四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

八年級數(shù)學(xué)教案

時間:2022-08-21 04:12:18 八年級數(shù)學(xué)教案 我要投稿

有關(guān)八年級數(shù)學(xué)教案七篇

  作為一名教學(xué)工作者,常常要根據(jù)教學(xué)需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。優(yōu)秀的教案都具備一些什么特點呢?下面是小編為大家整理的八年級數(shù)學(xué)教案7篇,僅供參考,歡迎大家閱讀。

有關(guān)八年級數(shù)學(xué)教案七篇

八年級數(shù)學(xué)教案 篇1

  一、 教學(xué)目標(biāo)

  1.了解分式、有理式的概念.

  2.理解分式有意義的條件,能熟練地求出分式有意義的條件.

  二、重點、難點

  1.重點:理解分式有意義的條件.

  2.難點:能熟練地求出分式有意義的條件.

  三、課堂引入

  1.讓學(xué)生填寫P127[思考],學(xué)生自己依次填出:,,,.

  2.學(xué)生看問題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時間,與以最大航速逆流航行60 所用時間相等,江水的流速為多少?

  請同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.

  設(shè)江水的流速為v /h.

  輪船順流航行90 所用的時間為小時,逆流航行60 所用時間小時,所以=.

  3. 以上的式子,,,,有什么共同點?它們與分?jǐn)?shù)有什么相同點和不同點?

  四、例題講解

  P128例1. 當(dāng)下列分式中的字母為何值時,分式有意義.

  [分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解

  出字母的取值范圍.

  [補(bǔ)充提問]如果題目為:當(dāng)字母為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.

  (補(bǔ)充)例2. 當(dāng)為何值時,分式的值為0?

 。1) (2) (3)

  [分析] 分式的值為0時,必須同時滿足兩個條件:分母不能為零;分子為零,這樣求出的的解集中的.公共部分,就是這類題目的解.

  [答案] (1)=0 (2)=2 (3)=1

  五、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4, , , , ,

  2. 當(dāng)x取何值時,下列分式有意義?

 。1) (2) (3)

  3. 當(dāng)x為何值時,分式的值為0?

 。1) (2) (3)

  六、課后練習(xí)

  1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?

  (1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.

 。2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.

 。3)x與的差于4的商是 .

  2.當(dāng)x取何值時,分式 無意義?

  3. 當(dāng)x為何值時,分式 的值為0?

八年級數(shù)學(xué)教案 篇2

  活動一、創(chuàng)設(shè)情境

  引入:首先我們來看幾道練習(xí)題(幻燈片)

 。◤(fù)習(xí):平行線及三角形全等的知識)

  下面我們一起來欣賞一組圖片(幻燈片)

  [學(xué)生活動]觀看后答問題:你看到了哪些圖形?

 。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

  [學(xué)生活動]小組合作交流,拼出圖案的類型。

  同學(xué)們所拼的圖形中,除了有我們學(xué)過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)

  活動二、合作交流,探求新知

  問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學(xué)生活動]認(rèn)真觀察、討論、思考、推理。

  鼓勵學(xué)生交流,并是試著用自己的語言概括出平行四邊形的定義。

  學(xué)生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

  并說明:平行四邊形不相鄰的兩個頂點連成的.線段叫它的對角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

  [學(xué)生活動]動手操作,小組演示交流。鼓勵學(xué)生用多種方法探究。

  小結(jié)平行四邊形的性質(zhì):

  平行四邊形的對邊相等

  平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

  你能演示你的結(jié)論是如何得到的嗎?(學(xué)生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學(xué)生活動]先分析思路尤其是輔助線,請學(xué)生上黑板證明。

  自己完成性質(zhì)2的證明。

  活動三、運(yùn)用新知

  性質(zhì)掌握了嗎?一起來看一道題目:

  嘗試練習(xí)(幻燈片)例1

  [學(xué)生活動]作嘗試性解答。

八年級數(shù)學(xué)教案 篇3

  教學(xué)目標(biāo):

  1、經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強(qiáng)對圖形欣賞的意識。

  2、能按要求把所給出的圖形補(bǔ)成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計軸對稱圖形。

  教學(xué)重點:本節(jié)課重點是掌握已知對稱軸L和一個點,要畫出點A關(guān)于L的軸對稱點的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計軸對稱圖形是本節(jié)課的難點。

  教學(xué)方法:動手實踐、討論。

  教學(xué)工具:課件

  教學(xué)過程:

  一、 先復(fù)習(xí)軸對稱圖形的定義,以及軸對稱的相關(guān)的性質(zhì):

  1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

  2.軸對稱的三個重要性質(zhì)______________________________________________

  _____________________________________________________________________

  二、提出問題:

  二、探索練習(xí):

  1. 提出問題:

  如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

  你能畫出這個圖案的`另一半嗎?

  吸引學(xué)生讓學(xué)生有一種解決難點的想法。

  2.分析問題:

  分析圖案:這個圖案是由重要六個點構(gòu)成的,要將這個圖案的另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個圖案中六個點的對應(yīng)點即可

  問題轉(zhuǎn)化成:已知對稱軸和一個點A,要畫出點A關(guān)于L的對應(yīng)點 ,可采用如下方法:`

  在學(xué)生掌握已知一個點畫對應(yīng)點的基礎(chǔ)上,解決上述給出的問題,使學(xué)生有一條較明確的思路。

  三、對所學(xué)內(nèi)容進(jìn)行鞏固練習(xí):

  1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

  2. 試畫出與線段AB關(guān)于直線L的線段

  3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

  小 結(jié): 本節(jié)課學(xué)習(xí)了已知對稱軸L和一個點如何畫出它的對應(yīng)點,以及如何補(bǔ)全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計軸對稱圖形。

  教學(xué)后記:學(xué)生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高

八年級數(shù)學(xué)教案 篇4

  教學(xué)目標(biāo):

  (1)理解通分的意義,理解最簡公分母的意義;

  (2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。

  教學(xué)重點:分式通分的理解和掌握。

  教學(xué)難點:分式通分中最簡公分母的確定。

  教學(xué)工具:投影儀

  教學(xué)方法:啟發(fā)式、討論式

  教學(xué)過程:

  (一)引入

  (1)如何計算:

  由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。

  (2)如何計算:

  (3)何計算:

  引導(dǎo)學(xué)生思考,猜想如何求解?

  (二)新課

  1、類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保證

  (1)各分式與原分式相等;

  (2)各分式分母相等。

  2.通分的依據(jù):分式的基本性質(zhì).

  3.通分的關(guān)鍵:確定幾個分式的最簡公分母.

  通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

  根據(jù)分式通分和最簡公分母的定義,將分式通分:

  最簡公分母為:

  然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx

  通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。

  例1 通分:xxx

  分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

  解:∵ 最簡公分母是12xy2,

  小結(jié):各分母的`系數(shù)都是整數(shù)時,通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).

  解:∵最簡公分母是10a2b2c2,

  由學(xué)生歸納最簡公分母的思路。

  分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。

八年級數(shù)學(xué)教案 篇5

  知識目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識別出函數(shù)關(guān)系中的自變量和函數(shù)

  能力目標(biāo):會用變化的量描述事物

  情感目標(biāo):回用運(yùn)動的觀點觀察事物,分析事物

  重點:函數(shù)的概念

  難點:函數(shù)的概念

  教學(xué)媒體:多媒體電腦,計算器

  教學(xué)說明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會確定自變量的取值范圍

  教學(xué)設(shè)計:

  引入:

  信息1:小明在14歲生日時,看到他爸爸為他記錄的以前各年周歲時體重數(shù)值表,你能看出小明各周歲時體重是如何變化的嗎?

  新課:

  問題:(1)如圖是某日的氣溫變化圖。

 、 這張圖告訴我們哪些信息?

  ② 這張圖是怎樣來展示這天各時刻的溫度和刻畫這鐵的氣溫變化規(guī)律的?

  (2)收音機(jī)上的刻度盤的波長和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對應(yīng)的數(shù):

 、 這表告訴我們哪些信息?

 、 這張表是怎樣刻畫波長和頻率之間的變化規(guī)律的,你能用一個表達(dá)式表示出來嗎?

  一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有惟一確定的值與其對應(yīng),那么我們就說x是自變量,y是x的函數(shù)。如果當(dāng)x=a時,y=b,那么b叫做當(dāng)自變量的.值為a時的函數(shù)值。

  范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:

  (5) 長方形的寬一定時,其長與面積;

  (6) 等腰三角形的底邊長與面積;

  (7) 某人的年齡與身高;

  活動1:閱讀教材7頁觀察1. 后完成教材8頁探究,利用計算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系

  思考:自變量是否可以任意取值

  例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。

  (1) 寫出表示y與x的函數(shù)關(guān)系式.

  (2) 指出自變量x的取值范圍.

  (3) 汽車行駛200km時,油箱中還有多少汽油?

  解:(1)y=50-0.1x

  (2)0500

  (3)x=200,y=30

  活動2:練習(xí)教材9頁練習(xí)

  小結(jié):(1)函數(shù)概念

  (2)自變量,函數(shù)值

  (3)自變量的取值范圍確定

  作業(yè):18頁:2,3,4題

八年級數(shù)學(xué)教案 篇6

  11.1 與三角形有關(guān)的線段

  11.1.1 三角形的邊

  1.理解三角形的概念,認(rèn)識三角形的頂點、邊、角,會數(shù)三角形的個數(shù).(重點)

  2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點)

  3.三角形在實際生活中的應(yīng)用.(難點)

  一、情境導(dǎo)入

  出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會生活中處處有數(shù)學(xué).

  教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.

  問:你能不能給三角形下一個完整的定義?

  二、合作探究

  探究點一:三角形的概念

  圖中的銳角三角形有( )

  A.2個

  B.3個

  C.4個

  D.5個

  解析:(1)以A為頂點的銳角三角形有△ABC、△ADC共2個;(2)以E為頂點的銳角三角形有△EDC共1個.所以圖中銳角三角形的個數(shù)有2+1=3(個).故選B.

  方法總結(jié):數(shù)三角形的個數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個點,那么就有n(n-1)2條線段,也可以與線段外的一點組成n(n-1)2個三角形.

  探究點二:三角形的三邊關(guān)系

  【類型一】 判定三條線段能否組成三角形

  以下列各組線段為邊,能組成三角形的是( )

  A.2c,3c,5c

  B.5c,6c,10c

  C.1c,1c,3c

  D.3c,4c,9c

  解析:選項A中2+3=5,不能組成三角形,故此選項錯誤;選項B中5+6>10,能組成三角形,故此選項正確;選項C中1+1<3,不能組成三角形,故此選項錯誤;選項D中3+4<9,不能組成三角形,故此選項錯誤.故選B.

  方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

  【類型二】 判斷三角形邊的取值范圍

  一個三角形的三邊長分別為4,7,x,那么x的取值范圍是( )

  A.3<x<11 B.4<x<7

  C.-3<x<11 D.x>3

  解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

  方法總結(jié):判斷三角形邊的取值范圍要同時運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時還要結(jié)合不等式的知識進(jìn)行解決.

  【類型三】 等腰三角形的三邊關(guān)系

  已知一個等腰三角形的兩邊長分別為4和9,求這個三角形的周長.

  解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.

  解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.

  方法總結(jié):在求三角形的邊長時,要注意利用三角形的三邊關(guān)系驗證所求出的邊長能否組成三角形.

  【類型四】 三角形三邊關(guān)系與絕對值的綜合

  若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

  解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的`正負(fù),然后去絕對值符號進(jìn)行計算即可.

  解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

  方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.

  三、板書設(shè)計

  三角形的邊

  1.三角形的概念:

  由不在同一直線上的三條線段首尾順次相接所組成的圖形.

  2.三角形的三邊關(guān)系:

  兩邊之和大于第三邊,兩邊之差小于第三邊.

  本節(jié)課讓學(xué)生經(jīng)歷一個探究解決問題的過程,抓住“任意的三條線段能不能圍成一個三角形”引發(fā)學(xué)生探究的欲望,圍繞這個問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點,既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動手能力.

八年級數(shù)學(xué)教案 篇7

  一、教學(xué)目標(biāo)

  1.靈活應(yīng)用勾股定理及逆定理解決實際問題.

  2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.

  二、重點、難點

  1.重點:靈活應(yīng)用勾股定理及逆定理解決實際問題.

  2.難點:靈活應(yīng)用勾股定理及逆定理解決實際問題.

  3.難點的突破方法:

  三、課堂引入

  創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.

  四、例習(xí)題分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名詞;

 、埔李}意畫出圖形;

 、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

 、纫驗242+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR—∠QPS=45°.

  小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

  例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的`形狀.

  分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

 、圃O(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;

 、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

  解略.

  本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.

【八年級數(shù)學(xué)教案】相關(guān)文章:

八年級的數(shù)學(xué)教案12-14

八年級數(shù)學(xué)教案06-18

八年級上冊人教版數(shù)學(xué)教案02-27

八年級的數(shù)學(xué)教案15篇12-14

八年級下冊數(shù)學(xué)教案01-01

【薦】八年級數(shù)學(xué)教案12-03

【熱】八年級數(shù)學(xué)教案12-07

【精】八年級數(shù)學(xué)教案12-04

八年級數(shù)學(xué)教案【精】12-04

八年級數(shù)學(xué)教案【熱門】12-03