)地面的.壓力p隨物體與地面的接觸面積S的變化而變化.

  師生行為

  學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.

  教師操作課件,提出問題,關(guān)注學(xué)生思考的過程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:

  (1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;

  (2)能否積極主動(dòng)地參與小組活動(dòng);

  (3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念.

  分析及解答:(1)

  ;(2)

 ;(3)

  概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成

  的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.

  活動(dòng)3

  做一做:

  一個(gè)矩形的面積為20cm2, 相鄰的兩條邊長(zhǎng)為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?

  師生行為:

  學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問題,關(guān)注學(xué)生思考.此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

 、偕芊窭斫夥幢壤瘮(shù)的意義,理解反比例函數(shù)的概念;

 、趯W(xué)生能否順利抽象反比例函數(shù)的模型;

 、蹖W(xué)生能否積極主動(dòng)地合作、交流;

  活動(dòng)4

  問題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?

  問題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6

  (1)寫出y與x的函數(shù)關(guān)系式:

  (2)求當(dāng)x=4時(shí),y的值.

  師生行為:

  學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo).在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:

 、賹W(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;

  ②學(xué)生能否積極主動(dòng)地參與小組活動(dòng).

  分析及解答:

  1、只有xy=123是反比例函數(shù).

  2、分析:因?yàn)閥是x的反比例函數(shù),所以

  ,再把x=2和y=6代入上式就可求出常數(shù)k的值.

  解:(1)設(shè)

  ,因?yàn)閤=2時(shí),y=6,所以有

  解得k=12

  因此

  (2)把x=4代入

  ,得

  三、鞏固提高

  活動(dòng)5

  1、已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=8.

  (1)寫出y與x之間的函數(shù)關(guān)系式.

 。2)求y=2時(shí)x的值.

  2、y是x的反比例函數(shù),下表給出了x與y的一些值:

 。1)寫出這個(gè)反比例函數(shù)的表達(dá)式;

 。2)根據(jù)函數(shù)表達(dá)式完成上表.

  學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.

  四、課時(shí)小結(jié)

  反比例函數(shù)概念形成的過程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過舉例、說理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.

八年級(jí)數(shù)學(xué)教案 篇5

  教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識(shí)技能

  探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

  數(shù)學(xué)思考

  能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問題能力和計(jì)算能力.

  解決問題

  通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.

  情感態(tài)度

  在應(yīng)用等腰梯形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).

  重點(diǎn)

  等腰梯形的性質(zhì)及其應(yīng)用.

  難點(diǎn)

  解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.

  教學(xué)流程安排

  活動(dòng)流程圖

  活動(dòng)的內(nèi)容和目的

  活動(dòng)1想一想

  活動(dòng)2說一說

  活動(dòng)3畫一畫

  活動(dòng)4做—做

  活動(dòng)5練一練

  活動(dòng)6理一理

  觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.

  了解梯形定義、各部分名稱及分類.

  通過畫圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的轉(zhuǎn)化關(guān)系.

  探究得到等腰梯形的性質(zhì).

  通過解決具體問題,尋找解決梯形問題的方法.

  通過整理回顧,鞏固知識(shí)、提高能力、滲透思想.

  教學(xué)過程設(shè)計(jì)

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  [活動(dòng)1]

  觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?

  演示圖片,學(xué)生欣賞.

  結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對(duì)邊平行而另一組對(duì)邊不平行.

  由現(xiàn)實(shí)中實(shí)際問題入手,設(shè)置問題情境,引出本課主題.通過學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.

  [活動(dòng)2]

  梯形定義 一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.

  學(xué)生根據(jù)梯形概念畫出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

  通過類比,培養(yǎng)學(xué)生歸納、總結(jié)的`能力.

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  一些基本概念

  (1)(如圖):底、腰、高.

 。2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

  (3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.

  學(xué)生在小學(xué)已經(jīng)對(duì)梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;

  ②上、下底的概念是由底的長(zhǎng)短來定義的,而并不是指位置來說的.

  熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.

  [活動(dòng)3]

  畫一畫

  在下列所給圖中的每個(gè)三角形中畫一條線段,

  (1)怎樣畫才能得到一個(gè)梯形?

  (2)在哪些三角形中,能夠得到一個(gè)等腰梯形?

  在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.

  教師參與小組活動(dòng),指導(dǎo)、傾聽學(xué)生交流.針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.

  本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:

 。1)學(xué)生在活動(dòng)過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.

  (2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.

 。3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見解,傾聽他人的意見,對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.

  等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對(duì)稱圖形,可得到等腰梯形是軸對(duì)稱圖形這條性質(zhì),為活動(dòng)4種開展探究奠定了基礎(chǔ).

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  [活動(dòng)4]

  做—做

  探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問題的思想).

  在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.

 。1)這個(gè)圖形是軸對(duì)稱圖形嗎?對(duì)稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過觀察猜想;

 。2)這個(gè)等腰梯形的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?

  學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗(yàn)證、歸納結(jié)論.

  針對(duì)不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).

  師生共同歸納:

 、俚妊菪问禽S對(duì)稱圖形,上下底的中點(diǎn)連線是對(duì)稱軸.

 、诘妊菪蝺裳嗟龋

  ③等腰梯形同一底上的兩個(gè)角相等.

 、艿妊菪蔚膬蓷l對(duì)角線相等.

  教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.

  [活動(dòng)5]

  練—練

  例1 (教材P118的例1)略.

  例2 如圖,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的長(zhǎng).

  師生共同分析,尋找解決問題的方法和策略.

  例1是等腰梯形性質(zhì)的直接運(yùn)用,請(qǐng)學(xué)生分析、解答,教師聆聽,同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).

  分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問題.

  其方法是:平移一腰,過點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通過題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問題的基本思想和方法就是通過添加適當(dāng)?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求證:BE=CD.

  分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  證明(略)

  例2與例3這里給出的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見識(shí).

  [活動(dòng)6]

  1.小結(jié)

  2.布置作業(yè)

  (1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長(zhǎng)和面積.

 。2)已知:如圖,

  梯形ABCD中,CD//AB,,.

  求證:AD=AB—DC.

 。3)已知,如圖,

  梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長(zhǎng)DE交CB延長(zhǎng)線于點(diǎn)F,由全等可得結(jié)論)

  師生歸納總結(jié):

  解決梯形問題常用的方法:

 。1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);

 。2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);

 。3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);

  (4)“平移對(duì)角線”:使兩條對(duì)角線在同一個(gè)三角形中(圖4);

 。5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長(zhǎng)與下底延長(zhǎng)線交于一點(diǎn),構(gòu)成三角形(圖5).

  盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過程.

  梳理本節(jié)課應(yīng)用過的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.

  學(xué)生通過獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時(shí)查漏補(bǔ)缺.

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

初中八年級(jí)數(shù)學(xué)教案11-03

八年級(jí)的數(shù)學(xué)教案15篇12-14

【熱門】八年級(jí)數(shù)學(xué)教案11-29

八年級(jí)數(shù)學(xué)教案【熱】11-29

八年級(jí)數(shù)學(xué)教案【薦】12-06

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

人教版八年級(jí)數(shù)學(xué)教案11-04