- 相關推薦
一種基于FPGA的A超數(shù)字式探傷系統(tǒng)的研究
摘要:簡略介紹了超聲探傷的基本原理,并在此基礎上提出了一種基于FPGA的A型數(shù)字式超聲系統(tǒng)的構成方式,著重介紹了系統(tǒng)的硬件構成。其中,基于FPGA的數(shù)字信號處理模塊從根本上解決了傳統(tǒng)A型探傷儀的采樣速度低、處理速度慢的問題。關鍵詞:MCS196kc單片機 無損檢測 超聲波探傷 FPGA 數(shù)字信號處理 DAC曲線
超聲波是一種機械波,機械振動與波動是超聲波探傷的物理基礎。超聲波在媒介中傳播,有波的疊加、反射、折射、透射、衍射、(范文先生網m.htc668.com收集整理)散射及吸收衰減等特性,一般遵循幾何光學的原則。A超探傷儀采用幅度調制(Amplitude Modulation)顯示,在顯示屏幕上以橫坐代表被測物的深度,縱坐標代表回放脈沖的幅度。
超聲波探傷的方法很多,按其原理分類可分為脈沖反射法、穿透法和共振法。本系統(tǒng)采用脈沖反射法。脈沖反射法是一種利用超聲波探頭發(fā)射脈沖到被檢測試塊內,根據反射波的情況來檢測試件缺陷的方法。脈沖反射法又包括缺陷回波法、底波高度法和多次底波法等,這里只介紹缺陷回波法。圖1是缺陷回波法示意圖。當試件完好時,超聲波可順利傳播到達底面,探傷圖形中只有表面發(fā)射脈沖T及底面回波B兩個信號,如圖1(a)所示;若試件中存在缺陷,在探傷圖形中,底面回波前有表示缺陷的回波F,如圖1(b)所示。
整個系統(tǒng)的硬件原理結構如圖2所示,主要包括模擬和數(shù)字兩部分,以下分別介紹。
1 模擬部分
該系統(tǒng)的模擬部分主要由發(fā)射電路、限幅機構、高頻放大、帶通濾波、檢波等幾部分組成。
圖2 超聲檢測系統(tǒng)的硬件構成
發(fā)射電路主要用來產生高壓窄脈沖信號(400V),以激勵超聲波探頭發(fā)射超聲波。由于不同探頭的諧振頻率不同,所以要求脈沖激勵信號的寬度可調。在發(fā)射電路的設計中,由FPGA提供給發(fā)射電路低壓可調脈寬的激勵信號,再由發(fā)射電路將其轉換為高壓的窄脈沖激勵信號,其脈沖寬度可變。
隔幅機構是對某些過大的回波電信號進行電壓幅值的限制,以免電壓過大影響后繼高頻放大器的正常工作,甚至燒毀電路器件。限幅電路的限幅幅值為±3V左右。
高頻放大電路用來對回波電信號進行放大,放大范圍可從-10dB到110dB。由于測試對象鋼板的厚度不一,故回波信號的強弱也不定。所以,要把高頻放大電路設計成可以動態(tài)控制增益值的程控放大電路,可通過MCU來實現(xiàn)。
帶通濾波電路對信號放大過程中引入的噪聲進行控制。由于超聲探頭的發(fā)射頻率范圍較寬(400kHz~10MHz),如果使放大器通帶范圍固定為400kHz~10MHz,勢必影響濾波效果。在本文中,設計了可程控的兩組帶通濾波電路,其帶寬范圍分別為400kHz~2.5MHz和2.5MHz~10MHz。
超聲波探傷系統(tǒng)回波波形的顯示方式通常有兩種:射頻顯示(不檢波顯示)和視頻顯示(檢波顯示),如圖3所示。射頻顯示可以保持波形狀態(tài),有助于缺陷性質的識別;而視頻顯示則有利于峰值采集,以便確定缺陷當量。為了分別滿足這兩種顯示的要求,在設計中加入了檢波與非檢波的切換電路,電路的切換受MCU控制。
2 數(shù)字部分
2.1 微控制單元
該系統(tǒng)的數(shù)字部分以微控制單元(MCU)作為整個超聲檢測系統(tǒng)的控制核心。在此選用了Intel公司的16位單片機MCS196kc,該MCU不但具有16位的數(shù)據運算功能,而且提供了強大的控制能力。其實現(xiàn)有的功能主要有:(1)控制顯示模塊和鍵盤接口模塊,實現(xiàn)人機界面的交互;(2)完成檢測結果的存儲、打;(3)提供與微機之間可靠的數(shù)據傳輸;(4)實現(xiàn)對電源模塊的管理;(5)調節(jié)模擬部分中運放的放大增益倍數(shù)。
2.2 基于FPGA的實時數(shù)字信號處理單元
FPGA在整個檢測系統(tǒng)中是數(shù)字信號處理的核心部件,借助其用戶可編程特性及很高的內部時鐘頻率,設計了專用于超聲檢測的數(shù)據處理芯片,如圖4所示。該芯片主要由以下幾個功能模塊構成:(1)數(shù)據處理所需的參數(shù)寄存器堆;(
2)窄脈沖發(fā)生模塊;(3)采樣延遲控制模塊;(4)數(shù)據采集、存儲、壓縮模塊;(5)進波門、DAC缺陷自動判斷模塊;(6)失波門缺陷自動判斷模塊,F(xiàn)結合圖5簡述圖4所示的信號處理過程:MCU以一定的頻率不斷向FPGA傳送方波脈沖信號,每一個脈沖信號將觸動一次檢測過程。脈沖信號的上升沿使窄脈沖發(fā)生電路開始工作,產生窄脈沖激勵信號。激勵信號產生以后,由于超波需要一段延時時間才能經過耦合劑到達探測工件,所以在窄脈沖信號產生以后,延時電路將起作用,用以控制采樣開始的時間。經過(t2-t1)的延時,超聲波到達工件表面,采樣開始。處理單元首先根據所檢測到的鋼板厚度選擇相應的數(shù)據處理模塊。如果鋼板為溥型板材,數(shù)據采集、存儲模塊將工作;如果鋼板為中厚板材,數(shù)據采集、壓縮、存儲模塊將運行。采樣過程結束后,在(t4-t3)的時間段內,處理單元自動對該次采樣中的回波信號進行缺陷判斷。如果發(fā)現(xiàn)有缺陷或失波存在,探傷系統(tǒng)會給出報警信號,通知MCU,并結束這一次的檢測過程,等待下一個由MCU傳來的脈沖信號,從而開始新一輪的檢測過程。
3 超聲探傷系統(tǒng)的軟件
在整個數(shù)字式超聲探傷系統(tǒng)中,軟件的設計占有重要的地位。為此采用了匯編語言和VB高級語言分別對MCU和PC機進行編程。整個軟件系統(tǒng)包括工作主界面和參數(shù)設置界面。其中,工作界面主要包括:增益/補償、聲程/標度設計抑制/聲速、閘門設計DAC曲線擬合、回波波形顯示缺陷記錄、缺陷回放、缺陷報告打印、與PC機間的數(shù)據通訊。參數(shù)設置界面主要包括:探頭設置、儀器設計、頻道設置、密碼設置和時鐘校準。
當超聲探頭的發(fā)射頻率在10MHz以上時,以現(xiàn)有的采樣速率(40MHz)進行采樣就很有可能造成回波信號波峰值的丟失。在現(xiàn)有的設計方案中,制約速度的瓶頸主要集中在將采樣得到的回波信號值轉存到外部的RAM中上,受RAM速度制約,整個系統(tǒng)的工作頻率難以進一步提高。
【一種基于FPGA的A超數(shù)字式探傷系統(tǒng)的研究】相關文章:
基于FPGA的高速高精度頻率測量的研究08-06
一種基于FPGA的誤碼性能測試方案08-06
基于FPGA的總線型LVDS通信系統(tǒng)設計08-06
基于MicroBlaze軟核的FPGA片上系統(tǒng)設計08-06
基于FPGA的快速傅立葉變換08-06