四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>心得體會(huì)>教學(xué)反思>分解因式的教學(xué)反思

分解因式的教學(xué)反思

時(shí)間:2023-04-07 17:54:13 教學(xué)反思 我要投稿

分解因式的教學(xué)反思

  身為一名到崗不久的老師,教學(xué)是重要的工作之一,通過(guò)教學(xué)反思可以很好地改正講課缺點(diǎn),如何把教學(xué)反思做到重點(diǎn)突出呢?下面是小編收集整理的分解因式的教學(xué)反思,希望能夠幫助到大家。

分解因式的教學(xué)反思

分解因式的教學(xué)反思1

  本節(jié)課的教學(xué)目標(biāo)是讓學(xué)生理解一元二次方程的根與二次三項(xiàng)式因式分解的關(guān)系,掌握公式法分解二次三項(xiàng)式。在教學(xué)引入中,通過(guò)二次三項(xiàng)式因式分解方法的探究,引導(dǎo)學(xué)生經(jīng)歷:觀察思考 歸納 猜想 論證等一系列探究過(guò)程,從而讓學(xué)生領(lǐng)會(huì)和感悟認(rèn)識(shí)問(wèn)題和解決問(wèn)題的一般規(guī)律:即由特殊到一般,再由一般到特殊,同時(shí)培養(yǎng)了的學(xué)生動(dòng)手能力和觀察思考和歸納小結(jié)的能力。另一方面通過(guò)運(yùn)用一元二次方程根的知識(shí)來(lái)分解因式,讓學(xué)生體會(huì)知識(shí)間普遍聯(lián)系的數(shù)學(xué)美。

  總的來(lái)說(shuō),建立在對(duì)所任教的學(xué)生仔細(xì)分析和對(duì)教學(xué)大綱認(rèn)真研究基礎(chǔ)上所作的教材處理和教學(xué)預(yù)設(shè)是貼近學(xué)生實(shí)際的,經(jīng)過(guò)這節(jié)課的學(xué)習(xí),學(xué)生較好的達(dá)到了教學(xué)目標(biāo)的要求,較好的完成了教學(xué)任務(wù),教學(xué)效果良好。此外,整節(jié)課比較好地體現(xiàn)了多媒體在教學(xué)上的輔助作用,特別是實(shí)物投影儀的運(yùn)用可以直觀快捷地把學(xué)生的練習(xí)情況反映在全班學(xué)生面前,這些都大大提高了教學(xué)效率,增大了教學(xué)容量,取得了良好的.教學(xué)效果。

  但本節(jié)課也有許多不足之處,如:

  1、可以壓縮第1部分,四道題目可以減半,這樣可以節(jié)省一些時(shí)間,讓課堂小結(jié)更充分些。

  2、作業(yè)布置這一教學(xué)環(huán)節(jié)作為重要的一環(huán)應(yīng)放入課堂上。

  3、模仿練習(xí)的題目應(yīng)該把分解好的部分乘出來(lái)看是否與左邊相等,做好返回檢驗(yàn)的工作,這樣更便于學(xué)生的理解。

  在今后的教學(xué)中應(yīng)該更好更深刻的研究教材、研究教法、研究我們的學(xué)生,備課更充分、更完善些,從而更好的提高課堂教學(xué)的有效性。

分解因式的教學(xué)反思2

  1、配方法

  所謂配方,就是把一個(gè)解析式利用恒等變形的方法,把其中的某些項(xiàng)配成一個(gè)或幾個(gè)多項(xiàng)式正整數(shù)次冪的和形式。通過(guò)配方解決數(shù)學(xué)問(wèn)題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡(jiǎn)根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。

  2、因式分解法

  因式分解,就是把一個(gè)多項(xiàng)式化成幾個(gè)整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個(gè)有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項(xiàng)添項(xiàng)、求根分解、換元、待定系數(shù)等等。

  3、換元法

  換元法是數(shù)學(xué)中一個(gè)非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個(gè)比較復(fù)雜的數(shù)學(xué)式子中,用新的變?cè)ゴ嬖降囊粋(gè)部分或改造原來(lái)的式子,使它簡(jiǎn)化,使問(wèn)題易于解決。

  4、判別式法與韋達(dá)定理

  一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來(lái)判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運(yùn)算中都有非常廣泛的應(yīng)用。

  韋達(dá)定理除了已知一元二次方程的一個(gè)根,求另一根;已知兩個(gè)數(shù)的和與積,求這兩個(gè)數(shù)等簡(jiǎn)單應(yīng)用外,還可以求根的對(duì)稱函數(shù),計(jì)論二次方程根的符號(hào),解對(duì)稱方程組,以及解一些有關(guān)二次曲線的問(wèn)題等,都有非常廣泛的應(yīng)用。

  5、待定系數(shù)法

  在解數(shù)學(xué)問(wèn)題時(shí),若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問(wèn)題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。

  6、構(gòu)造法

  在解題時(shí),我們常常會(huì)采用這樣的方法,通過(guò)對(duì)條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個(gè)圖形、一個(gè)方程(組)、一個(gè)等式、一個(gè)函數(shù)、一個(gè)等價(jià)命題等,架起一座連接條件和結(jié)論的橋梁,從而使問(wèn)題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運(yùn)用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識(shí)互相滲透,有利于問(wèn)題的解決。

  7、反證法

  反證法是一種間接證法,它是先提出一個(gè)與命題的結(jié)論相反的假設(shè),然后,從這個(gè)假設(shè)出發(fā),經(jīng)過(guò)正確的推理,導(dǎo)致矛盾,從而否定相反的'假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個(gè)命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。

  反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個(gè)/一個(gè)也沒(méi)有;至少有n個(gè)/至多有(n一1)個(gè);至多有一個(gè)/至少有兩個(gè);唯一/至少有兩個(gè)。

  歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過(guò)程沒(méi)有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無(wú)源之水,無(wú)本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。

分解因式的教學(xué)反思3

  素質(zhì)教育背景下的`數(shù)學(xué)課堂教學(xué)要以學(xué)生為主體,從學(xué)生的實(shí)際情況出發(fā),關(guān)注、關(guān)心學(xué)生的成長(zhǎng),創(chuàng)設(shè)良好的課堂學(xué)習(xí)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣,教會(huì)學(xué)生學(xué)會(huì)學(xué)習(xí),學(xué)會(huì)思考,使學(xué)生成為學(xué)習(xí)的主人。學(xué)生是變化的,課堂教學(xué)也是變化無(wú)窮的,而我們老師在課堂上的角色如何充當(dāng),如何處理突發(fā)問(wèn)題,下面以《因式分解》一節(jié)課的反思談?wù)劇耙詫W(xué)生為主”自己的一些感悟:

  這是《因式分解》的第一節(jié)課,內(nèi)容為因式分解的.概念和用提取公因式進(jìn)行分解因式,這一節(jié)課的教學(xué)目的是讓學(xué)生掌握因式分解的概念和學(xué)會(huì)用提公因式法進(jìn)行因式分解,在學(xué)生對(duì)因式分解概念有了初步的了解后,我例舉了5a+5b,5a-20b,5am+5bm,4am2+8bm,5am3-25bm2等進(jìn)行因式分解,一直例舉了5a(x+y)+5b(x+y),a(x-y)+b(x-y),到這里學(xué)生還勉強(qiáng)接受,再例舉下去,對(duì)于a(x-y)+b(y-x)與a(x-y)2-b(y-x)2等就模糊了,這連續(xù)的例舉讓學(xué)生們有點(diǎn)招架不住了。自己認(rèn)為這樣做感覺(jué)不錯(cuò),但課后我認(rèn)真總結(jié)與反思這一節(jié)課,覺(jué)得有以下不足:

  一、“以學(xué)生為主,老師為導(dǎo)”的理念

  落實(shí)得不夠。特別是在老師出題這一環(huán)節(jié)上,我想在學(xué)生自己自學(xué)理解了公因式后,應(yīng)讓學(xué)生自己探究,將全班分為若干個(gè)小組,在各個(gè)小組中要求學(xué)生自己編出能用提公因式法分解的題目,再根據(jù)學(xué)生所編的題目讓別的同學(xué)說(shuō)出公因式,分解因式,然后各小組選出最有代表的一題參加小組競(jìng)賽活動(dòng),看看哪個(gè)小組出的題能難倒對(duì)方。我想這樣做既改變了教的方式,又能促進(jìn)學(xué)生學(xué)習(xí),變被動(dòng)學(xué)習(xí)為主動(dòng)學(xué)習(xí),不但增加學(xué)生學(xué)習(xí)的興趣,而且培養(yǎng)學(xué)生的競(jìng)爭(zhēng)能力,這樣學(xué)生學(xué)習(xí)才不會(huì)感到枯燥,學(xué)習(xí)才有味。

  二、這節(jié)課我對(duì)學(xué)生的實(shí)際情況研究不夠,應(yīng)針對(duì)學(xué)生進(jìn)行備課。

  對(duì)我們農(nóng)村學(xué)校的學(xué)生,他們學(xué)習(xí)的積極性不高,基礎(chǔ)不是很好,在剛剛接觸因式分解這個(gè)概念后,學(xué)生還理解不夠,基礎(chǔ)也不夠扎實(shí),對(duì)于公因式是單項(xiàng)式的容易接受,但提出了多項(xiàng)式是公因式的分解,對(duì)于部分的學(xué)生來(lái)說(shuō)是有點(diǎn)接受不了,所以這節(jié)課的效果不是很好。我想應(yīng)在課前根據(jù)班級(jí)、學(xué)生的實(shí)際情況進(jìn)行備課,從學(xué)生的學(xué)習(xí)接受知識(shí)和樂(lè)于學(xué)習(xí)的角度去備好每一節(jié)課。

  三、課堂上不能“過(guò)于求全”。

  我們總認(rèn)為每一節(jié)課都要按一定的步驟和程序進(jìn)行,這樣才覺(jué)得完美,其實(shí)不然,關(guān)鍵是如何讓學(xué)生更好的學(xué)會(huì)每一個(gè)知識(shí)點(diǎn),老師講清每一個(gè)知識(shí)點(diǎn),而一節(jié)課的時(shí)間是有限的,我們?cè)俑鶕?jù)學(xué)生、課堂的實(shí)際情況去處理好問(wèn)題與時(shí)間,這節(jié)課完成不了的內(nèi)容下節(jié)課再講,可以讓學(xué)生帶著問(wèn)題走出教室,讓學(xué)生多思考、多動(dòng)手、多動(dòng)口,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,這也充分體現(xiàn)出以學(xué)生為主的思想。

  我們老師應(yīng)走出演講者、唱主角的角色,成為全體學(xué)生學(xué)習(xí)的組織者、激勵(lì)者、引導(dǎo)者、協(xié)調(diào)者和合作者。學(xué)生能自己做的事教師不要代勞,我們教師應(yīng)在學(xué)生的學(xué)習(xí)的過(guò)程中,在恰當(dāng)?shù)臅r(shí)候給予恰當(dāng)?shù)膸椭c引導(dǎo),讓學(xué)生在不斷的探索過(guò)程中獲得知識(shí),體驗(yàn)獲取知識(shí)的樂(lè)趣。

分解因式的教學(xué)反思4

  本節(jié)的教學(xué)目標(biāo)是讓學(xué)生理解一元二次方程的根與二次三項(xiàng)式因式分解的關(guān)系,掌握公式法分解二次三項(xiàng)式。在教學(xué)引入中,通過(guò)二次三項(xiàng)式因式分解方法的探究,引導(dǎo)學(xué)生經(jīng)歷:觀察思考?xì)w納猜想論證等一系列探究過(guò)程,從而讓學(xué)生領(lǐng)會(huì)和感悟認(rèn)識(shí)問(wèn)題和解決問(wèn)題的一般規(guī)律:即由特殊到一般,再由一般到特殊,同時(shí)培養(yǎng)了的學(xué)生動(dòng)手能力和觀察思考和歸納小結(jié)的能力。另一方面通過(guò)運(yùn)用一元二次方程根的知識(shí)分解因式,讓學(xué)生體會(huì)知識(shí)間普遍聯(lián)系的數(shù)學(xué)美。

  總的說(shuō),建立在對(duì)所任教的學(xué)生仔細(xì)分析和對(duì)教學(xué)大綱認(rèn)真研究基礎(chǔ)上所作的教材處理和教學(xué)預(yù)設(shè)是貼近學(xué)生實(shí)際的,經(jīng)過(guò)這節(jié)的.學(xué)習(xí),學(xué)生較好的達(dá)到了教學(xué)目標(biāo)的要求,較好的完成了教學(xué)任務(wù),教學(xué)效果良好。此外,整節(jié)比較好地體現(xiàn)了多媒體在教學(xué)上的輔助作用,特別是實(shí)物投影儀的運(yùn)用可以直觀快捷地把學(xué)生的練習(xí)情況反映在全班學(xué)生面前,這些都大大提高了教學(xué)效率,增大了教學(xué)容量,取得了良好的教學(xué)效果。

  但本節(jié)也有許多不足之處,如:

  1、可以壓縮第1部分,四道題目可以減半,這樣可以節(jié)省一些時(shí)間,讓堂小結(jié)更充分些。

  2、作業(yè)布置這一教學(xué)環(huán)節(jié)作為重要的一環(huán)應(yīng)放入堂上。

  3、模仿練習(xí)的題目應(yīng)該把分解好的部分乘出看是否與左邊相等,做好返回檢驗(yàn)的工作,這樣更便于學(xué)生的理解。

  在今后的教學(xué)中應(yīng)該更好更深刻的研究教材、研究教法、研究我們的學(xué)生,備更充分、更完善些,從而更好的提高堂教學(xué)的有效性。

分解因式的教學(xué)反思5

  講解因式分解的定義的時(shí)候,同學(xué)們都很清楚。而我也強(qiáng)調(diào)的就是因式分解與乘法公式是相反方向的變形,并且在練習(xí)中一再將公式羅列出來(lái)。然后講授提公因式法、公式法(包括平方差、完全平方公式),講課的時(shí)候是一個(gè)公式一節(jié)課,先分解公式符合條件的形式再練習(xí),主要是以練習(xí)為重。

  講課的過(guò)程是非常順利的,這令我以為學(xué)生的掌握程度還好。

  講完因式分解的新課,我隨堂出了一些綜合性的練習(xí)題,才發(fā)現(xiàn)效果是不太好的。他們只是看到很表層的東西,而對(duì)于較為復(fù)雜的式子,卻無(wú)從下手。

  課后,我總結(jié)的原因有以下四點(diǎn):

  1、思想上不重視,因?yàn)閷?duì)于公式的互換覺(jué)得太簡(jiǎn)單,只是將它作為一個(gè)簡(jiǎn)單的內(nèi)容來(lái)看,所以課后沒(méi)有以足夠的練習(xí)來(lái)鞏固。

  2、在學(xué)習(xí)過(guò)程中太過(guò)于強(qiáng)調(diào)形式,反而如何創(chuàng)造條件來(lái)滿足條件忽略了。導(dǎo)致他們對(duì)于與公式相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手。

  3、靈活運(yùn)用公式(特別與冪的運(yùn)算性質(zhì)相結(jié)合的公式)的能力較差,如要將9-25x2化成32-(5x)2然后應(yīng)用平方差公式這樣的'題目卻無(wú)從下手。究其原因,和我布置的作業(yè)及隨堂練習(xí)的單一性及難度低的特點(diǎn)有關(guān)。

  4、因式分解沒(méi)有先想提公因式的習(xí)慣,在結(jié)果也沒(méi)有注意是否進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止,比如最簡(jiǎn)單的將a3-a提公因式后應(yīng)用平方差公式,但很多同學(xué)都是只化到a(a2-1)而沒(méi)有化到最后結(jié)果a(a+1)(a-1)。因式分解是一個(gè)重要的內(nèi)容,也是難點(diǎn),我認(rèn)為我對(duì)教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒(méi)有注意到計(jì)算題在練習(xí)方面的鞏固及題型的多樣化。在以后的教學(xué)中應(yīng)該更多結(jié)合學(xué)生的學(xué)習(xí)情況去調(diào)整教學(xué)進(jìn)度,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢(shì)和不足之處。

分解因式的教學(xué)反思6

  這部分內(nèi)容出現(xiàn)在“觀察與猜想”欄目中,屬于補(bǔ)充內(nèi)容。但鑒于在分式部分應(yīng)用較多,故拿出一節(jié)課專門講解。

  結(jié)合著前面課后練習(xí)中出現(xiàn)的等式(x+p)(x+q)=x2+(p+q)x+pq,指出

  x2+(p+q)x+pq=(x+p)(x+q)

  另外,還可以

  x2+(p+q)x+pq

  =x2+px+qx+pq

  =(x2+px)+(qx+pq)

  =x(x+p)+q(x+p)

  =(x+p)(x+q)

  例分解因式:(1)x2+3x+2(2)x2-5x+6(3)x2-2x-8

  分析:(1)二次項(xiàng)系數(shù)為1,常數(shù)項(xiàng)2=1*2,一次項(xiàng)系數(shù)3=1+2.

  (2)二次項(xiàng)系數(shù)為1,常數(shù)項(xiàng)6=-2*(-3),一次項(xiàng)系數(shù)-5=-2+(-3)

 。3)二次項(xiàng)系數(shù)為1,常數(shù)項(xiàng)8=-4*2,一次項(xiàng)系數(shù)-2=-4+2

  解:(1)x2+3x+2=(x+1)(x+2)(2)x2-5x+6=(x-2)(x-3)

 。3)x2-2x-8=(x-4)(x+2)

  練習(xí):按照x2+(p+q)x+pq=(x+p)(x+q)將下列多項(xiàng)式分解因式

 。1)x2+7x+10(2)x2-2x-8

 。3)y2-7y+12(4)x2+7x-18

  用x2+(p+q)x+pq=(x+p)(x+q)進(jìn)行因式分解,關(guān)鍵在于能找到常數(shù)項(xiàng)的2

  個(gè)恰當(dāng)?shù)囊蚴,使得這2個(gè)因式之和等于一次項(xiàng)系數(shù)。

分解因式的'教學(xué)反思7

  《整式的乘除——用公式法分解因式》是八年級(jí)上整式乘除一章中,屬于因式分解的內(nèi)容,本課是在學(xué)生學(xué)習(xí)了整式乘除中的平方差公式和完全平方公式的基礎(chǔ)上提出來(lái)的,實(shí)際上是逆用平方差公式和完全平方公式進(jìn)行因式分解,本課的`教學(xué)目標(biāo)十分明確,就是讓學(xué)生會(huì)判斷何時(shí)用公式法進(jìn)行因式分解,并會(huì)用平方差公式和完全平方公式分解因式。

  因式分解雖然與整式的乘法是互逆運(yùn)算,但是對(duì)于學(xué)生而言,它是一個(gè)新的知識(shí),學(xué)生在前面的學(xué)習(xí)中雖然已經(jīng)掌握平方差公式和完全平方公式,然而受思維定勢(shì)的影響,學(xué)生對(duì)公式的逆用會(huì)產(chǎn)生混淆,學(xué)生的慣性思維是:平方差公式是 ,完全平方公式是 ,一旦要將公式逆向,部分學(xué)生就比較難以接受,特別是學(xué)習(xí)能力較弱的學(xué)生,難度就更大一些。在練習(xí)中,根據(jù)學(xué)生的個(gè)體差異,我設(shè)置A、B、C組題,有效分層,開(kāi)展課內(nèi)技能訓(xùn)練,讓每個(gè)學(xué)生都學(xué)有所成。

分解因式的教學(xué)反思8

  因式分解與整式乘法是逆向變形,能熟練地對(duì)一個(gè)代數(shù)式進(jìn)行因式分解,是學(xué)好數(shù)學(xué)的重要方法,通過(guò)這段時(shí)間的教學(xué),對(duì)學(xué)生存在的問(wèn)題歸納如下:

  問(wèn)題一:提公因式不徹底或提公因式后丟項(xiàng)。

  問(wèn)題二:應(yīng)用公式分解因式,公式應(yīng)用不正確。

  問(wèn)題三:分解因式不徹底。

  問(wèn)題四:因式分解與整式乘法相混淆。

  問(wèn)題五:代數(shù)式不能靈活的分解或靈活應(yīng)用。

  解決以上問(wèn)題,必須明確兩個(gè)原則

  第一、 有因式分解要先提取公因式。

  第二、 每個(gè)因式要分解到不能再分為止。

  關(guān)鍵要做到以下幾點(diǎn):

  1、 什么是公因式,提公因式提什么?

  公因式的概念要叫學(xué)生明確,公因式是各項(xiàng)系數(shù)的最大公約數(shù)與各項(xiàng)所合相同字母的最底次冪的積。

  方法是:提取公因式是要先找到公因式,再把各項(xiàng)寫成公因式和某個(gè)式子的'積形式。再根據(jù)乘法分配律分解因式。

  2、 講清公式,應(yīng)用時(shí),

  一要判斷;二要化成公式形式。三明確誰(shuí)相當(dāng)于公式中的第一個(gè)數(shù),誰(shuí)相當(dāng)于公式中的第二個(gè)數(shù)。再應(yīng)用相應(yīng)的公式進(jìn)行因式。

  3、對(duì)于較難多項(xiàng)式要提醒學(xué)生要細(xì)心觀察或分組或先整理再進(jìn)行分解因式,應(yīng)用了以上的方法,這段時(shí)間的教學(xué)取得了一定的成績(jī),但也有不足。因此,在今后的教學(xué)中要多留心提示學(xué)生對(duì)因式分解的應(yīng)用。

分解因式的教學(xué)反思9

  一、 教學(xué)設(shè)計(jì)及課堂實(shí)施情況的分析:

  本課的教學(xué)目的是:

  1。 能夠正確理解因式分解的概念,知道它與整式乘法的區(qū)別和聯(lián)系。

  2。 通過(guò)學(xué)生的自主探索,發(fā)現(xiàn)因式分解的基本方法,會(huì)用提公因式法把多項(xiàng)式進(jìn)行因式分解。

  教學(xué)重點(diǎn)是:因式分解的概念,用提公因式分解因式。

  教學(xué)難點(diǎn)是:正確找出多項(xiàng)式中的'公因式和公因式提出后另一個(gè)因式的確定。

  教學(xué)過(guò)程為:

  在引入“因式分解”這一概念時(shí)是通過(guò)復(fù)習(xí)小學(xué)知識(shí)“因數(shù)分解”,接著讓學(xué)生類比得到的。此處的設(shè)計(jì)意圖是類比方法的滲透。

  因式分解與整式乘法的區(qū)別則通過(guò)把等號(hào)兩邊的式子互相轉(zhuǎn)換位置而直觀得出。

  在學(xué)習(xí)提取公因式時(shí)首先讓學(xué)生通過(guò)小組討論得到公因式的結(jié)構(gòu)組成,并且引導(dǎo)學(xué)生得出提取公因式法這一因式分解的方法其實(shí)就是將被分解的多項(xiàng)式除以公因式得到余下的因式的計(jì)算過(guò)程。此處的意圖是充分讓學(xué)生自主探索,合作學(xué)習(xí)。而實(shí)際上,學(xué)生的學(xué)習(xí)情緒還是調(diào)動(dòng)起來(lái)了的。通過(guò)小組討論學(xué)習(xí),盡管語(yǔ)言的組織方面不夠完善,但是均可以得出結(jié)論。

  接著通過(guò)例題講解,最后讓學(xué)生自主完成練習(xí)題,老師當(dāng)堂批改當(dāng)堂講評(píng)。

  上完本課,教學(xué)目的能夠完成,教學(xué)重難點(diǎn)也能逐個(gè)突破。

  二、不足之處:

  本課的設(shè)計(jì),過(guò)多強(qiáng)調(diào)學(xué)生用高度抽象的語(yǔ)言來(lái)描述概念。教學(xué)設(shè)計(jì)引入的過(guò)程可以簡(jiǎn)化。對(duì)于因式分解的概念,學(xué)生可通過(guò)自己的一系列練習(xí)實(shí)踐去體會(huì)到此概念的特點(diǎn),故不需在開(kāi)頭引入的地方多加鋪墊,浪費(fèi)了一定的時(shí)間。在設(shè)計(jì)的時(shí)候腳手架的搭建層次也不夠分明。

  三、教學(xué)機(jī)智方面:

  教學(xué)過(guò)程中,能做到及時(shí)向?qū)W生反饋信息。能走下講臺(tái),做到課內(nèi)批改大部分學(xué)生的練習(xí),且對(duì)于個(gè)別學(xué)習(xí)本課新知識(shí)有困難的學(xué)生能單獨(dú)予以輔導(dǎo)。在批改過(guò)程中,發(fā)現(xiàn)大部分學(xué)生都做錯(cuò)及存在的問(wèn)題能充分利用多媒體向?qū)W生展示,或是馬上板演為全體學(xué)生講解清楚。教學(xué)過(guò)程中,教學(xué)基本功比較扎實(shí)。

分解因式的教學(xué)反思10

  因式分解是人教版八年級(jí)數(shù)學(xué)上冊(cè)一個(gè)重要的內(nèi)容,也是初中階段必考易錯(cuò)的知識(shí)點(diǎn),也是難點(diǎn),學(xué)習(xí)時(shí)節(jié)奏應(yīng)該放慢一些,講課的時(shí)候是一節(jié)課講一種方法,先分析符合條件的形式再練習(xí),主要是以練習(xí)為主。講課的過(guò)程是非常順利的,我以為學(xué)生的掌握程度還好。就出了一些綜合性的練習(xí)題,此時(shí)才發(fā)現(xiàn)效果是不太好的。他們只是看到很表層的東西,而對(duì)于較為復(fù)雜的式子,卻無(wú)從下手。做作業(yè)時(shí)公式用錯(cuò),應(yīng)該注意的地方都沒(méi)有注意,做完以后判斷不出來(lái)是不是已不能再分解了,做題錯(cuò)誤不斷。

  一、反思出現(xiàn)錯(cuò)誤的原因

  1、思想上不重視,覺(jué)得太簡(jiǎn)單,只是將它作為一個(gè)簡(jiǎn)單的內(nèi)容來(lái)看,課后沒(méi)有以足夠的練習(xí)來(lái)鞏固。忽略了學(xué)生的接受能力,也沒(méi)有注意到靈活運(yùn)用方面的鞏固及題型的多樣化。

  2、在學(xué)習(xí)過(guò)程中太過(guò)于強(qiáng)調(diào)形式,按照教師的思路,直接教給學(xué)生解決問(wèn)題的方法,忽略了學(xué)生對(duì)方法的理解。導(dǎo)致他們對(duì)于與公式相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者公式混合使用的式子就難以入手。

  3、靈活運(yùn)用公式的能力較差,沒(méi)有建立整體觀念,對(duì)于公式的形式、字母的含義沒(méi)有真正理解,究其原因,和我布置的作業(yè)難度大與隨堂練習(xí)的單一性及難度低的特點(diǎn)有關(guān)。

  4、因式分解沒(méi)有先想提公因式的習(xí)慣,在結(jié)果也沒(méi)有注意是否進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止。

  二、反思教改措施

  1、備課時(shí)認(rèn)真?zhèn)鋵W(xué)生。在數(shù)學(xué)教學(xué)過(guò)程中,知識(shí)的傳授不應(yīng)只是教師單純地講解與學(xué)生簡(jiǎn)單的模仿,而應(yīng)通過(guò)教學(xué)活動(dòng),讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用過(guò)程,從而使學(xué)生更好的理解知識(shí)的意義,掌握必要的技能,發(fā)展應(yīng)用數(shù)學(xué)的意識(shí),增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。在以后的.教學(xué)中應(yīng)該更多結(jié)合學(xué)生的學(xué)習(xí)情況去調(diào)整教學(xué)進(jìn)度,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢(shì)和不足之處,做到有的放矢。

  2、大膽讓學(xué)生參與,讓學(xué)生在錯(cuò)誤中成長(zhǎng)。在新課學(xué)習(xí)過(guò)程中,首先讓學(xué)生回憶前面在整式的乘法中遇到的乘法公式,比如平方差公式,讓學(xué)生討論怎樣的多項(xiàng)式能用平方差公式因式分解?真正理解公式中的a和b,理解整式乘法與因式分解的關(guān)系。使學(xué)生形成了一種逆向的思維方式。采取由淺入深的方法,讓學(xué)生大膽探索,經(jīng)歷思維過(guò)程,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感,通過(guò)例題的講解、練習(xí)的鞏固、錯(cuò)題的糾正,讓學(xué)生逐步掌握運(yùn)用平方差公式進(jìn)行因式分解。

  3、注重總結(jié)做題步驟。這章節(jié)知識(shí)看起來(lái)很簡(jiǎn)單,但操作性很強(qiáng)的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎(chǔ)不好的學(xué)生需要手把手的教,因此,應(yīng)該引導(dǎo)學(xué)生總結(jié)多項(xiàng)式因式分解的一般步驟:①如果多項(xiàng)式的各項(xiàng)有公因式,那么先提公因式;②如果各項(xiàng)沒(méi)有公因式,那么可嘗試運(yùn)用公式;③如果用上述方法不能分解,那么可以嘗試變形后選擇分解方法;④分解因式,必須進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止。另外,解題步驟教師應(yīng)在黑板上示范,多做題、多小考,反復(fù)強(qiáng)調(diào),在復(fù)習(xí)時(shí)還要加以鞏固。

  總之,通過(guò)這次反思,回顧教學(xué)、分析成敗、查找原因、尋求對(duì)策、以利后行的過(guò)程,我認(rèn)識(shí)到了平時(shí)教學(xué)中的不足,也給我指明了努力的方向,我認(rèn)識(shí)到一個(gè)教師的成長(zhǎng)過(guò)程中離不開(kāi)不斷的教學(xué)反思。在反思中,已有的經(jīng)驗(yàn)得以積累,成為下一步教學(xué)的能力,日積月累,這種駕馭課堂教學(xué)的能力將日益形成。

分解因式的教學(xué)反思11

  一元二次方程是整個(gè)初中階段所有方程的核心。它與二次函數(shù)有密切的聯(lián)系,在以后將應(yīng)用于解分式方程、無(wú)理方程及有關(guān)應(yīng)用性問(wèn)題中。一元二次方程的解法——因式分解法,是建立在一元二次方程解法及因式分解的`基礎(chǔ)上,因此我采取讓學(xué)生帶著問(wèn)題自學(xué)課本,尋找因式分解法解一元二次方程的形式特征,即等號(hào)右邊必須為零,左邊必須為兩個(gè)一次因式的乘積(不能是加減運(yùn)算),利用零的特性,將求一元二次方程的解,通過(guò)因式分解法,轉(zhuǎn)化為求兩個(gè)一元一次方程的解,將未知領(lǐng)域轉(zhuǎn)化為已知領(lǐng)域,滲透了化歸數(shù)學(xué)思想,讓班上中等偏下學(xué)生先上黑板解題,將暴露出來(lái)的問(wèn)題,在全班及時(shí)糾正。本節(jié)課較好地完成了教學(xué)目標(biāo),同時(shí)還培養(yǎng)了學(xué)生看書自學(xué)的能力,取得較好的教學(xué)效果。

  老師提示:

  1.用分解因式法的條件是:方程左邊易于分解,而右邊等于零;

  2.關(guān)鍵是熟練掌握因式分解的知識(shí);

  3.理論依舊是“如果兩個(gè)因式的積等于零,那么至少有一個(gè)因式等于零.

分解因式的教學(xué)反思12

  這節(jié)課學(xué)習(xí)的主要內(nèi)容是運(yùn)用平方差公式進(jìn)行因式分解,學(xué)習(xí)時(shí)如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過(guò)來(lái)運(yùn)用就形成了因式分解的平方差公式,然后就是反復(fù)的運(yùn)用、反復(fù)的操練的話,學(xué)生學(xué)起來(lái)就會(huì)覺(jué)得沒(méi)有味道,對(duì)數(shù)學(xué)有一種厭煩感,所以我就想到了運(yùn)用逆向思維的方法來(lái)學(xué)習(xí)這節(jié)課的內(nèi)容。

  在新課引入的過(guò)程中,我首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接著就讓學(xué)生利用平方差公式做三個(gè)整式乘法的運(yùn)算。然后,我巧妙的將剛才用平方差公式計(jì)算得出的三個(gè)多項(xiàng)式作為因式分解的題目請(qǐng)學(xué)生嘗試一下。只見(jiàn)我的題目一出來(lái),學(xué)生就爭(zhēng)先恐后地回答出來(lái)了。待學(xué)生回答完之后,我馬上追問(wèn)“為什么”時(shí),學(xué)生輕而易舉地講出是將原來(lái)的平方差公式反過(guò)來(lái)運(yùn)用,馬上使學(xué)生形成了一種逆向的思維方式。之后,我就順利地和同學(xué)們一起分析了因式分解中的平方差公式——兩數(shù)的'平方差等于這兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積,討論了“怎樣的多項(xiàng)式能用平方差公式因式分解?”可以說(shuō),對(duì)新問(wèn)題的引入,我是采取了由淺入深的方法,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感。接下來(lái),通過(guò)例題的講解、練習(xí)的鞏固讓學(xué)生逐步掌握了運(yùn)用平方差公式進(jìn)行因式分解。

分解因式的教學(xué)反思13

  在數(shù)學(xué)教學(xué)過(guò)程中,知識(shí)的傳授不應(yīng)只是教師單純地講解與學(xué)生簡(jiǎn)單的模仿,而應(yīng)通過(guò)教學(xué)活動(dòng),讓學(xué)生經(jīng)歷知識(shí)的形成與應(yīng)用過(guò)程,從而使學(xué)生更好的理解知識(shí)的意義,掌握必要的技能,發(fā)展應(yīng)用數(shù)學(xué)的意識(shí),增強(qiáng)學(xué)好數(shù)學(xué)的愿望與信心。根據(jù)新課程標(biāo)準(zhǔn)要求和學(xué)生的起點(diǎn)能力,本節(jié)課的具體目標(biāo)有兩個(gè),一個(gè)是會(huì)用完全平方公式分解因式,一個(gè)是會(huì)綜合運(yùn)用提取公因式法、公式法分解因式。

  在新課引入的過(guò)程中,我以“問(wèn)題情境——建立數(shù)學(xué)模型——解釋、應(yīng)用與拓展”的模式組織課堂教學(xué)。對(duì)新問(wèn)題的引入,我是采取了由淺入深的方法,使學(xué)生對(duì)新知識(shí)不產(chǎn)生任何的畏懼感。接下來(lái),通過(guò)例題的講解、練習(xí)的鞏固讓學(xué)生逐步掌握了運(yùn)用完全平方進(jìn)行因式分解。整堂課教下來(lái)我覺(jué)得自己做的比較好的`幾點(diǎn)是:

  1、突顯特點(diǎn)。

  這節(jié)課的重點(diǎn)是運(yùn)用完全平方公式分解因式,而完全平方式的判定是關(guān)鍵。所以我比較重視完全平方式特點(diǎn)分析,應(yīng)用。尤其強(qiáng)調(diào)完全平方式標(biāo)準(zhǔn)模式的書寫,這也是學(xué)生思維過(guò)程的暴露,有利于中等及中等以下學(xué)生對(duì)新知識(shí)的掌握,提高學(xué)生解題的準(zhǔn)確率,對(duì)提高那些偏理科的數(shù)學(xué)尖子生的表達(dá)能力也有好處。對(duì)以后靈活掌握用配方法解一元二次方程,求代數(shù)式最值等知識(shí)有正向遷移作用。有利于學(xué)生思維能力的發(fā)展。

  2、自主訓(xùn)練。

  我以先引導(dǎo)學(xué)生分析多項(xiàng)式特點(diǎn),再讓學(xué)生嘗試分解因式的方式完成例題教學(xué)。對(duì)課本上的練習(xí)題放手讓學(xué)生自己完成,體現(xiàn)了以教師為主導(dǎo),以學(xué)生為主體,及時(shí)反饋,及時(shí)鞏固教學(xué)方式。

  3、及時(shí)歸納。

  根據(jù)初二學(xué)生認(rèn)知特點(diǎn),教學(xué)中我給予學(xué)生及時(shí)的多歸納,總結(jié),使學(xué)生掌握一定的條理性和規(guī)律性,有利于學(xué)生的創(chuàng)新和發(fā)展。如完全平方式特點(diǎn)形象概括(口訣記憶法,結(jié)構(gòu)的對(duì)稱美),因式分解步驟概括(一提二套三查),以及換元思想,配方法的提出。

  4、重視動(dòng)態(tài)生成。

  教學(xué)中我發(fā)現(xiàn)學(xué)生們思維很活躍,接受能力比較強(qiáng),我對(duì)例題教學(xué)作了及時(shí)調(diào)整,由師生合作完成改為先引導(dǎo)學(xué)生觀察、分析多項(xiàng)式特點(diǎn),再讓學(xué)生自主完成解題過(guò)程。

  5、根據(jù)學(xué)生的心理特點(diǎn)和實(shí)踐認(rèn)知水平,努力為他們創(chuàng)造成功的條件。

  在教學(xué)過(guò)程中采用類比、探索式教學(xué),輔以講練結(jié)合,師生互動(dòng),總而言之,努力營(yíng)造出平等、輕松、活潑的教學(xué)氛圍。從新課標(biāo)評(píng)價(jià)理念出發(fā),抓住學(xué)生語(yǔ)言、思想等方面的亮點(diǎn)給予幫助、鼓勵(lì)、提高學(xué)生學(xué)數(shù)學(xué),用數(shù)學(xué)的信心。

  不足之處:

  1、探索用于因式分解的完全平方公式及特點(diǎn)分析時(shí),沒(méi)有把握好時(shí)間,這是導(dǎo)致后面時(shí)間不夠的原因之一。

  2、課堂預(yù)設(shè)沒(méi)有完成,根據(jù)學(xué)生特點(diǎn),我設(shè)計(jì)了這樣一個(gè)教學(xué)環(huán)節(jié):根據(jù)完全平方式特點(diǎn),請(qǐng)學(xué)生構(gòu)造一個(gè)完全平方式,并分解因式。當(dāng)學(xué)生基本完成后,組織學(xué)生同桌交流,交流方式為:請(qǐng)把你的構(gòu)思告訴同伴,先一個(gè)聽(tīng),一個(gè)評(píng)。然后調(diào)換角色。由于時(shí)間沒(méi)把握好,導(dǎo)致本環(huán)節(jié)沒(méi)有完成。

  3、語(yǔ)言不夠簡(jiǎn)練,說(shuō)得太多,沒(méi)有注意糾正學(xué)生書寫錯(cuò)誤。學(xué)生作業(yè)過(guò)程中有兩處出錯(cuò),我沒(méi)發(fā)現(xiàn)。

  4、公式中的字母a,b可以表示數(shù),單項(xiàng)式,多項(xiàng)式的廣泛意義只是讓學(xué)生體驗(yàn),沒(méi)有讓學(xué)生開(kāi)口表達(dá)。

  以上是我上這節(jié)課的一些教學(xué)反思,在以后的教學(xué)中我會(huì)更多的結(jié)合學(xué)生的學(xué)習(xí)情況,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢(shì)和不足,因材施教,更好的提高課堂效率。

分解因式的教學(xué)反思14

  因式分解這部分的內(nèi)容是八年級(jí)數(shù)學(xué)第一學(xué)期重難點(diǎn),也是初中階段必考易錯(cuò)的知識(shí)點(diǎn),也是難點(diǎn),學(xué)習(xí)時(shí)節(jié)奏應(yīng)該放慢一些,講課的時(shí)候是一節(jié)課講一種方法,先分析符合條件的形式再練習(xí),主要是以練習(xí)為主。我以為學(xué)生的掌握程度還好。就出了一些綜合性的練習(xí)題,此時(shí)才發(fā)現(xiàn)效果是不太好的。

  課后,我總結(jié)的原因有以下四點(diǎn):

  1、思想上不重視,因?yàn)閷?duì)于公式的互換覺(jué)得太簡(jiǎn)單,只是將它作為一個(gè)簡(jiǎn)單的內(nèi)容來(lái)看,所以課后沒(méi)有以足夠的練習(xí)來(lái)鞏固。

  2、在學(xué)習(xí)過(guò)程中太過(guò)于強(qiáng)調(diào)形式,反而如何創(chuàng)造條件來(lái)滿足條件忽略了。導(dǎo)致他們對(duì)于與公式相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的'或者多種公式混合使用的式子就難以入手。

  3、靈活運(yùn)用公式(特別與冪的運(yùn)算性質(zhì)相結(jié)合的公式)的能力較差,

  4、因式分解沒(méi)有先想提公因式的習(xí)慣,在結(jié)果也沒(méi)有注意是否進(jìn)行到每一個(gè)多項(xiàng)式因式都不能再分解為止。

  因式分解是一個(gè)重要的內(nèi)容,也是難點(diǎn),我認(rèn)為我對(duì)教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒(méi)有注意到計(jì)算題在練習(xí)方面的鞏固及題型的多樣化。在以后的教學(xué)中應(yīng)該更多結(jié)合學(xué)生的學(xué)習(xí)情況去調(diào)整教學(xué)進(jìn)度,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢(shì)和不足之處。

【分解因式的教學(xué)反思】相關(guān)文章:

分解因式教學(xué)反思04-05

《因式分解》教學(xué)反思01-23

因式分解的應(yīng)用01-23

《分解因式》中考熱點(diǎn)透視01-23

數(shù)學(xué)教案:《因式分解》02-21

《二次三項(xiàng)式的因式分解(1)》教學(xué)反思02-19

因式分解中的常見(jiàn)錯(cuò)誤剖析12-14

第五冊(cè)分解因式法01-23

數(shù)學(xué)教案:《因式分解》7篇02-21