(優(yōu))小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案15篇
作為一名人民教師,常常要根據(jù)教學(xué)需要編寫教案,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。我們該怎么去寫教案呢?以下是小編為大家整理的小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案1
教材分析
本節(jié)課屬于空間與圖形知識的教學(xué),是小學(xué)階段幾何知識的重難點部分,是小學(xué)學(xué)習(xí)立體圖形體積計算的飛躍,通過這部分知識的教學(xué),可以發(fā)展學(xué)生的空間觀念、想象能力,較深入地理解幾何體體積推導(dǎo)方法的新領(lǐng)域,為學(xué)生進一步學(xué)習(xí)幾何知識奠定良好的基礎(chǔ)。
本節(jié)內(nèi)容是在學(xué)生了解了圓錐的特征,掌握了圓柱體積的計算方法基礎(chǔ)上進行教學(xué)的,教材重視類比,轉(zhuǎn)化思想的滲透,直觀引導(dǎo)學(xué)生經(jīng)歷“猜測、類比、觀察、實驗、探究、推理、總結(jié)”的探索過程,理解掌握求圓錐體積的計算公式,會運用公式計算圓錐的體積。這樣不僅幫助學(xué)生建立空間觀念,還能培養(yǎng)學(xué)生抽象的邏輯思維能力,激發(fā)學(xué)生的想象力。
設(shè)計理念
數(shù)學(xué)課程標(biāo)準(zhǔn)中指出:應(yīng)放手讓學(xué)生經(jīng)歷探索的過程,在觀察、操作、推理、歸納、總結(jié)過程中掌握知識、發(fā)展空間觀念,從而提高學(xué)生自主解決問題的能力。
教學(xué)目標(biāo)
1、知識與技能:掌握圓錐的體積計算公式,能運用公式求圓錐的體積,并且能運用這一知識解決生活中一些簡單的實際問題。
2、過程與方法:通過“直覺猜想——試驗探索——合作交流——得出結(jié)論——實踐運用”探索過程,獲得圓錐體積的推導(dǎo)過程和學(xué)習(xí)的方法。
3、情感、態(tài)度與價值觀:培養(yǎng)學(xué)生勇于探索的求知精神,感受到數(shù)學(xué)來源于生活,能積極參與數(shù)學(xué)活動,自覺養(yǎng)成與人合作交流與獨立思考的良好習(xí)慣。
教學(xué)重點:
圓錐體積公式的理解,并能運用公式求圓錐的體積。
教學(xué)難點:
圓錐體積公式的推導(dǎo)
學(xué)情分析
學(xué)生已學(xué)習(xí)了圓柱的體積計算,在教學(xué)中采用放手讓學(xué)生操作、小組合作探討的形式,讓學(xué)生在研討中自主探索,發(fā)現(xiàn)問題并運用學(xué)過的圓柱知識遷移到圓錐,得出結(jié)論。所以對于新的知識教學(xué),他們一定能表現(xiàn)出極大的熱情。
教法學(xué)法:
試驗探究法、小組合作學(xué)習(xí)法
教具學(xué)具準(zhǔn)備:
多媒體課件,等底等高圓柱圓錐各6個,水槽6個(裝有適量的水)
教學(xué)課時:
1課時
教學(xué)流程
一、回顧舊知識
1、你能計算哪些規(guī)則物體的體積?
2、你能說出圓錐各部分的名稱嗎?
設(shè)計意圖通過對舊知識的.回顧,進一步為學(xué)習(xí)新知識作好鋪墊。
二、創(chuàng)設(shè)情景、激發(fā)激情
展示磚工師傅使用的鉛錘體(圓錐),你能測試出它的體積嗎?
設(shè)計意圖以生活中的數(shù)學(xué)的形式進行設(shè)置情景,引疑激趣遷移,激發(fā)學(xué)生好奇心和求知欲。(揭示課題:圓錐的體積)
三、試驗探究、合作學(xué)習(xí)(探討圓柱與圓錐體積之間的關(guān)系)
探究一:(分組試驗)圓柱與圓錐的底和高各有什么關(guān)系?
1、猜想:猜想它們的底、高之間各有什么關(guān)系?
2、試驗驗證猜想:每組拿出圓柱、圓錐各1個,分組試驗,試驗后記錄結(jié)果。
3、小組匯報試驗結(jié)論,集體評議。(注意匯報出試驗步驟和結(jié)論)
4、教師介紹數(shù)學(xué)專用名詞:等底等高。
設(shè)計意圖通過探究一活動,初步突破了本課的難點,為探究二活動活動開展作好了鋪墊。
探究二:(分組試驗)研討等底等高圓柱與圓錐的體積之間有什么關(guān)系?
1、大膽猜想:等底等高圓柱與圓錐體積之間的關(guān)系
2、試驗驗證猜想:每組拿出水槽(裝有適量的水),通過試驗,你發(fā)現(xiàn)了圓柱的體積和圓錐的體積有什么關(guān)系?邊試驗邊記錄試驗數(shù)據(jù)。(教師巡視指導(dǎo)每組的試驗)
3、小組匯報試驗結(jié)論。(提醒學(xué)生匯報出試驗步驟)
教學(xué)預(yù)設(shè):
。1)圓椎的體積是圓柱體積的3倍;
。2)圓錐的體積是圓柱體積的三分之一;
。3)當(dāng)?shù)鹊椎雀邥r,圓柱體積是圓錐體積的3倍,或圓錐的體積是圓柱體積的三分之一等等。
4、通過學(xué)生匯報的試驗結(jié)論,分析歸納總結(jié)試驗結(jié)論。
5、你能用字母表示出它們的關(guān)系嗎?要求圓錐的體積必須知道什么條件呢?(學(xué)生反復(fù)朗讀公式)
設(shè)計意圖
通過學(xué)生分組試驗探究,在實驗過程中自主猜想、感知、驗證、得出結(jié)論的過程,充分調(diào)動學(xué)生主動探索的意識,激發(fā)了學(xué)生的求知欲,培養(yǎng)了學(xué)生的動手能力,突破了本課的難點,突出了教學(xué)的重點。
探究三:(伸展試驗———演示試驗)研討不等底等高圓柱與圓錐題的體積是否具有三分之一的關(guān)系。
1、觀察老師的試驗,你發(fā)現(xiàn)了圓柱與圓錐的底和高各有什么關(guān)系?
2、觀察老師的試驗,你發(fā)現(xiàn)了不等底等高的圓柱與圓錐的體積之間還有三分之一的關(guān)系嗎?
3、學(xué)生通過觀看試驗匯報結(jié)論。
4、教師引導(dǎo)學(xué)生分析歸納總結(jié)圓錐體積是圓柱體積的三分之一所存在的條件。
5、結(jié)合探究二和探究三,進一步引導(dǎo)學(xué)生掌握圓錐的體積公式。
設(shè)計意圖
通過教師課件演示試驗,進一步讓學(xué)生明白圓錐體積是圓柱體積的三分之一所存在的條件,更進一步加強學(xué)生對圓錐體積公式理解,再次突出了本課的難點,培養(yǎng)了學(xué)生的觀察能,分析能力,邏輯思維能力等,進一步讓學(xué)生從感性認識上升到了理性認識。
四、實踐運用、提升技能
1、判斷題:題目內(nèi)容見多媒體展示獨立思考———抽生匯報———說明理由———師生評議。
2、口答題:題目內(nèi)容見多媒體展示獨立思考———抽生匯報———學(xué)生評議。
3、拓展運用:課本例題3學(xué)生分析題意———小組合作解答———學(xué)生解答展示———師生評議。
設(shè)計意圖通過判斷題、口答題題型的訓(xùn)練,及時檢查學(xué)生對所學(xué)知識的理解程度,鞏固了圓錐體的體積公式。而拓展題型具有開放性給學(xué)生提供思維發(fā)展的空間,讓他們有跳起來摘果子的機會,以達到培養(yǎng)能力、發(fā)展個性的目的。
五、談?wù)勈斋@:這節(jié)課你學(xué)到了什么呢?
六、課堂作業(yè):
1、做在書上作業(yè):練習(xí)四第4、7題
2、坐在作業(yè)本上作業(yè):練習(xí)四第3題
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案2
教學(xué)目標(biāo)
1、通過練習(xí)學(xué)生進一步理解、掌握圓錐的特征及體積計算公式。
2、能正確運用公式計算圓錐的體積,并解決一些簡單的實際問題。
3、培養(yǎng)學(xué)生認真審題,仔細計算的習(xí)慣。
重點:進一步掌握圓錐的體積計算及應(yīng)用
難點:圓錐體積公式的靈活運用
教學(xué)過程
一、知識回顧
1、前幾節(jié)課我們認識了哪兩個圖形?你能說說有關(guān)它們的知識嗎?
2、學(xué)生說,教師板書:
圓錐圓柱
特征1個底面2個
扇形側(cè)面展開長方形
體積V=1/3SHV=SH
二、提出本節(jié)課練習(xí)的內(nèi)容和目標(biāo)
三、課堂練習(xí)
。ㄒ唬、基本訓(xùn)練
1、填空課本1----2(獨立完成后校對)
2、圓錐的體積計算
已知:底面積、直徑、周長與高求體積(小黑板出示)
(二)、綜合訓(xùn)練:
1、判斷
。1)圓錐的體積等于圓柱的'1/3
(2)長方體、正方體、圓柱和圓錐的體積公式都可用V=SH
。3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升
。4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米
2、應(yīng)用:練習(xí)四第45題任選一題
3、發(fā)展題:獨立思考后校對
四課堂小結(jié):說說本節(jié)課的收獲
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案3
教學(xué)目標(biāo):
1、通過實驗發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關(guān)系,從而得出體積的計算公式,能運用公式解答有關(guān)實際問題。
2、通過動手操作參與實驗,發(fā)現(xiàn)等底等高的圓柱和圓錐體積之間的關(guān)系,并通過猜想、探索和發(fā)現(xiàn)的過程,推導(dǎo)出圓錐的體積公式。
3、通過實驗,引導(dǎo)學(xué)生探索知識的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化思想,感受數(shù)學(xué)方法的內(nèi)在魅力,激發(fā)學(xué)生參加探索的興趣。
教學(xué)重點:
通過實驗的方法,得到計算圓錐的.體積。
教學(xué)難點:
運用圓錐的體積公式進行正確地計算。
教學(xué)準(zhǔn)備:
等底等高的圓柱和圓錐容器模型各一個。
教學(xué)過程:
一、復(fù)習(xí)導(dǎo)入
師:同學(xué)們,請看大屏幕(課件出示圓柱削成最大圓錐)。
1、圓柱體積的計算公式是什么?(指名學(xué)生回答)
2、圓錐有什么特征?
同學(xué)們,圓柱的體積我們已經(jīng)知道怎么求,那與它等底等高的圓錐的體積同學(xué)們知道怎么求嗎?讓我們一同走進圓錐的體積與等底等高的圓柱體體積有什么關(guān)系的知識課堂吧。ò鍟簣A錐的體積)
二、探究新知
課件出示等底等高的圓柱和圓錐
1、引導(dǎo)學(xué)生觀察:這個圓柱和圓錐有什么相同的地方?
學(xué)生回答:它們是等底等高的。
猜想:
(1)你認為圓錐體積的大小與它的什么有關(guān)?
。2)你認為圓錐的體積和什么圖形的體積關(guān)系最密切?猜一猜它們的體積有什么關(guān)系?
2、學(xué)生動手操作實驗
。1)用圓錐裝滿水(要裝滿但不能溢出來)往圓柱倒,倒幾次才把圓柱倒?jié)M?
。2)通過實驗,你發(fā)現(xiàn)了什么?
小結(jié):通過實驗我們發(fā)現(xiàn)圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是與它等底等高圓柱體積的三分之一。
3、教師課件邊演示邊敘述:現(xiàn)在圓錐和圓柱里都是空的?纯磮A柱和圓錐有什么相同的地方?(等底等高)請同學(xué)們注意觀察,用圓錐裝滿水往圓柱里倒,倒幾次才把圓柱倒?jié)M?
問:把圓柱裝滿一共倒了幾次?
生:3次。
師:這說明了什么?
生:這說明圓錐的體積是和它等底等高的圓柱體積的三分之一。(板書:圓錐的體積=1/3×圓柱體積)
師:圓柱的體積等于什么?
生:等于“底面積×高”。
師:那么,圓錐的體積可以怎樣表示呢?(板書:圓錐的體積=1/3×底面積×高)
師:用字母應(yīng)該怎樣表示?(V=1/3sh)
師:在這個公式里你覺得哪里最應(yīng)該注意?
三、教學(xué)試一試
一個圓柱形零件,底面積是170平方厘米,高是12厘米。這個零件的體積是多少立方厘米?
四、鞏固練習(xí)
1、計算圓錐的體積
2、判一判
3、算一算
4、拓展延伸
五、總結(jié)
通過這節(jié)課的學(xué)習(xí),你有什么收獲呢?
六、板書:
圓錐的體積=圓柱的體積×1/3
圓錐的體積=底面積×高×1/3
用字母表示V=1/3sh
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案4
【教學(xué)目標(biāo)】
1、使學(xué)生理解求圓錐體積的計算公式.
2、會運用公式計算圓錐的體積.
【教學(xué)重點】
圓錐體體積計算公式的推導(dǎo)過程.
【教學(xué)難點】
正確理解圓錐體積計算公式.
【教學(xué)步驟】
一、鋪墊孕伏
1、提問:
。1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學(xué)生指圖說出圓錐的底面、側(cè)面和高.
2、導(dǎo)入:同學(xué)們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
(一)指導(dǎo)探究圓錐體積的計算公式.
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學(xué)都準(zhǔn)備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關(guān)系,并想一想,通過實驗?zāi)惆l(fā)現(xiàn)了什么?
2、學(xué)生分組實驗
3、學(xué)生匯報實驗結(jié)果(課件演示:圓錐體的體積1、2、3、4、5)
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
4、引導(dǎo)學(xué)生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3.
5、推導(dǎo)圓錐的體積公式:
圓錐的體積是和它等底等高圓柱體積的1/3
V=1/3Sh
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習(xí)
圓錐的底面積是5,高是3,體積是()
圓錐的底面積是10,高是9,體積是()
(二)教學(xué)例1
1、例1一個圓錐形的零件,底面積是19平方厘米,高是12厘米.這個零件的體積是多少?
學(xué)生獨立計算,集體訂正.
2、反饋練習(xí):一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
。1)已知圓錐的底面半徑和高,求體積.
。2)已知圓錐的.底面直徑和高,求體積.
。3)已知圓錐的底面周長和高,求體積.
4、反饋練習(xí):一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
三、全課小結(jié)
通過本節(jié)的學(xué)習(xí),你學(xué)到了什么知識?(從兩個方面談:圓錐體體積公式的推導(dǎo)方法和公式的應(yīng)用)
四、隨堂練習(xí)
1、求下面各圓錐的體積.
(1)底面面積是7.8平方米,高是1.8米.
。2)底面半徑是4厘米,高是21厘米.
。3)底面直徑是6分米,高是6分米.
【板書設(shè)計】
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3.
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案5
學(xué)情分析
美國教育心理學(xué)家奧蘇伯爾說:如果我不得不把教育心理學(xué)還原為一條原理的話,影響學(xué)習(xí)的最重要的原因是學(xué)生已經(jīng)知道了什么,我們應(yīng)當(dāng)根據(jù)學(xué)生原有的知識狀況進行教學(xué)。本節(jié)課是學(xué)生在認識了圓錐特征的基礎(chǔ)上進行學(xué)習(xí)的。圓錐高的概念仍是本節(jié)課學(xué)習(xí)的一個重要知識儲備,因而有必要在復(fù)習(xí)階段利用直觀教具通過切、摸等活動,幫助學(xué)生理解透徹。學(xué)生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關(guān)系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點。為凸現(xiàn)這一條件,可借助體積關(guān)系不是3倍的實驗器材,引導(dǎo)學(xué)生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進行深度信息加工。
教學(xué)過程
一、復(fù)習(xí)舊知,鋪墊孕伏
1.(電腦出示一個透明的圓錐)仔細觀察,圓錐有哪些主要特征呢?
2.復(fù)習(xí)高的.概念。
(1)什么叫圓錐的高?
(2)請一位同學(xué)上來指出用橡皮泥制作的圓錐體模型的高。(提供刀片、橡皮泥模型等,幫助學(xué)生進行操作)
評析:
圓錐特征的復(fù)習(xí)簡明扼要。圓錐高的復(fù)習(xí)頗具新意,通過動手操作,從而使抽象的高具體化、形象化。
二、創(chuàng)設(shè)情境,引發(fā)猜想
1. 電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)
2. 引導(dǎo)學(xué)生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當(dāng)?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學(xué)交流一下,再向全班同學(xué)匯報)
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學(xué)習(xí)了圓錐的體積后,就會弄明白這個問題。
評析:
數(shù)學(xué)課程要關(guān)注學(xué)生的生活經(jīng)驗和已有的知識體驗,教師在引入新知時,創(chuàng)設(shè)了一個有趣的童話情境,使枯燥的數(shù)學(xué)問題變?yōu)榛钌纳瞵F(xiàn)實,讓數(shù)學(xué)課堂充滿生命活力。學(xué)生在判斷公平與不公平中蘊涵了對等底等高圓柱和圓錐體積關(guān)系的猜想,他們在這一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個富有挑戰(zhàn)性的數(shù)學(xué)問題,從而引發(fā)了學(xué)生進一步探究的強烈欲望。
三、自主探索,操作實驗
下面,請同學(xué)們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關(guān)系,解決電腦博士給我們提出的問題。
出示思考題:
。1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關(guān)系?
(2)你們的小組是怎樣進行實驗的?
1. 小組實驗。
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案6
一、學(xué)習(xí)目標(biāo)
。ㄒ唬⿲W(xué)習(xí)內(nèi)容
《義務(wù)教育教科書數(shù)學(xué)》(人教版)六年級下冊第33—34頁的例2和例3。例2是以探索圓錐的體積與和它等底等高的圓柱體積之間的關(guān)系為例,讓學(xué)生在探究過程中獲得數(shù)學(xué)活動經(jīng)驗。例3則是在例2的基礎(chǔ)上運用圓錐的體積公式解決實際問題,豐富解決問題的策略,感受數(shù)學(xué)與生活密不可分的聯(lián)系。
。ǘ┖诵哪芰
在探索圓錐的體積與和它等底等高的圓柱體積之間的關(guān)系的過程中,滲透轉(zhuǎn)化思想,發(fā)展推理能力。
。ㄈ⿲W(xué)習(xí)目標(biāo)
1.借助已有的知識經(jīng)驗,通過觀察、猜測、實驗,探求出圓錐體積的計算公式,并能運用公式正確地解決簡單的實際問題。
2.在圓錐體積計算公式的推導(dǎo)過程中,進一步理解圓錐與圓柱的聯(lián)系,發(fā)展推理能力。
。ㄋ模⿲W(xué)習(xí)重點
圓錐體積公式的理解,并能運用公式求圓錐的體積。
。ㄎ澹⿲W(xué)習(xí)難點
圓錐體積公式的推導(dǎo)
。┡涮踪Y源
實施資源:《圓錐的體積》名師課件、若干同樣的圓柱形容器、若干與圓柱等底等高和不等底等高的圓錐形容器,沙子和水
二、教學(xué)設(shè)計
。ㄒ唬┱n前設(shè)計
1.復(fù)習(xí)任務(wù)
。1)我們學(xué)過哪些立體圖形?它們的體積計算公式分別是什么?請你整理出來。
。2)這些立體圖形的體積計算公式是怎么推導(dǎo)的?運用了什么方法?請整理出來。
設(shè)計意圖:通過復(fù)習(xí)物體的體積公式以及圓錐體積的推導(dǎo),深化轉(zhuǎn)化思想在生活中的應(yīng)用,也為圓錐體積的推導(dǎo)埋下伏筆。
。ǘ┱n堂設(shè)計
1.情境導(dǎo)入
。ǔ鍪旧扯眩
師:你們有辦法知道這個沙堆的體積嗎?
學(xué)生自由發(fā)言,提出各種辦法。
預(yù)設(shè):把它放進圓柱形的容器里,測量出圓柱的底面積和高就可以知道等等
師:能不能像其它立體圖形一樣,探究出一個公式來求圓錐的體積呢?這節(jié)課我們來研究。板書課題
設(shè)計意圖:利用情境引入,激發(fā)學(xué)生求知的欲望,引出求圓錐體積公式的必要性。
2.問題探究
(1)觀察猜想
師:你們覺得,圓錐的體積和我們認識的哪種立體圖形的體積可能有關(guān)?為什么?
學(xué)生自由發(fā)言。
。▓A柱,圓柱的底面是圓,圓錐的底面也是圓……)
師:認真觀察,它們之間的體積會有什么關(guān)系?(出示圓柱、圓錐的教具)
學(xué)生猜想。
。2)操作驗證
師:圓錐的體積究竟和圓柱的體積有什么關(guān)系?請同學(xué)們親自驗證。
實驗用具:教師準(zhǔn)備等底等高和不等底等高的各種圓柱、圓錐模具,一些水。
實驗要求:各組根據(jù)需要先上臺選用實驗用具,然后小組成員分工合作,做好實驗數(shù)據(jù)的收集和整理。
1號圓錐2號圓錐3號圓錐
次數(shù)
與圓柱是否等底等高
學(xué)生選過實驗用具后進行試驗,教師巡視,發(fā)現(xiàn)問題及時指導(dǎo),收集有用信息。
(3)交流匯報
、賲R報實驗結(jié)果
各組匯報實驗結(jié)果。
、诜治鰯(shù)據(jù)
師:觀察全班實驗的數(shù)據(jù),你能發(fā)現(xiàn)什么?
。ù蟛糠謱嶒灥慕Y(jié)果是能裝下三個圓錐的水,也有兩次多或四次等)
師:什么情況下,圓柱剛好能裝下三個圓錐的水?
各組互相觀察各自的圓柱和圓錐,發(fā)現(xiàn)只有在等底等高的情況下,圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。
師:是不是所有符合等底等高條件的圓柱、圓錐,它們的體積之間都具有這種關(guān)系呢?
老師用標(biāo)準(zhǔn)教具裝沙土再演示一次,加以驗證。
、蹥w納小結(jié)
師:誰能來總結(jié)一下,通過實驗我們得到的結(jié)果是什么?
。4)公式推導(dǎo)
師:你能把上面的試驗結(jié)果用式子表示嗎?(學(xué)生嘗試)
老師結(jié)合學(xué)生的回答板書:
圓錐的體積公式及字母公式:
圓錐的體積=×圓柱的體積
=×底面積×高
S=sh
師:在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)
進一步強調(diào)等底等高的圓錐和圓柱才存在這種關(guān)系。
設(shè)計意圖:通過觀察、猜測,讓學(xué)生感知圓錐的體積與圓柱體積之間存在著一定的關(guān)系,滲透轉(zhuǎn)化的思想。再通過對實驗數(shù)據(jù)的分析,進一步感知圓錐的體積是和它等底等高的圓柱的體積的三分之一,在這一過程中,發(fā)展學(xué)生的推理能力。
考查目標(biāo)1、2
(5)實踐應(yīng)用
師:還記得這堆沙子嗎?如果給你了它的高和底面的直徑,你能算出這堆沙的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?(得數(shù)保留兩位小數(shù)。)
師:要求沙堆的'體積需要已知哪些條件?
。ㄓ捎谶@堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
學(xué)生試做后交流匯報。
已知圓錐的底面直徑和高,可以直接利用公式
V=π()h來求圓錐的體積。
師:在計算過程中我們要注意什么?為什么?
注意要乘以,因為通過實驗,知道圓錐的體積等于與它等底等高的圓柱體積的。
3.鞏固練習(xí)
。1)填空。
、賵A柱的體積是12m,與它等底等高的圓錐的體積是()m。
、趫A錐的體積是2.5m,與它等底等高的圓柱的體積是()m。
、蹐A錐的底面積是3.1m2,高是9m,體積是()m。
(2)判斷,并說明理由。
、賵A錐的體積等于圓柱體積的。()
、趫A錐的體積等于和它等底等高的圓柱體積的3倍。()
。3)課本第34頁的做一做。
、僖粋圓錐形的零件,底面積是19cm2,高是12cm,這個零件的體積是多少?
、谝粋用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高是5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù))
4.課堂總結(jié)
師:這節(jié)課你收獲了什么?和大家分享一下吧!
圓柱的體積是與它等底等高圓錐體積的3倍;圓錐的體積是與它等底等高圓柱體積的三分之一;V圓錐=V圓柱=Sh。
。ㄈ┱n時作業(yè)
1.王師傅做一件冰雕作品,要將一塊棱長30厘米的正方體冰塊雕成一個最大的圓錐,雕成的圓錐體積是多少立方厘米?
答案:30÷2=15(厘米)
×3.14×152×30
。235.5×30
=7065(立方厘米)
答:雕成的圓錐的體積是7065立方厘米。
解析:這是一道考察學(xué)生空間思維能力的題,要在正方體里面雕一個最大的圓錐,必須滿足圓錐的底面直徑等于正方體的棱長,圓錐的高也要等于正方體的棱長,在實際中感受生活和數(shù)學(xué)的緊密聯(lián)系,同時為下面在長方體里放一個最大的圓錐做了鋪墊?疾槟繕(biāo)1、2
2.看看我們的教室是什么體?(長方體)
要在我們的教室里放一個盡可能大的圓錐體,想一想,可以怎樣放?怎樣放體積最大?(測量教室長12m,寬6m,高4m.先計算,再比較怎樣放體積最大的圓錐體。)
解析:這是一道開放題,有一定的難度,在考察學(xué)生對圓錐體積理解的基礎(chǔ)上,又綜合了長方體的知識,對學(xué)生的空間想象能力要求比較高。
①以長寬所在的面為底面做最大的圓錐,此時圓錐的高為4m,底面圓的直徑為6m.
②以寬高所在的面為底面做最大的圓錐,此時圓錐的高為12m,底面圓的直徑為4m.
③以長高所在的面為底面做最大的圓錐,此時圓錐的高為6m,底面圓的直徑為4m.
以上三種情況計算并加以比較,得出結(jié)論?疾槟繕(biāo)1、2
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案7
教學(xué)內(nèi)容:教科書第52頁練習(xí)十二的第69題。
教學(xué)目的:通過練習(xí),使學(xué)生進一步熟悉圓錐的體積計算。
教學(xué)過程:
一、復(fù)習(xí)
1.圓錐的體積公式是什么?
2.填空。
。1)一個圓錐的體積是與它等底等高的圓柱體積的
(2)圓柱的體積相當(dāng)于和它等底等高的圓錐體積的( )倍。
(3)把一個圓柱削成一個最大的圓錐,削去部分的體積相當(dāng)于圓柱的 ,相當(dāng) 于圓錐的( )倍。
二、課堂練習(xí)
1.做練習(xí)十二的第6題。
教師出示一個圓錐形物體,讓學(xué)生想一想怎樣測量才能計算出它的體積:
讓學(xué)生分組討論一下,然后各自讓一名學(xué)生說說討論的結(jié)果,最后歸納出幾種行之有效的測量方法。例如,要求一個圓錐物體的體積,可以先用軟尺量出底面圓的周長,再求出底面的半徑,進而求出底面積,然后用書上介紹的方法,用直尺和三角板
測量出圓錐的`高,這樣就可以求出圓錐的體積。
2.做練習(xí)十二的第7題。
讀題后,教師可以先后提問:
這道題已知什么?求什么?
要求這堆沙的重量,應(yīng)該先求什么?怎樣求?
指名學(xué)生回答后,讓學(xué)生做在練習(xí)本上,做完后集體訂正。
3.做練習(xí)十二的第8題。
讀題后,教師可提出以下問題:
這道題要求的是什么?
要求這段鋼材重多少千克,應(yīng)該先求什么?怎樣求?
能直接利用題目中的數(shù)值進行計算嗎?為什么?
題目中的單位不統(tǒng)一,應(yīng)該怎樣統(tǒng)一?
分別指名學(xué)生回答后,要使學(xué)生明白這里要先將2米改寫成200厘米,再利用圓柱的體積計算公式算出鋼材的體積是多少立方厘米,然后再求出它的重量。最后計算出的結(jié)果還應(yīng)把克改寫成千克。
4.做練習(xí)十二的第9題。
讀題后,教師提問:這道題要求糧倉裝小麥多少噸,應(yīng)該先求什么?
要使學(xué)生明白,應(yīng)該先求2.5米高的小麥的體積,而不是求糧倉的體積。
讓學(xué)生獨立做在練習(xí)本上,做完后集體訂正。
三、選做題
讓學(xué)有余力的學(xué)生做練習(xí)十二的第10*、11*、12*題。
1.練習(xí)十二的第10*題。
教師:這道題要求圓錐的體積.但是題目中沒有告訴底面積,而只是已知底面周長和高。請大家想一想,應(yīng)該怎樣求出底面積?
引導(dǎo)學(xué)生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圓錐的體積公式就可以求出其體積。
2.練習(xí)十二的第11*題。
這是一道有關(guān)圓柱、圓錐體積的比例應(yīng)用題。
可以用列方程來解答。利用題目中圓錐和圓柱的體積之比,可以建立一個比例式。
設(shè)圓柱的高為x厘米。
=
X=9。6
。ㄗ⒁猓河捎趫A錐和圓柱的底面積S都相等,所以計算中可以先把S約去。)
3.練習(xí)十二的第12題。
這道題是拆分組合圖形,引導(dǎo)學(xué)生仔細分析圖形,不難看出它是由等底的圓柱和圓錐組合而成的:從圖中可以看出,圓柱和圓錐的底面直徑都是16厘米,而圓柱的高是4厘米,圓錐的高是17厘米。然后再根據(jù)圓的面積公式及圓柱和圓錐的體積公式,就可以求出這個組合圖形的體積了。
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案8
教學(xué)要求:
l.使學(xué)生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學(xué)生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。
教具準(zhǔn)備:長方體、正方體、圓柱體等,根據(jù)教材第14頁練一練第1題自制的圓錐,演示測高、等底、等高的教具
演示得出圓錐體積等于等底等高圓柱體積的 的教具。
教學(xué)重點:掌握圓錐的特征。
教學(xué)難點:理解和掌握圓錐體積的計算公式。
教學(xué)過程:
一、復(fù)習(xí)引新
1. 說出圓柱的體積計算公式。
2. 我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常?吹较旅嬉恍┪矬w(出示教材第13頁插圖)。
這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)
二、教學(xué)新課
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第13頁插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1) 圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
(2) 認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關(guān)系?
4.學(xué)生練習(xí)。
5.教學(xué)圓錐高的測量方法。(見課本第13頁有關(guān)內(nèi)容)
6.讓學(xué)生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導(dǎo)圓錐體積計算公式。
(1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第14頁上面的.圖)
(2)讓學(xué)生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關(guān)系?
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看
你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實驗
得出只有等底等高的圓錐才是圓柱體積的 。
(5)啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積
=底面積高
用字母表示:V= Sh
(6)小結(jié):要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以 ?
8.教學(xué)例l
(1)出示例1
(2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、鞏固練習(xí)
1.做練一練第2題。
指名一人板演,其余學(xué)生做在練習(xí)本上。集體訂正,強調(diào)要乘以 。
2.做練習(xí)三第2題。
學(xué)生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。
3.做練習(xí)三第3題。
讓學(xué)生做在課本上。小黑板出示、指名口答,老師板書。第(3)、(4)題讓學(xué)生說說是怎樣想的。
四、課堂小結(jié)
這節(jié)課你學(xué)習(xí)了什么內(nèi)容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
五、課堂作業(yè)
練習(xí)三第4、5題。
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案9
教學(xué)內(nèi)容:
九年義務(wù)教育六年制小學(xué)數(shù)學(xué)第十二冊P32頁。
教學(xué)目標(biāo):
1、通過練習(xí),使學(xué)生進一步理解和掌握圓錐體積公式,能運用公式正確迅速地計算圓錐的體積。
2、通過練習(xí),使學(xué)生進一步深刻理解圓柱和圓錐體積之間的關(guān)系。
3、進一步培養(yǎng)學(xué)生將所學(xué)知識運用和服務(wù)于生活的能力。
教學(xué)重點:
靈活運用圓柱圓錐的有關(guān)知識解決實際問題。
教學(xué)難點:
同教學(xué)難點。
設(shè)計理念:
練習(xí)的過程是學(xué)生將所學(xué)知識內(nèi)化、升華的過程,練習(xí)過程中既有基礎(chǔ)知識的合理鋪墊,又有不同程度的提高,練習(xí)的內(nèi)容有明顯的階梯性。力求使不同層次的學(xué)生都學(xué)有收獲。
教學(xué)步驟、教師活動、學(xué)生活動
一、復(fù)習(xí)鋪墊、內(nèi)化知識。
1、 圓錐體的體積公式是什么?我們是如何推導(dǎo)的?
2、圓柱和圓錐體積相互關(guān)系填空,加深對圓柱和圓錐相互關(guān)系的理解。
。1)一個圓柱體積是18立方厘米,與它等底等高的圓錐的體積是()立方厘米。
(2)一個圓錐的體積是18立方厘米,與它等底等高的圓柱的體積是()立方厘米。
。3)一個圓柱與和它等底等高的圓錐的體積和是144立方厘米。圓柱的體積是()立方厘米,圓錐的體積是()立方厘米。
3、求下列圓錐體的體積。
。1)底面半徑4厘米,高6厘米。
。2)底面直徑6分米,高8厘米。
。3)底面周長31.4厘米。高12厘米。
4、教師根據(jù)學(xué)生練習(xí)中存在的問題,集體評講。同座位的同學(xué)先說一說圓錐體積公式的推導(dǎo)過程。
學(xué)生獨立練習(xí),互相批改,指出問題。
學(xué)生交流一下這幾題在解題時要注意什么?
二、豐富拓展、延伸練習(xí)。
1、拓展練習(xí):
(1)把一個圓柱體木料削成一個最大的圓錐體木料,圓錐的體積占圓柱體的幾分之幾?削去的部分占圓柱體的幾分之幾?
。2)一個圓柱體比它等底等高的圓錐體積大48立方厘米,圓柱體和圓錐體的體積各是多少?
2、完成31頁第5題。討論下列問題:
。1)圓柱和圓錐體積相等、底面積也相等,圓柱的高和圓錐的高有什么關(guān)系?
。2)圓柱和圓錐體積相等、高也相等,圓柱的底面積和圓錐的底面積有什么關(guān)系?
3、分組討論:圓柱的底面半徑是圓錐的2倍,圓錐的高是圓柱的高的2倍,圓柱和圓錐的體積之間有什么倍數(shù)關(guān)系?
學(xué)生分組討論,教師參與其中,以有疑問的方式參與討論。
三、充分提高,全面升華。
1、展示一個圓錐形的沙堆,小組討論一下用什么方法可以測量出它的體積。
2、教師給每一組一小袋米。讓學(xué)生在桌子上堆成一個近似的圓錐體,通過合作測量的形式求出它的體積。
3、討論練習(xí)八蒙古包所占空間的'大小的方法。
。1)蒙古包是由哪幾個部分組成的?
。2)上部的圓錐和下部的圓柱有哪些相同的地方,有哪些不同的地方?
。3)同學(xué)們能獨立地求出蒙古包所占的空間的大小嗎?請試一試。
4、交流一下本節(jié)課的收獲。
學(xué)生分組討論后動手實踐并計算。
學(xué)生先交流。
四、全課總結(jié),內(nèi)化知識。
1、提問:
。1)同學(xué)們掌握了圓錐體的哪些知識?
。2)你用圓錐體的體積的有關(guān)知識解決現(xiàn)實生活中的哪些問題?
2、學(xué)有余力的同學(xué)思考38頁思考題。
3、作業(yè):練習(xí)八6、7、8
學(xué)生獨立練習(xí)
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案10
教學(xué)目標(biāo):
1、知識與技能
理解圓錐體積公式的推導(dǎo)過程,初步掌握圓錐體積的計算公式,并能運用公式正確地計算圓錐的體積。
2、過程與方法
通過操作、實驗、觀察等方式,引導(dǎo)學(xué)生進行比較、分析、綜合、猜測,在感知的基礎(chǔ)上加以判斷、推理來獲取新知識。
3、情感態(tài)度與價值觀
滲透知識是“互相轉(zhuǎn)化”的辨證思想,養(yǎng)成善于猜測的習(xí)慣,在探索合作中感受教學(xué)與我的生活的密切聯(lián)系,讓學(xué)生感受探究成功的快樂。
教學(xué)重點:
掌握圓錐的體積計算方法及運用圓錐的體積計算方法解決實際問題。
教學(xué)難點:
理解圓錐體積公式的推導(dǎo)過程。
教具學(xué)具:
不同型號的圓柱、圓錐實物、容器;沙子、水、杯子;多媒體課件一套。
教學(xué)流程:
一、創(chuàng)設(shè)情境,提出問題
師:五一節(jié)放假期間,老師帶著自己的小外甥去商場購物,正巧商場在搞冰淇淋促銷活動。促銷的冰淇淋有三種(課件出示三個大小不同的冰淇淋),每種都是2元錢,小外甥吵著鬧著要買一只,請同學(xué)們幫老師參考一下買哪一種合算?
生:我選擇底面的;
生:我選擇高是的;
生:我選擇介于二者之間的。
師:每個人都認為自己選擇的哪種最合算,那么誰的意見正確呢?
生:只要求出冰淇淋的體積就可以了。
師:冰淇淋是個什么形狀?(圓錐體)
生:你會求嗎?
師:通過這節(jié)課的學(xué)習(xí),相信這個問題就很容易解答了。下面我們一起來研究圓錐的體積。并板書課題:圓錐的體積。
二、設(shè)疑激趣,探求新知
師:那么你能想辦法求出圓錐的體積嗎?
。▽W(xué)生猜想求圓錐體積的方法。)
生:我們可以利用求不規(guī)則物體體積的方法,把它放進一個有水的容器里,求出上升那部分水的體積。
師:如果這樣,你覺得行嗎?
教師根據(jù)學(xué)生的回答做出最后的評價;
生:老師,我們前面學(xué)過把圓轉(zhuǎn)化成長方形來研究,我想圓錐是不是也可以這樣做呢?
師:大家猜一猜圓錐體可能會轉(zhuǎn)化成哪一種圖形,你的根據(jù)是什么?
小組中大家商量。
生:我們組認為可以將圓錐轉(zhuǎn)化成長方體或正方體,比如:先用橡皮泥捏一個圓錐體,再把這塊橡皮泥捏成長方體或正方體。
師:此種方法是否可行?
學(xué)生進行評價。
師:哪個小組還有更好的辦法?
生:我們組認為:圓錐體轉(zhuǎn)化成長方體后,長方體的長、寬、高與圓錐的底面和高之間沒有直接的聯(lián)系。如果將圓錐轉(zhuǎn)化成圓柱,就更容易進行研究。)
師:既然大家都認為圓錐與圓柱的聯(lián)系最為密切,請各組先拿出學(xué)具袋的圓錐與圓柱,觀察比較他們的底與高的大小關(guān)系。
1、各小組進行觀察討論。
2、各小組進行交流,教師做適當(dāng)?shù)陌鍟?/p>
通過學(xué)生的交流出現(xiàn)以下幾種情況:
一是圓柱與圓錐等底不等高;
二是圓柱與圓錐等高不等底;
三是圓柱與圓錐不等底不等高;
四是圓柱與圓錐等底等高。
3、師啟發(fā)談話:現(xiàn)在我們面前擺了這么多的圓柱和圓錐,我們是否有必要把每一種情況都進行研究?能否找到一種既簡便又容易操作且能代表所有圓柱和圓錐關(guān)系的一組呢?(小組討論)
4、小組交流,在此環(huán)節(jié)著重讓學(xué)生說出選擇等底等高的圓錐體與圓柱體進行探究的理由。
師:我們大家一致認為應(yīng)該選擇等底等高的一組,那么我們就跟求圓柱體的體積一樣,就用“底面積×高”來表示圓錐體的體積行不行?為什么?
師:圓錐體的體積小,那你猜測一下這兩個形體的體積的大小有什么樣的關(guān)系?
生:大約是圓柱的一半。
生:……
師:到底誰的意見正確呢?
師:下面請同學(xué)們?nèi)艘唤M利用你桌子的學(xué)具,找出兩組等底等高的圓錐與圓柱,共同探討它們之間的體積關(guān)系驗證我們的猜想,不過在實驗前先閱讀實驗要求,(課件演示)只有目標(biāo)明確,才能更好的合作。開始吧!
要求:
實驗材料,任選沙、米、水中的一種。
實驗方法可選擇用圓錐向圓柱里倒,到滿為止;或用圓柱向圓錐里倒,到空為止。
。ㄉM行實驗操作、小組交流)
師:
誰來匯報一下,你們組是怎樣做實驗的?
通過做實驗,你們發(fā)現(xiàn)它們有什么關(guān)系?
生:我們利用空圓柱裝滿水到入空圓錐,三次倒完。圓柱的.體積是等底等高圓錐體積的三倍。
生:我們利用空圓錐裝滿米到入空圓柱,三次倒?jié)M。圓錐的體積是等底等高圓柱的體積的1/3。)
師:同學(xué)們得出這個結(jié)論非常重要,其他組也是這樣的嗎?生略
師:請看大屏幕,看數(shù)學(xué)小博士是怎樣做的?(課件演示)
齊讀結(jié)論:
師:你能根據(jù)剛才我們的實驗和課件演示的情況,也給圓錐的體積寫一個公式?
(小組討論,得出圓錐的體積公式,得到以下公式:圓柱體積÷3=圓錐體積,則V圓錐=sh÷3即V圓錐=1/3sh
師:同學(xué)們剛才我們得到了圓錐的體積公式,(請看課件)你能求出三種冰淇淋的體積?
。ㄠ蓿∪N冰淇淋的體積原來一樣大)
聯(lián)系生活,拓展運用:
本練習(xí)共有三個層次:
1、基本練習(xí)
。1)判斷對錯,并說明理由。
圓柱的體積相當(dāng)于圓錐體積的3倍。()
一個圓柱木料,把它加工成的圓錐,削去的部分的體積和圓錐的體積比是()
一個圓柱和一個圓錐等底等高體積相差21立方厘米,圓錐的體積是7立方厘米。()
。2)計算下面圓錐的體積。(單位:厘米)
s=25、12 h=2、5
r=4,h=6
2、變形練習(xí)
出示學(xué)校沙堆:我班數(shù)學(xué)小組的同學(xué)利用課余時間測量了那堆沙子,得到了以下信息:底面半徑:2米,底面直徑4米,底面周長12.56米,底面積:12.56平方米,高1.2米
(1)、你能根據(jù)這些信息,用不同的方法計算出這堆沙子的體積嗎?
(2)、找一找這些計算方法有什么共同的特點?V錐=1/3Sh
(3)、準(zhǔn)備把這堆沙填在一個長3米,寬1.5米的沙坑里,請同學(xué)們算一算能填多深?
3、拓展練習(xí)
一個近似圓錐形的煤堆,測得它的底面周長是31.4米,高是2.4米。如果每立方米煤重1.4噸,這堆煤大約重多少噸?
整理歸納,回顧體驗
。ㄍㄟ^小結(jié)展示學(xué)生個性,學(xué)生在學(xué)習(xí)中的自我體驗,使孩子情感態(tài)度,價值觀得到升華。)
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案11
目 標(biāo):
1、理解和掌握圓錐體體積的計算方法,并能運用公式求圓錐體的體積,并能解決簡單的實際問題。
2、通過動手實踐,自主探求圓錐體積的計算方法,培養(yǎng)學(xué)生初步的邏輯推理能力和創(chuàng)新意識,發(fā)展空間觀念。
3、激發(fā)學(xué)生熱愛生活,勇于探索、樂于與人合作的情趣。
重 點:掌握圓錐體積的方法
難 點:公式的推導(dǎo)
準(zhǔn) 備:沙,圓柱教具若干個,圓錐一個,其中要有一組等底等高的圓柱和圓錐
教 程:
一、準(zhǔn)備
同學(xué)們,我們以前研究過一些立體圖形,如長方體,正方體,圓柱體,它們的體積各是怎樣計算的呢?
二、誘發(fā)
課件演示稻谷豐收的景象。師述:稻谷豐收了,農(nóng)民伯伯忙著收割稻谷,他們把收好的稻谷堆成一個這樣的圖形(圓錐形谷堆),同學(xué)們你們認識嗎?你能算出這堆稻谷的體積嗎?它和圓柱的體積有什么聯(lián)系呢?這就是我們這節(jié)課要學(xué)習(xí)的內(nèi)容。
三、探究釋疑
1、初次猜想
、鸥鶕(jù)我們所學(xué)過的內(nèi)容,請同學(xué)們猜一猜,圓錐的體積應(yīng)該怎樣計算?
、茍A錐的體積是否能用“底面積×高”來計算呢
、菍W(xué)生通過觀察,發(fā)現(xiàn)“底面積×高”不是圓錐的體積,而是與它等底等高的圓柱的體積。
2、再次猜想
、磐ㄟ^模型演示,
、聘鶕(jù)學(xué)生回答,從而得到如下結(jié)論:
圓錐的體積 = ×圓柱的體積(等底等高)
3、分組實驗進行驗證
、抛寣W(xué)生用三個不同的圓柱體和一個圓錐(其中必有一組等底等高的圓柱和圓錐)來進行實驗。
、品纸M討論,分組匯報
圓錐的`體積 = ×圓柱的體積(等底等高)
用字母表示:V=1/3Sh
4、聯(lián)系實際,進行運用
、懦鍪纠1,學(xué)生嘗試練習(xí),集體訂正。
、平虒W(xué)例2、課件出示:
麥?zhǔn)占竟?jié),張小紅把她家收的小麥堆成一個近似圓錐的麥堆,又給出測量的數(shù)據(jù),讓學(xué)生看圖編一道求小麥重量的應(yīng)用題。
編好后,分組討論計算
學(xué)生自己列式計算,集體訂正
四、轉(zhuǎn)化
1、基礎(chǔ)題
、畔旅嬗兴慕M圖形,你能根據(jù)每組圖形中左圖的體積,求出右圖的體積嗎?為什么?
24立方米 9立方米 12立方米
、埔粋圓錐的底面直徑是4厘米,高5厘米,它的體積是多少?
2、提高題
有一塊正方體的木材,它的棱長是9分米,把這塊木料加工成一個最大的圓柱體,被削去的體積是多少?
3、思考題
把一個棱長6厘米的正方體鐵塊和底面直徑、高都是6厘米的圓柱形鐵塊,熔鑄成一個直圓錐體,如果這個直圓錐體和圓柱的底面大小一樣,這個直圓錐體的高是多少厘米?(得數(shù)保留整數(shù))
五、應(yīng)用
1、 基礎(chǔ)題:P44-T3、4
2、 提高題:P45-T10
3、 思考題:P45-T11、12
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案12
1、認知目的:
。1)讓學(xué)生認識圓錐,掌握它的特征。
(2)理解圓錐的體積計算公式的推導(dǎo),并能靈活運用公式計算圓錐的體積。
2、能力目的:
發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生觀察,動手操作,總結(jié)規(guī)律的能力。
3、情感目的:
創(chuàng)造和諧的師生關(guān)系,調(diào)動學(xué)生的非智力因素,激發(fā)學(xué)生的學(xué)習(xí)興趣。
教學(xué)重點:
建立圓錐體的表象,概括圓錐體的特征,并能運用公式計算圓錐體的體積。
教學(xué)難點:
理解等底等高的圓錐體和圓柱體的關(guān)系,以及圓錐體積公式的推導(dǎo)過程。
教學(xué)準(zhǔn)備:
1、多媒體計算機軟、硬件一套。
2、學(xué)生實驗用圓柱、圓錐容器十套,紅色溶液一桶。
3、幻燈機,圓錐體實物如:小丑帽、重錘等。
教學(xué)過程:
一、復(fù)習(xí)準(zhǔn)備:
1、圓柱的體積計算公式是什么?
2、已知一個圓柱的半徑是2厘米,高是5厘米,它的體積是多少?
二、導(dǎo)出新課:
我們已經(jīng)學(xué)習(xí)過了長方體和正方體及圓柱體的體積,在實際生活中,經(jīng)常會遇到另一種物體(出示圓錐體實物如:小丑帽、重錘),這種形體叫圓錐體。你們在生活中見過這樣的物體嗎?(請學(xué)生回答)這節(jié)課我們重點研究圓錐的`體積。(板書課題:圓錐的體積)
三、新授:
1、學(xué)生通過對圓錐實物及電腦圖形的觀察,多角度多種實物中得到對圓
錐感性認識,在建立了感性認識的基礎(chǔ)上,師生共同總結(jié)出圓錐的特征是:它只有一個底面;這個底面是一個圓;它有一個頂點。
教師拿出已準(zhǔn)備好的圓錐教具,將其一分為二,叫學(xué)生觀察圓錐的高,指出從頂點到底面圓心的距離叫圓錐的高。
2、紹各部分的名稱(用電腦出示圓錐圖形)
3、圓錐體積公式的推導(dǎo):
通過分組實驗讓學(xué)生自己發(fā)現(xiàn)圓柱、圓錐在等底等高時的體積關(guān)系。在實驗前教師提出實驗的要求和實驗要解決的問題。
問題:
。1)圓錐與圓柱是否等底等高?
。2)倒了幾次才能倒?jié)M空圓柱?
。3)這個實驗說明等底等高的圓柱、圓錐體積有怎樣的關(guān)系?
要求:
。1)分五人一組,相互合作,共同完成實驗。
。2)教師每組給一個中空、未封底的圓錐,學(xué)生自己動手制作一個與它等底等高的圓柱。制作的圓柱也不封底。
。3)將圓錐裝滿溶液,然后倒入圓柱里,裝滿圓柱為止。
實驗結(jié)束后,讓學(xué)生自己總結(jié)得出結(jié)論,教師根據(jù)學(xué)生得出的結(jié)論得出Ⅴ錐=
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案13
【教學(xué)內(nèi)容】
圓錐的體積(1)(教材第33頁例2)。
【教學(xué)目標(biāo)】
1、參與實驗,從而推導(dǎo)出圓錐體積的計算公式,會運用圓錐的體積公式計算圓錐的體積。
2、培養(yǎng)學(xué)生初步的空間觀念,讓學(xué)生經(jīng)歷圓錐體積公式的推導(dǎo)過程,體驗觀察、比較、分析、總結(jié)、歸納的學(xué)習(xí)方法。
【重點難點】
圓錐體積公式的推導(dǎo)過程。
【教學(xué)準(zhǔn)備】
同樣的圓柱形容器若干,與圓柱等底等高的圓錐形容器,與圓柱不等底等高的圓錐形容器若干,沙子和水。
【情景導(dǎo)入】
1、復(fù)習(xí)舊知,作出鋪墊。
。1)教師用電腦出示一個透明的圓錐。
教師:同學(xué)們仔細觀察,圓錐有哪些主要特征呢?
。2)復(fù)習(xí)高的概念。
A、什么叫做圓錐的高?
B、請一名同學(xué)上來指出用橡皮泥制作的圓錐模型的高。(提供刀片、橡皮泥模型等,幫助學(xué)生進行操作)
2、創(chuàng)設(shè)情境,引發(fā)猜想。
。1)電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得透不過氣來。一只小白兔去“動物超市”購物,它在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(動畫中圓柱形和圓錐形的雪糕是等底等高的)
。2)引導(dǎo)學(xué)生圍繞問題展開討論。
問題一:狐貍貪婪地問:“小白兔,用我手中的雪糕跟你換一個怎么樣?”(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當(dāng)?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法跟小組交流一下,再向全班同學(xué)匯報)
過渡:小白兔究竟跟狐貍怎樣交換才合理呢?學(xué)習(xí)了“圓錐的體積”后,大家就會弄明白這個問題。
【新課講授】
自主探究,操作實驗
下面,請同學(xué)們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積之間的關(guān)系,解決電腦博士給我們提出的問題。
出示思考題:通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐的體積之間有什么關(guān)系?你們的小組是怎樣進行實驗的?
。1)小組實驗。
A、學(xué)生分6組操作實驗,教師巡回指導(dǎo)。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的`圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關(guān)系的也有5倍關(guān)系的。)
B、同組的學(xué)生做完實驗后,進行交流,并把實驗結(jié)果寫在黑板上。
。2)全班交流。
①組織收集信息。
學(xué)生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在黑板上:
A、圓柱的體積正好等于圓錐體積的3倍。
B、圓柱的體積不是圓錐體積的3倍。
c、圓柱的體積正好等于圓錐體積的8倍。
D、圓柱的體積正好等于圓錐體積的5倍。
E、圓柱的體積是等底等高圓錐體積的3倍。
f、圓錐的體積是等底等高圓柱體積的。
、谝龑(dǎo)整理信息。指導(dǎo)學(xué)生仔細觀察,把黑板上的信息分類整理。(根據(jù)學(xué)生反饋的實際情況靈活進行)
、蹍⑴c處理信息。圍繞3倍關(guān)系情況討論:請這幾個小組同學(xué)說出他們是怎樣通過實驗得出這一結(jié)論的?哪個小組得出的結(jié)論更科學(xué)合理一些?
圓錐的體積是等底等高圓柱體積的。(突出等底等高,并請學(xué)生拿出實驗用的器材,自己比劃、驗證這個結(jié)論)引導(dǎo)學(xué)生自主修正另外兩個結(jié)論。
。3)誘導(dǎo)反思。為什么有兩個實驗小組的結(jié)果不是3倍的關(guān)系呢?
。4)推導(dǎo)公式。嘗試運用信息推導(dǎo)圓錐的體積公式。這里的sh表示什么?為什么要乘?要求圓錐體積需要知道幾個條件?
。5)解決問題。童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高,之后播放狐貍拿著圓錐形雪糕離去的畫面)
【課堂作業(yè)】
完成教材第34頁“做一做”第1題。
先組織學(xué)生在練習(xí)本上算一算,然后指名匯報。
答案:13×19×12=76(cm3)
【課堂小結(jié)】
教師:請你說說知道哪些條件就可以求圓錐的體積?學(xué)生自由交流。
【課后作業(yè)】
1、完成練習(xí)冊中本課時的練習(xí)。
2、教材第35頁第3、4、5題。
答案:第3題:提示:可以利用直尺、軟尺等工具測量出圓錐形實物的底面直徑(或者底面周長)和高,再根據(jù)V圓錐=1/3sh計算出該物體的體積。
第4題:(1)25、12(2)423、9
第5題:(1)×(2)√(3)×
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案14
教學(xué)內(nèi)容:教材第16~19頁圓錐的認識和體積計算、例1。
教學(xué)要求:
l.使學(xué)生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學(xué)生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學(xué)生初步的空間觀念和發(fā)展學(xué)生的思維能力。
教具準(zhǔn)備:長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
教學(xué)重點:掌握圓錐的特征。
教學(xué)難點:理解和掌握圓錐體積的計算公式。
教學(xué)過程:
一、鋪墊孕伏:
1.說出圓柱的體積計算公式。
2.我們已經(jīng)學(xué)過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常?吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學(xué)習(xí)圓錐和圓錐的體積。(板書課題)
二、自主探究:
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第16頁插圖,和學(xué)生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學(xué)生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側(cè)面是一個曲面。
(2)認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關(guān)系?
4.學(xué)生練習(xí)。
口答練習(xí)三第1題。
5.教學(xué)圓錐高的測量方法。(見課本第17頁有關(guān)內(nèi)容)
6.讓學(xué)生根據(jù)上述方法測量自制圓錐的`高。
7.實驗操作、推導(dǎo)圓錐體積計算公式。
(1)通過演示使學(xué)生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)
(2)讓學(xué)生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關(guān)系?
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關(guān)系?得出圓錐的體積是與它等底等高的圓柱體體積的。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內(nèi)的沙往圓錐內(nèi)倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的關(guān)系?教師可出示不等底不等高的圓錐、圓柱,讓學(xué)生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導(dǎo)推導(dǎo)出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積=底面積高
用字母表示:V=Sh
(6)小結(jié):要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以?
8.教學(xué)例l
(1)出示例1
(2)審題后可讓學(xué)生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、鞏固練習(xí)
1.做練習(xí)三第2題。
學(xué)生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。
2.做練習(xí)三第4題。學(xué)生書面練習(xí),小組交流,集體訂正。
四、課堂小結(jié)
這節(jié)課你學(xué)習(xí)了什么內(nèi)容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
五、課堂作業(yè)
練習(xí)三第3題及數(shù)訓(xùn)。
六、板書:
圓錐
圓錐的特征:底面是圓,
側(cè)面是一個曲面,展開是一個扇形。
它有一個頂點和一條高。
圓柱的體積=底面積高
圓錐的體積=圓柱體積
圓錐的體積=底面積高V=Sh
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案15
教學(xué)目標(biāo)
1、使學(xué)生理解求圓錐體積的計算公式.
2、會運用公式計算圓錐的體積.
教學(xué)重點
圓錐體體積計算公式的推導(dǎo)過程.
教學(xué)難點
正確理解圓錐體積計算公式.
教學(xué)步驟
一、鋪墊孕伏
1、提問:
。1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學(xué)生指圖說出圓錐的底面、側(cè)面和高.
2、導(dǎo)入:同學(xué)們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇(dǎo)探究圓錐體積的計算公式.
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學(xué)都準(zhǔn)備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關(guān)系,并想一想,通過實驗?zāi)惆l(fā)現(xiàn)了什么?
2、學(xué)生分組實驗
3、學(xué)生匯報實驗結(jié)果(課件演示:圓錐體的體積1、2、3、4、5) 1 2 3 4 5
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
、蹐A柱和圓錐的'底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
4、引導(dǎo)學(xué)生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的 .
板書:
5、推導(dǎo)圓錐的體積公式:用字母表示圓錐的體積公式.板書:
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習(xí)
圓錐的底面積是5,高是3,體積是()
圓錐的底面積是10,高是9,體積是()
(二)教學(xué)例1
1、例1 一個圓錐形的零件,底面積是19平方厘米,高是12厘米.這個零件的體積是多少?
學(xué)生獨立計算,集體訂正.
板書:
答:這個零件的體積是76立方厘米.
2、反饋練習(xí):一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
。1)已知圓錐的底面半徑和高,求體積.
。2)已知圓錐的底面直徑和高,求體積.
。3)已知圓錐的底面周長和高,求體積.
4、反饋練習(xí):一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
。ㄈ┙虒W(xué)例2
1、例2 在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1、2米.每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應(yīng)怎么辦?
這道題應(yīng)先求什么?再求什么?最后求什么?
2、學(xué)生獨立解答,集體訂正.
【小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案】相關(guān)文章:
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案09-02
[必備]小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案05-23
(薦)小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案05-25
(熱門)小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案05-26
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案【集合】05-26
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案(精選14篇)07-20
人教版六年級數(shù)學(xué)圓錐的體積教案02-27
小學(xué)六年級數(shù)學(xué)《圓錐的體積》教案【共15篇】05-23