[熱門]初中數(shù)學(xué)優(yōu)秀教案15篇
作為一名老師,可能需要進行教案編寫工作,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。教案應(yīng)該怎么寫呢?以下是小編為大家整理的初中數(shù)學(xué)優(yōu)秀教案,希望對大家有所幫助。
初中數(shù)學(xué)優(yōu)秀教案1
教學(xué)目的:
1、在解決實際問題的過程中,進一步鞏固形如ax+b=c、ax-b=c的方程的解法,同時理解并掌握形如ax÷b=c的方程的解法,會列上述方程解決兩步計算的實際問題。
2、提高分析數(shù)量關(guān)系的能力,培養(yǎng)學(xué)生思維的靈活性。
3、在積極參與數(shù)學(xué)活動的過程中,樹立學(xué)好數(shù)學(xué)的信心。
教學(xué)重點、難點:
引導(dǎo)學(xué)生獨立分析問題,找出題目中的等量關(guān)系。
教學(xué)對策:
在積極參與數(shù)學(xué)活動的過程中,樹立學(xué)好數(shù)學(xué)的信心。
教學(xué)準備:
教學(xué)光盤
教學(xué)過程:
一、復(fù)習(xí)準備
1、解方程(練習(xí)一第6題的第1、3小題)
4x+12=50 2.3x-1.02=0.36
學(xué)生獨立完成,再指名學(xué)生板演并講評,集體訂正。
二、嘗試練習(xí)
師:剛才的兩道題同學(xué)們完成得很好,這道題你們還能自己解決嗎?試試看。
出示:30x÷2=360
學(xué)生獨立嘗試完成,全班交流。
指名學(xué)生說一說,解這個方程是第一步需要做什么?這樣做依據(jù)了等式的什么性質(zhì)?
三、鞏固練習(xí)
1、出示練習(xí)一第7題。
(1)分析數(shù)量關(guān)系
提問:誰來說說三角形的面積公式是怎樣的?根據(jù)學(xué)生回答板書:S=ah÷2。聯(lián)系這個公式你能找出數(shù)量之間的相等關(guān)系嗎?(生獨立思考后在小組內(nèi)交流)指名口答。你覺得在這些數(shù)量關(guān)系中,哪一個等量關(guān)系適合列方程?根據(jù)這個數(shù)量關(guān)系我們可以列出怎樣的方程?板書:1.3x÷2=0.39。
第⑵題生獨立思考并列出方程,在小組內(nèi)說說自己的思考過程后全班交流。板書:3x+18=19.8。
(2)學(xué)生獨立計算,并檢驗答案是否正確,全班核對。
小結(jié):在一個實際問題中,可能會有幾個不同的等量關(guān)系,我們應(yīng)該選擇合適的等量關(guān)系來列方程。
2、練習(xí)一第8題。
學(xué)生讀題后可用自己喜歡的方法將與楊樹和松樹有關(guān)的信息分別列表整理(如列表,作標記等)
學(xué)生獨立解決后再說說數(shù)量之間有怎樣的數(shù)量關(guān)系,是根據(jù)什么樣的數(shù)量關(guān)系列出的'方程,最后核對解方程的過程。(提示學(xué)生可從得數(shù)的合理性來初步檢驗)
3、練習(xí)一第9題。
學(xué)生獨立思考,指名分析數(shù)量關(guān)系,教師結(jié)合學(xué)生回答畫出線段圖幫助學(xué)生理解題意。
學(xué)生獨立解方程再集體訂正。
4、練習(xí)一第10題。
教師簡單介紹相關(guān)天文知識后,學(xué)生獨立解答,然后及時交流,教師及時講評。
5、練習(xí)一第11題。
學(xué)生讀題后教師提問:在本題中出現(xiàn)了兩個問題,那么我們在寫設(shè)句時要注意什么?(提示學(xué)生用不同的字母分別表示小亮出生時的身高和體重)
學(xué)生獨立解決,集體核對。結(jié)合學(xué)生板演情況進行講評,進一步規(guī)范學(xué)生的書寫格式。
6、練習(xí)一第12題。
提問:你能看懂這張發(fā)票上所提供的信息嗎?數(shù)量間有怎樣的等量關(guān)系呢
學(xué)生獨立列方程解答,同桌同學(xué)互相檢查,再集體訂正。
7、練習(xí)一第13題。
學(xué)生閱讀第13題,理解后獨立解決問題,再交流。
教師再補充幾題,如:98.6、212華氏度相當于多少攝氏度等。
四、全課小結(jié)
說一說你這一節(jié)課的學(xué)習(xí)收獲及還有什么問題。
五、布置作業(yè)
完成配套習(xí)題。
教后反思:
本課時是一節(jié)練習(xí)課,練習(xí)目標有兩個,一是通過練習(xí)讓學(xué)生掌握形如ax+b=c和ax-b=c的方程的解法,會列方程解決兩步計算的實際問題;二是借助一些對比練習(xí),讓學(xué)生感受方程的思想方法和價值。課前,我學(xué)習(xí)了高教導(dǎo)的“課前思考”,在今天的練習(xí)課中補充了兩組題目,讓學(xué)生進行對比練習(xí)。題目是這樣的:(1)果園里有桃樹60棵,比梨樹的3倍少6棵,梨樹有多少棵?(2)果園里有梨樹60棵,比桃樹的3倍少6棵,桃樹有多少棵?課堂上,我先請學(xué)生分析每一題的數(shù)量關(guān)系,然后選擇合適的方法來解答。學(xué)生們經(jīng)過分析、比較,發(fā)現(xiàn)類似第1小題這樣的題目適合用方程解,類似第2小題這樣的題目適合用算術(shù)方法解。另一組補充的題目是:(1)王老師買了3個足球,付了200元,找回8元。每個足球多少元?(2)水果店運進5箱蘋果,賣出56千克,還剩34千克。每箱蘋果多少千克?對于這兩題,我請學(xué)生認真分析數(shù)量關(guān)系后用自己喜歡的方法來解答,而且如果是列方程的話,試著列出不同的方程;如果是用算術(shù)方法解的可以列出不同的算式。課堂上學(xué)生思維活躍,在正確分析數(shù)量關(guān)系后列出了不同的方程或算式。
通過本節(jié)練習(xí)課,我想教師在教學(xué)中要更多地指導(dǎo)學(xué)生關(guān)注怎樣從一個個具體的問題情境中分析數(shù)量之間的相等關(guān)系,關(guān)注怎樣根據(jù)數(shù)量關(guān)系列出方程,從而在經(jīng)歷實際問題數(shù)學(xué)化的過程中,獲得對用方程解決實際問題策略的體驗,進一步豐富學(xué)生解決問題的策略,加深學(xué)生對方程作為一種重要的數(shù)學(xué)思想方法的理解。
初中數(shù)學(xué)優(yōu)秀教案2
一、教學(xué)目標
知識與技能:使學(xué)生了解正數(shù)與負數(shù)是從實際需要中產(chǎn)生的;
過程與方法:使學(xué)生理解正數(shù)與負數(shù)的概念,并會判斷一個數(shù)是正數(shù)還是負數(shù),初步會用正負數(shù)表示具有相反意義的量;
情感與態(tài)度:在負數(shù)概念的形成過程中,培養(yǎng)學(xué)生的觀察、歸納與概括的能力
二、教學(xué)重點和難點
負數(shù)的引入和意義
三、教學(xué)過程
創(chuàng)設(shè)情景,生活實例引入,觀察猜想,合作探究
。ㄒ唬、從學(xué)生原有的認知結(jié)構(gòu)提出問題
大家知道,數(shù)學(xué)與數(shù)是分不開的,它是一門研究數(shù)的學(xué)問現(xiàn)在我們一起來回憶一下,小學(xué)里已經(jīng)學(xué)過哪些類型的數(shù)?
學(xué)生答后,教師指出:小學(xué)里學(xué)過的數(shù)可以分為三類:自然數(shù)(正整數(shù))、分數(shù)和零(小數(shù)包括在分數(shù)之中),它們都是由于實際需要而產(chǎn)生的。
為了表示一個人、兩只手、……,我們用到整數(shù)1,2,……
為了表示半小時、四元八角七分、……,我們需用到分數(shù)1/2和小數(shù)4。87、……
為了表示“沒有人”、“沒有羊”、……我們要用到0。
但在實際生活中,還有許多量不能用上述所說的自然數(shù),零或分數(shù)、小數(shù)表示。
(二)、師生共同研究形成正負數(shù)概念
某市某一天的最高溫度是零上5℃,最低溫度是零下5℃。要表示這兩個溫度,如果只用小學(xué)學(xué)過的'數(shù),都記作5℃,就不能把它們區(qū)別清楚。
它們是具有相反意義的兩個量。
現(xiàn)實生活中,像這樣的相反意義的量還有很多。
例如,珠穆朗瑪峰高于海平面8848米,吐魯番盆地低于海平面155 米,“高于”和“低于”其意義是相反的。
又如,某倉庫昨天運進貨物 噸,今天運出貨物 噸,“運進”和“運出”,其意義是相反的。
同學(xué)們能舉例子嗎?
學(xué)生回答后,教師提出:怎樣區(qū)別相反意義的量才好呢?
現(xiàn)在,數(shù)學(xué)中采用符號來區(qū)分,規(guī)定零上5℃記作+5℃(讀作正5℃)或5℃,把零下5℃記作—5℃(讀作負5℃)。這樣,只要在小學(xué)里學(xué)過的數(shù)前面加上“+”或“—”號,就把兩個相反意義的量筒明地表示出來了。
讓學(xué)生用同樣的方法表示出前面例子中具有相反意義的量:
高于海平面8848米,記作+8848米;低于海平面155米,記作—155米;
運進綱物 噸,記作+ ;運出貨物 噸,記作— 。
教師講解:什么叫做正數(shù)?什么叫做負數(shù)。
強調(diào),數(shù)0既不是正數(shù),也不是負數(shù),它是正、負數(shù)的界限,表示“基準”的數(shù),零不是表示“沒有”,它表示一個實際存在的數(shù)量。并指出,正數(shù),負數(shù)的“+”“—”的符號是表示性質(zhì)相反的量,符號寫在數(shù)字前面,這種符號叫做性質(zhì)符號
。ㄈ、運用舉例 變式練習(xí)
例1 所有的正數(shù)組成正數(shù)集合,所有的負數(shù)組成負數(shù)集合把下列各數(shù)中的正數(shù)和負數(shù)分別填在表示正數(shù)集合和負數(shù)集合的圈里:
—11,4,8,+73,—2,7, , ,—8,12, — ;
正數(shù)集合 負數(shù)集合
此例由學(xué)生口答,教師板書,注意加上省略號,說明這是因為正(負)數(shù)集合中包含所有正(負)數(shù),而我們這里只填了其中一部分。然后,指出不僅可以用圈表示集合,也可以用大括號表示集合
課堂練習(xí)
任意寫出6個正數(shù)與6個負數(shù),并分別把它們填入相應(yīng)的大括號里:
正數(shù)集合:{ …},
負數(shù)集合:{ …}
四、課堂小結(jié)
由于實際生活中存著許多具有相反意義的量,因此產(chǎn)生了正數(shù)與負數(shù)正數(shù)是大于0的數(shù),負數(shù)就是在正數(shù)前面加上“—”號的數(shù)0既不是正數(shù),也不是負數(shù),0可以表示沒有,也可以表示一個實際存在的數(shù)量,如0℃
五、作業(yè)布置
1。北京一月份的日平均氣溫大約是零下3℃,用負數(shù)表示這個溫度
2。在小學(xué)地理圖冊的世界地形圖上,可以看到亞洲西部地中海旁有一個死海湖,圖中標著—392,這表明死海的湖面與海平面相比的高度是怎樣的?
3。在下列各數(shù)中,哪些是正數(shù)?哪些是負數(shù)?
—16,0,004,+ ,— , ,25,8,—3,6,—4,9651,—0,1。
4。如果—50元表示支出50元,那么+200元表示什么?
5。河道中的水位比正常水位低0。2米記作—0。2米,那么比正常水位溫0。1米記作什?
6。如果自行車車條的長度比標準長度長2毫米記作+2毫米,那么比標準長度短3毫米記作么?
7。一物體可以左右移動,設(shè)向右為正,問:
。1)向左移動12米應(yīng)記作什么?(2)“記作8米”表明什么?
初中數(shù)學(xué)優(yōu)秀教案3
教學(xué)目的 知識技能 使學(xué)生會用列一元二次方程的方法解決有關(guān)面積、體積方面和經(jīng)濟方面的問題.
數(shù)學(xué)思考 提高將實際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力以及用數(shù)學(xué)的意識,滲透轉(zhuǎn)化的思想、方程的思想及數(shù)形結(jié)合的思想.
解決問題 通過列一元二次方程的方法解決日常生活及生產(chǎn)實際中遇到的有關(guān)面積、體積方面和經(jīng)濟方面的問題.
情感態(tài)度 通過探究性學(xué)習(xí),抓住問題的關(guān)鍵,揭示它的規(guī)律性,展示解題的簡潔性的數(shù)學(xué)美.
教學(xué)難點 審題,從文字語言中挖掘有價值的信息.
知識重點 會用列一元二次方程的方法解有關(guān)面積、體積方面和經(jīng)濟方面的問題.
教學(xué)過程 設(shè)計意圖
教學(xué)過程
問題一:列方程解應(yīng)用題的一般步驟?
師生共同回憶
列方程解應(yīng)用題的步驟:
。1)審題;(2)設(shè)未知數(shù);
。3)列方程;(4)求解;
。5)檢驗; (6)答.
問題二:矩形的周長和面積?長方體的體積?
問題三:如圖,某小區(qū)內(nèi)有一塊長、寬比為1:2的`矩形空地,計劃在該空地上修筑兩條寬均為2m的互相垂直的小路,余下的四塊小矩形空地鋪成草坪,如果四塊草坪的面積之和為312m2,請求出原來大矩形空地的長和寬.
教師活動:引導(dǎo)學(xué)生讀題,找到題目中的關(guān)鍵語句.
學(xué)生活動:在關(guān)鍵語句中找到反映相等關(guān)系的語句,探究解決辦法.
教師活動:用多媒體演示分析,解題方法.
做一做
如圖,有一塊長80cm,寬60cm的硬紙片,在四個角各剪去一個同樣的小正方形,用剩余部分做成一個底面積為1500cm2的無蓋的長方體盒子.求剪去的小正方形的邊長.
課堂練習(xí):將一個長方形的長縮短5cm,寬增長3cm,正好得到一個正方形.已知原長方形的面積是正方形面積的 ,求這個正方形的邊長.
問題四:某商場銷售一種服裝,平均每天可售出20件,每件贏利40元.經(jīng)市場調(diào)查發(fā)現(xiàn):如果每件服裝降價1元,平均每天能多售出2件.在國慶節(jié)期間,商場決定采取降價促銷的措施,以達到減少庫存、擴大銷售量的目的.如果銷售這種服裝每天贏利1200元,那么每件服裝應(yīng)降價多少元?
學(xué)生活動:在眾多的文字中,找到關(guān)鍵語句,分析相等關(guān)系.
教師活動:用多媒體幫助學(xué)生分析試題.提示學(xué)生檢驗解的合理性.
課堂練習(xí):1.經(jīng)銷商以每雙21元的價格從廠家購進一批運動鞋,如果每雙鞋售價為a元,那么可以賣出這種運動鞋(350-10a)雙.物價局限定每雙鞋的售價不得超過進價的120%.如果商店要賺400元,每雙鞋的售價應(yīng)定為多少元?需要賣出多少雙鞋?
2.某商店從廠家以每件18元的價格購進一批商品,該商店可以自行定價.據(jù)市場調(diào)查,該商品的售價與銷售量的關(guān)系是:若每件售價a元,則可賣出(320-10a)件,但物價部門限定每件商品加價不能超過進貨價25 %的.如果商店計劃要獲利400元,則每件商品的售價應(yīng)定為多少元?需要賣出這種商品多少件?(每件商品的利潤=售價進貨價)
復(fù)習(xí)列方程解應(yīng)用題的一般步驟.
本題為后面解決有關(guān)面積、體積方面問題做鋪墊.
提高學(xué)生的審題能力.使學(xué)生會解決有關(guān)面積的問題.
解決體積問題的問題
培養(yǎng)學(xué)生用數(shù)學(xué)的意識以及滲透轉(zhuǎn)化和方程的思想方法.
強調(diào)對方程的解進行雙重檢驗.
小結(jié)與作業(yè)
課堂
小結(jié) 利用一元二次方程解決實際問題時,要注意通過實際要求檢驗根的合理性,要注意審題能力的培養(yǎng).
本課
作業(yè) 課本第43頁 習(xí)題2
課后隨筆(課堂設(shè)計理念,實際教學(xué)效果及改進設(shè)想)
初中數(shù)學(xué)優(yōu)秀教案4
【教學(xué)內(nèi)容】
【教學(xué)目標】
1.掌握多邊形的內(nèi)角和的計算方法,并能用內(nèi)角和知識解決一些簡單的問題.
2.經(jīng)歷探索多邊形內(nèi)角和計算公式的過程,體會如何探索研究問題.
3.通過將多邊形"分割"為三角形的過程體驗,初步認識"轉(zhuǎn)化"的數(shù)學(xué)思想.
【教學(xué)重點與教學(xué)難點】
1.重點:多邊形的內(nèi)角和公式
2.難點:多邊形內(nèi)角和的推導(dǎo)
3.關(guān)鍵:.多邊形"分割"為三角形.
【教具準備】三角板、卡紙
【教學(xué)過程】
一、創(chuàng)設(shè)情景,揭示問題
1、在一次數(shù)學(xué)基礎(chǔ)知識搶答賽中,老師出了這么一個問題,一個五邊形的所有角相加等于多少度?一個學(xué)生馬上能回答,你們能嗎?
2、教具演示:將一個五邊形沿對角線剪開,能分割成幾個三角形?
你能說出五邊形的內(nèi)角和是多少度嗎?(點題)意圖:利用搶答問題和教具演示,調(diào)動學(xué)生的學(xué)習(xí)興趣和注意力
二、探索研究學(xué)會新知
1、回顧舊知,引出問題:
(1)三角形的內(nèi)角和等于_________.外角和等于____________
(2)長方形的內(nèi)角和等于_____,正方形的`內(nèi)角和等于__________.
2、探索四邊形的內(nèi)角和:
(1)學(xué)生思考,同學(xué)討論交流.
(2)學(xué)生敘述對四邊形內(nèi)角和的認識(第一二組通過測量相加,第三四組通過畫對角線分成兩個三角形.)回顧三角形,正方形,長方形內(nèi)角和,使學(xué)生對新問題進行思考與猜想.以四邊形的內(nèi)角和作為探索多邊形的突破口。
。3)引導(dǎo)學(xué)生用"分割法"探索四邊形的內(nèi)角和:
方法一:連接一條對角線,分成2個三角形:
180°+180°=360°
從簡單的思維方式發(fā)散學(xué)生的想象力達到"分割"問題,并讓學(xué)生發(fā)現(xiàn)問題,解決問題教學(xué)步驟教學(xué)內(nèi)容備注方法二:在四邊形內(nèi)部任取一點,與頂點連接組成4個三角形.
180°×4-360°=360°
3、探索多邊形內(nèi)角和的問題,提出階梯式的問題:
你能嘗試用上面的方法一求出五邊形的內(nèi)角和嗎?(第一二組)
你能嘗試用上面的方法一求出六邊形的內(nèi)角和嗎?(第三,四組)那么n邊形呢?完成后填表:
n邊形3456...n分成三角形的個數(shù)1234...n-2內(nèi)角和...4、及時運用,掌握新知:
。1)一個八邊形的內(nèi)角和是_____________度
。2)一個多邊形的內(nèi)角和是720度,這個多邊形是_____邊形
。3)一個正五邊形的每一個內(nèi)角是________,那么正六邊形的每個內(nèi)角是_________
通過學(xué)生動手去用分割法求五(六)邊形的內(nèi)角和,從簡單到復(fù)雜,從而歸納出n邊形的內(nèi)角和
三、點例透析
運用新知例題:想一想:如果一個四邊形的一組對角互補,那么另一組對角有什么關(guān)系呢?
四、應(yīng)用訓(xùn)練強化理解
4、第83頁練習(xí)1和2多邊形內(nèi)角和定理的應(yīng)用
五、知識回放
課堂小結(jié)提問方式:本節(jié)課我們學(xué)習(xí)了什么?
1多邊形內(nèi)角和公式
2多邊形內(nèi)角和計算是通過轉(zhuǎn)化為三角形
六、作業(yè)練習(xí)
1、書面作業(yè):
2、課外練習(xí):
初中數(shù)學(xué)優(yōu)秀教案5
一、 教學(xué)目標
1、 知識與技能目標
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
二、 教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的'理解。
三、 教學(xué)過程
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
① 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
、 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
④ (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
(-2) ×(-3)=
(2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
(-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
、诜e的絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
。3)學(xué)生做練習(xí),教師評析。
(4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
初中數(shù)學(xué)優(yōu)秀教案6
教學(xué)目標:
1、掌握一元二次方程的根與系數(shù)的關(guān)系并會初步應(yīng)用。
2、培養(yǎng)學(xué)生分析、觀察、歸納的能力和推理論證的能力。
3、滲透由特殊到一般,再由一般到特殊的認識事物的規(guī)律。
4、培養(yǎng)學(xué)生去發(fā)現(xiàn)規(guī)律的積極性及勇于探索的精神。
教學(xué)重點與難點:
重點
根與系數(shù)的關(guān)系及其推導(dǎo)
難點
正確理解根與系數(shù)的關(guān)系。一元二次方程根與系數(shù)的關(guān)系是指一元二次方程兩根的和、兩根的積與系數(shù)的關(guān)系。
教學(xué)過程:
一、復(fù)習(xí)引入
1、已知方程x2-ax-3a=0的一個根是6,則求a及另一個根的值。
2、由上題可知一元二次方程的系數(shù)與根有著密切的關(guān)系。其實我們已學(xué)過的求根公式也反映了根與系數(shù)的關(guān)系,這種關(guān)系比較復(fù)雜,是否有更簡潔的關(guān)系?
3、由求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的兩根為x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.觀察兩式右邊,分母相同,分子是-b+b2-4ac與-b-b2-4ac.兩根之間通過什么計算才能得到更簡潔的關(guān)系?
二、探索新知
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
觀察上面的表格,你能得到什么結(jié)論?
。1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q之間有什么關(guān)系?
。2)關(guān)于x的方程ax2+bx+c=0(a≠0)的兩根x1,x2與系數(shù)a,b,c之間又有何關(guān)系呢?你能證明你的猜想嗎?
解下列方程,并填寫表格:
方程x1 x2 x1+x2 x1x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
小結(jié):根與系數(shù)關(guān)系:
。1)關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根x1,x2與系數(shù)p,q的關(guān)系是:x1+x2=-p,x1x2=q(注意:根與系數(shù)關(guān)系的前提條件是根的判別式必須大于或等于零。)
。2)形如ax2+bx+c=0(a≠0)的方程,可以先將二次項系數(shù)化為1,再利用上面的結(jié)論。
即:對于方程ax2+bx+c=0(a≠0)
∵a≠0,∴x2+bax+ca=0
∴x1+x2=-ba,x1x2=ca
。ǹ梢岳们蟾浇o出證明)
例1不解方程,寫出下列方程的.兩根和與兩根積:
(1)x2-3x-1=0 (2)2x2+3x-5=0
(3)13x2-2x=0 (4)2x2+6x=3
(5)x2-1=0 (6)x2-2x+1=0
例2不解方程,檢驗下列方程的解是否正確?
(1)x2-22x+1=0 (x1=2+1,x2=2-1)
(2)2x2-3x-8=0 (x1=7+734,x2=5-734)
例3已知一元二次方程的兩個根是-1和2,請你寫出一個符合條件的方程。(你有幾種方法?)
例4已知方程2x2+kx-9=0的一個根是-3,求另一根及k的值。
變式一:已知方程x2-2kx-9=0的兩根互為相反數(shù),求k;
變式二:已知方程2x2-5x+k=0的兩根互為倒數(shù),求k.
三、課堂小結(jié)
1、根與系數(shù)的關(guān)系。
2、根與系數(shù)關(guān)系使用的前提是:(1)是一元二次方程;(2)判別式大于等于零。
四、作業(yè)布置
1、不解方程,寫出下列方程的兩根和與兩根積。
(1)x2-5x-3=0 (2)9x+2=x2 (3)6x2-3x+2=0
(4)3x2+x+1=0
2、已知方程x2-3x+m=0的一個根為1,求另一根及m的值。
3、已知方程x2+bx+6=0的一個根為-2,求另一根及b的值
初中數(shù)學(xué)優(yōu)秀教案7
4.2.(一)
教材分析:
本節(jié)課是緊接《平行四邊形的性質(zhì)》一節(jié),其探究的主要內(nèi)容是“兩條對角線互相平分的四邊形是平行四邊形”,以及“一組對邊平行且相等的四邊形是平行四邊形”這兩種判別方法。它是在學(xué)生掌握了平行線、三角形全等及簡單圖形的平移和旋轉(zhuǎn)、平行四邊形的定義、性質(zhì)等基礎(chǔ)性知識上學(xué)習(xí)的。在教學(xué)內(nèi)容上起著承上啟下的作用。首先,在探索方式上運用了學(xué)習(xí)機“圖形計算器”的度量、旋轉(zhuǎn)、平移等方法、其次、在探究判別條件的合理性上和運用判別條件時除用到了全等三角形的相關(guān)知識,還可以通過直觀體驗的方法來獲取信息。其次,平行四邊形的判別條件是研究特殊的平行四邊形的基礎(chǔ);再有,平行四邊形判別條件的探究模式從方法上為)(研究特殊的平行四邊形奠定了基礎(chǔ)。并且,本節(jié)內(nèi)容還是學(xué)生運用化歸思想的良好素材。教材從學(xué)生年齡特征、文化知識的實際水平出發(fā),先讓學(xué)生動手做,動腦思考,然后與同伴交流、利用學(xué)習(xí)機“圖形計算器”探索、總結(jié)歸納,升華得出平行四邊形的判別方法,再用這些方法去對四邊形是否是平行四邊形進行判別。這樣的安排使抽象的推理讓學(xué)生更易于接受,并能在整個教學(xué)過程中真正享受到探索的樂趣。
教學(xué)目標:
1.經(jīng)歷并了解平行四邊形判別方法的探索過程,使學(xué)生逐步掌握說理的基本方法。
探索并掌握平行四邊形的兩種判別條件,能根據(jù)判別方法進行相關(guān)的應(yīng)用。
2.在探索過程中發(fā)展學(xué)生的合理推理意識、主動探究的習(xí)慣。
體驗數(shù)學(xué)活動來源于生活又服務(wù)于生活,提高學(xué)生的學(xué)習(xí)興趣。
3.在操作學(xué)習(xí)機的“圖形計算器”活動過程中,加深師生的情感。培養(yǎng)學(xué)生的觀察能力,并提高學(xué)生的學(xué)習(xí)興趣。在學(xué)習(xí)過程中,來體會平行四邊形的圖形美和內(nèi)在美。同時使“圖形計算器”真正成為學(xué)生的學(xué)具。
教學(xué)重點:探索并掌握平行四邊形的判別條件。(一組對邊平行且相等的四邊形是平行四邊形;兩條對角線互相平分的四邊形是平行四邊形)。
教學(xué)難點:經(jīng)歷平行四邊形判別條件的探索過程,發(fā)展學(xué)生的合情推理意識、主動探索的習(xí)慣,逐步掌握說理的基本方法。
教學(xué)媒體設(shè)計:
為了實現(xiàn)教學(xué)目標、優(yōu)化教學(xué)過程、突破教學(xué)難點、充分調(diào)動學(xué)生的各種感官、吸引注意力,課堂上主要采用諾亞舟學(xué)習(xí)機的“圖形計算器”進行輔助教學(xué),通過大屏幕媒體展示教學(xué)和學(xué)生對“圖形計算器”充分利用,使教學(xué)過程與知識發(fā)展過程和思維過程三者同步,分別在創(chuàng)設(shè)情境;觀察、探索;理順、歸納;運用、提高;回顧、反思;布置作業(yè)環(huán)節(jié)都將發(fā)揮“圖形計算器”的實戰(zhàn)功能、讓學(xué)生真正做到課上聽懂、理解透徹。將學(xué)生的課堂練習(xí)成果進行快速展示,從而節(jié)約時間,提高課堂效率。
教學(xué)過程設(shè)計:(t—教師,s—學(xué)生)
問題與情境師生行為設(shè)計意圖
活動板塊1
前面我們已經(jīng)學(xué)習(xí)了平行四邊形概念和性質(zhì),我們來復(fù)習(xí):
(1)平行四邊形概念。
。2)平行四邊形性質(zhì)。
。3)如果我們自己作平行四邊形,你是如何說明理由的?
進而得出需進行平行四邊形判別條件的探究。
先由學(xué)生根據(jù)自主做圖的基礎(chǔ)上,進行猜想,具備什么條件的四邊形是平行四邊形,將猜想記錄到練習(xí)本上。利用學(xué)習(xí)機的“圖形計算器”將你的猜想進行驗證。
活動板塊2
在學(xué)生合作探究基礎(chǔ)上,對小組活動及時評價、引導(dǎo)。
同時觀察是否有小組已經(jīng)經(jīng)過猜想、通過實驗驗證的方法獲得了平行四邊形判別條件。
適時地將學(xué)生的探究方向指引到通過平行四邊形的性質(zhì)來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。
適時地選出一小組成員在臺前利用教師學(xué)習(xí)機的“圖形計算器”通過大屏幕演示小組成果…
得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。
活動板塊3
學(xué)生繼續(xù)活動,探究平行四邊形判別的其他方法。
適時地將學(xué)生的探究方向指引到通過平行四邊形的性質(zhì)來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。
適時地選出一小組成員在臺前利用教師學(xué)習(xí)機的“圖形計算器”通過大屏幕演示小組成果…
得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。
活動板塊4
通過小結(jié)后,借助大屏幕展示學(xué)習(xí)機的“圖形計算器”中預(yù)先保存的練習(xí)題。
活動板塊5
小結(jié)及學(xué)生談感受、體會、特別是對學(xué)習(xí)機的使用情況談體會和認識。
活動板塊6
課后思考題:(將問題的探究記錄在學(xué)習(xí)機的“圖形計算器”中保存)
1.平行四邊形abcd中,在對角線所在直線上取ae、cf,使ae=cf,連接be、df,試說明:be=df。
2.利用學(xué)習(xí)機的“圖形計算器”制作一組以平行四邊形為基本圖案的美麗圖形。
t:提出復(fù)習(xí)概念和性質(zhì)。
s:思考,回答結(jié)合一起
復(fù)習(xí)。
s:思考、作圖、自主參與交流。
t:引導(dǎo)、合作,對小組活動及時評價。
t:注意s猜想、驗證過程中出現(xiàn)哪些問題,他們想如何解決所遇到的問題。
t:引導(dǎo)發(fā)展s的探究意識和合作中團結(jié)解決所遇到的各種問題。
t:引導(dǎo)和補充。關(guān)注學(xué)生是否交流方法,互動學(xué)習(xí)。能否發(fā)現(xiàn)問題,研究并解決問題
s:互動學(xué)習(xí),提出論證方法。
t:引導(dǎo)、合作,對回答問題及時評價。
s:通過對學(xué)具學(xué)習(xí)機的“圖形計算器”的自主探求,獲得平行四邊形判別方法。
s:小組成員合作,其他學(xué)生觀察、思考得出探究的正確方向。
s:互動學(xué)習(xí),提出論證方法。
t:引導(dǎo)、合作,對回答問題及時評價。
t:關(guān)注學(xué)生是否交流方法,互動學(xué)習(xí)。能否發(fā)現(xiàn)問題,研究并解決問題
s:小組成員合作,其他學(xué)生觀察、思考得出探究的.正確方向。
t:根據(jù)授課情況,板演解題過程,或?qū)W生口述解題過程。s:板演或口述。
t:演示引例,解決具體問題中感受應(yīng)用的價值。
s:暢所欲言
t:進行補充,總結(jié)。
s:小組一名同學(xué)記錄問題題干,另一名同學(xué)在學(xué)習(xí)機的“圖形計算器”上記錄下圖形。課后將問題的探究記錄在學(xué)習(xí)機的“圖形計算器”中保存
立足于舊知識的基礎(chǔ)上,引導(dǎo)學(xué)生的注意力。
在情境引入中充分使用學(xué)習(xí)機“圖形計算器”來促進學(xué)生學(xué)習(xí)過程。
為全體學(xué)生提供借助“圖形計算器”為基礎(chǔ)平臺,使全體學(xué)生都有信心學(xué)習(xí)數(shù)學(xué)知識,調(diào)動學(xué)生積極性,主動地參與到課程過程中來,樹立學(xué)習(xí)的信心。為教學(xué)目標1服務(wù)。
通過全體學(xué)生借助“圖形計算器”,獲得直觀的平行四邊形判別方法的印象,通過小組間的合作探究,更容易將所獲得的信息結(jié)論加以認識、記憶。
學(xué)生在學(xué)習(xí)過程中,對學(xué)習(xí)機的“圖形計算器”的自主發(fā)現(xiàn)時,大膽創(chuàng)新,想解決問題。教師起引導(dǎo)者作用,引入符號語言,使學(xué)生輕松愉悅地接受并獲取經(jīng)驗為今后學(xué)習(xí)特殊四邊形打基礎(chǔ)。達成目標1。
直覺思維能力是數(shù)學(xué)注意培養(yǎng)發(fā)展的能力之一,它有利于人的探究能力的成長和創(chuàng)新精神培養(yǎng)。
提引問題時教師起組織者作用,使學(xué)生感受師生合作、生生合作的愉快,不斷的對學(xué)具學(xué)習(xí)機的“圖形計算器”的自主探求,獲得數(shù)學(xué)發(fā)展,激發(fā)學(xué)生的學(xué)習(xí)熱情,調(diào)動學(xué)生學(xué)習(xí)自主性。共同發(fā)展,達成目標1.2。
在學(xué)生最近的知識發(fā)展區(qū)建立新的生長點,解釋應(yīng)用與拓展的學(xué)習(xí)主題,在本活動中得以體現(xiàn)。達成教學(xué)目標2。
創(chuàng)設(shè)一個平等和諧的暢談空間,調(diào)動學(xué)生的積極性,養(yǎng)成良好的總結(jié)習(xí)慣,善于從能力,情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,發(fā)現(xiàn)集體的力量是無窮的,培養(yǎng)集體主義精神。提供一發(fā)展平臺,給學(xué)生留有學(xué)習(xí)探索的空間。
展示提出問題,為下節(jié)課的學(xué)習(xí)提出預(yù)想。并利用“圖形計算器”探求問題,帶來直觀體驗,同時培養(yǎng)學(xué)生的觀察能力,并提高學(xué)生的學(xué)習(xí)興趣。
初中數(shù)學(xué)優(yōu)秀教案8
●教學(xué)目標
。ㄒ唬┙虒W(xué)知識點
1.掌握極差、方差、標準差的概念.
2.明白極差、方差、標準差是反映一組數(shù)據(jù)穩(wěn)定性大小的.
3.用計算器(或計算機)計算一 組數(shù)據(jù)的標準差與方差.
。ǘ┠芰τ(xùn)練要求
1.經(jīng)歷對數(shù)據(jù)處理的過程,發(fā)展學(xué)生初步的統(tǒng)計意識和數(shù)據(jù)處理能力.
2.根據(jù)極差、方差、標準差的大小,解決問題,培養(yǎng)學(xué)生解決問題的能力.
(三)情感與價值觀要求
1.通過解決現(xiàn)實情境中問題,增強數(shù)學(xué)素養(yǎng),用數(shù) 學(xué)的眼光看世界.
2.通過小組活動,培養(yǎng)學(xué)生的合作意識和能力.
●教學(xué)重點
1.掌握極差、方差或標準差的概念,明白極差、方差、標準差是刻畫數(shù)量離散程度的幾個統(tǒng)計量.
2.會求一組數(shù)據(jù)的極差、方差、標準差,并會判斷這組數(shù)據(jù)的穩(wěn)定性 .
●教學(xué)難點
理解方差、標準差的概念,會求一組數(shù)據(jù)的方差、標準差.
●教學(xué)方法
啟發(fā)引導(dǎo)法
●教學(xué)過程
Ⅰ.創(chuàng)設(shè)現(xiàn)實問題情景,引入新課
[師]在信息技術(shù)不斷發(fā)展的社會里,人們需要對大量紛繁復(fù)雜的信息作出恰當?shù)倪x擇與判斷.
當我們?yōu)榧尤搿癢TO”而欣喜若狂的時刻,為了提高農(nóng)副產(chǎn)品的國際競爭力,一些行業(yè)協(xié)會對農(nóng)副產(chǎn)品的規(guī)格進行了劃分.某外貿(mào)公司要出口 一批規(guī)格為75 g的雞腿.現(xiàn)有2個廠家提供貨源.
。凵荩1)根據(jù)20只雞腿在圖中的分布情況,可知甲、乙兩廠被抽取雞腿的平均質(zhì)量分別為75 g.
(2)設(shè)甲、乙兩廠被抽取的雞腿的平均質(zhì)量 甲, 乙,根據(jù)給出的數(shù)據(jù),得
甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)
乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)
(3) 從甲廠抽取的這20只雞腿質(zhì)量的最大值是78 g,最小值是72 g,它們相差78-72=6 g;從乙廠抽取的這20只雞腿質(zhì)量的最大值是80 g,最小值是71 g,它們相差80-71=9(g).
(4)如果只考慮雞腿的規(guī)格,我認為外貿(mào)公司應(yīng)購買甲廠的雞腿,因為甲廠雞腿規(guī)格比較穩(wěn)定,在75 g左右擺動幅度較小.
。蹘煟莺芎.在我們的實際生活中,會出現(xiàn)上面的`情況,平均值一樣,這里我們也關(guān)心數(shù)據(jù)與平均值的離散程度 .也就是說,這種情況下,人們除了關(guān)心數(shù)據(jù)的“平均值”即“平均水平”外,人們往往還關(guān)注數(shù)據(jù)的離散程度,即相對于“平均水平”的偏離情況.
從上圖也能很直觀地觀察出:甲廠相對于“平均水平”的偏離程度比乙廠相對于“平均水平” 的偏離程度小.
這節(jié)課我們就來學(xué)習(xí)關(guān)于數(shù)據(jù)的離散程度的幾個量.
、颍v授新課
[師]在上面幾個問題中,你認為哪一個數(shù)值是反映數(shù)據(jù)的離散程度的一個量呢?
。凵菸艺J為最大值與最小值的差是反映數(shù)據(jù)離 散程度的一個量.
[師]很正確.我們把一組數(shù)據(jù)中最大數(shù)據(jù)與 最小數(shù)據(jù)的差叫極差.而極差是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量.
。凵荩1)丙廠這20只雞腿質(zhì)量的平均數(shù):
丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)
極差為:79-72=7(g)
。凵菰诘冢2)問中,我認為可以用丙廠這20只雞腿的質(zhì)量與其平均數(shù)的差的和來刻畫這20只雞腿的質(zhì)量與其平均數(shù)的差距.
甲廠20只雞 腿的質(zhì)量與相應(yīng)的平均數(shù)的差距為:
(75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)
=0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;
丙廠20只雞腿的質(zhì)量與相應(yīng)的平均數(shù)的差距為:
。75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0
由此可知不能用各數(shù)據(jù)與平均數(shù)的差的和來衡量這組數(shù)據(jù) 的波動大小.
數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標準差來刻畫.
其中方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即
s2= [(x1- )2+(x2- )2+…+(xn- )2]
其中 是x1,x2,…,xn的平均數(shù),s2是 方差,而標準差就是方差的算術(shù)平方根.
。凵轂槭裁捶讲罡拍钪幸詳(shù)據(jù)個數(shù)呢?
。蹘煟菔菫榱讼龜(shù)據(jù)個數(shù)的印象.
由此我們知道:一般而言,一組數(shù)據(jù)的極差、方差或標準差越小,這組數(shù)據(jù)就越穩(wěn)定.
[生]極差還比較容易算出.而方差、標準差算起來就麻煩多了.
。蹘煟菸覀兛梢允褂糜嬎闫,它可以很方便地計算出一組數(shù)據(jù)的標準差與方差,其大體步驟是 ;進入統(tǒng)計計算狀態(tài),輸入數(shù)據(jù),按鍵就可得出標準差.
同學(xué)們可在自己的計算器上探 索計算標準差的具體操作
計算器一般不具有求方差的功能,可以先求出標準差,再平方即可求出方差.
。凵輘甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;
s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.
因為s甲2<s丙2.
所以根據(jù)計算的結(jié)果,我認為甲廠的產(chǎn)品更符合要求.
、.隨堂練習(xí)
Ⅳ.課時小結(jié)
這節(jié)課 ,我們著重學(xué)習(xí):對于一組數(shù)據(jù),有時只知道它的平均數(shù)還不夠,還需要知道它的波動大小;描述一組數(shù)據(jù)的波動大小的量不止一種,最常用的極差、方差、標準差;方差 和標準差既有聯(lián)系 ,也有區(qū)別.
、酰n后作業(yè)
Ⅵ.活動與探究
甲、乙兩名學(xué)生進行射擊練習(xí),兩人在相同條件下各射靶10次,將射擊結(jié)果作統(tǒng)計分析如下:
。1)請你填上表中乙學(xué)生的相關(guān)數(shù)據(jù);
。2)根據(jù)你所學(xué)的統(tǒng)計數(shù)知識,利用上述某些數(shù)據(jù)評價甲、乙兩人的射擊水平.
初中數(shù)學(xué)優(yōu)秀教案9
一、 教材內(nèi)容及設(shè)置依據(jù)
【教材內(nèi)容】本節(jié)教材的主要內(nèi)容是通過對有理數(shù)加法、減法的運算的回顧,學(xué)習(xí)包括分數(shù)和小數(shù)的有理數(shù)的加減混合運算,理解其方法;應(yīng)用有理數(shù)的加減混合運算,解決實際問題。
【設(shè)置依據(jù)】教材內(nèi)容的確定主要根據(jù)知識的社會作用性、教育性原則(對培養(yǎng)學(xué)生的數(shù)學(xué)思維、數(shù)學(xué)能力,以及形成辨證唯物主義世界觀的重要作用)、后繼教育原則(為進一步深造、參加實際工作和適應(yīng)日常生活準備條件)、可接受性原則(即考慮學(xué)生的認識水平、接受能力、生理心理特征,又要著眼于學(xué)生的不斷發(fā)展);還要與現(xiàn)實生活、科技發(fā)展相適應(yīng),逐步深透現(xiàn)代教學(xué)思想。
二、教材的地位和作用
本節(jié)內(nèi)容是在學(xué)習(xí)了有理數(shù)的加法、有理數(shù)的減法的基礎(chǔ)上學(xué)習(xí)的,是前面知識的延伸和加強,同時又是后面所要學(xué)習(xí)的有理數(shù)的乘法、除法及有理數(shù)的混合運算的基礎(chǔ),
特別是減法可以轉(zhuǎn)化為加法為后面的除法可以轉(zhuǎn)化為乘法的學(xué)習(xí)提供了
類比依據(jù)。也為后面學(xué)習(xí)代數(shù)式的合并同類項及有關(guān)的恒等變形奠定了基礎(chǔ),因此具有承上啟下的重要作用。
三、對重點、難點的處理
【對重點的處理】本節(jié)的重點是有理數(shù)加減混合運算的方法及在實際生活中的應(yīng)用。為了突出重點,教師應(yīng)盡量從實際問題引入、應(yīng)盡可能的在課堂上創(chuàng)設(shè)具體教學(xué)情境,注重使學(xué)生在具體情境中體會運算的方法。同時我們也可以根據(jù)學(xué)生的接受情況和每節(jié)課的具體情況,盡可能的把每節(jié)課的“課堂練習(xí)”和“習(xí)題”的內(nèi)容劃分成不同的板塊,如:1、知識鞏固型 2、實際應(yīng)用型 3、方法多變型 4、知識拓展型等。
【對難點的處理】對于難點的處理,因為新教材“強調(diào)要給學(xué)生足夠的空間和時間”,因此教學(xué)時我們應(yīng)盡量從學(xué)生已有的生活經(jīng)驗和已有的知識經(jīng)驗出發(fā),或用“已知”去解決“未知”的思想引導(dǎo)學(xué)生,鼓勵學(xué)生大膽的猜測、交流,充分的探索。同時淡化形式,突出實質(zhì)(不出現(xiàn)代數(shù)和的定義,只是讓學(xué)生理解有理數(shù)的加減運算可以統(tǒng)一成加法以及加法運算可以寫成省略括號及前面加號的形式,重點是讓學(xué)生通過具體情境對“代數(shù)和”加以體會)
四、關(guān)于教學(xué)方法的選用
根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實際水平,本節(jié)課可采用的方法:
1、情境體驗:通過教師創(chuàng)設(shè)貼近學(xué)生生活實際的教學(xué)情境,讓學(xué)生融會到課堂中去,產(chǎn)生共鳴,激發(fā)興趣,鼓勵學(xué)生觀察、分析、探索,加深其對本節(jié)內(nèi)容的理解,培養(yǎng)學(xué)生解決問題的能力。
2 、引導(dǎo)發(fā)現(xiàn)法:它符合辯證唯物主義中內(nèi)因與外因相互作用的觀點,符合教學(xué)論中的自覺性和積極性、鞏固性、可接受性、教學(xué)與發(fā)展相結(jié)合、教師的主導(dǎo)作用與學(xué)生的主體地位相統(tǒng)一等原則。引導(dǎo)發(fā)現(xiàn)法的關(guān)鍵是通過教師的.引導(dǎo)啟發(fā),充分調(diào)動學(xué)生學(xué)習(xí)的主動性。
3、小組合作、探究討論:通過合作討論,使學(xué)生形成一個“學(xué)習(xí)共同體”,在這個共同體內(nèi)相互交流、相互溝通、相互啟發(fā)、相互補充,分享彼此的思考、經(jīng)驗和知識,交流彼此的情感、體驗和觀念,共同體驗成功的喜悅,使學(xué)生體會到集體的力量,形成合作的意識,產(chǎn)生合作的愿望。
五、關(guān)于學(xué)法的指導(dǎo)
“授人以魚,不如授人以漁”,在教給學(xué)生知識的同時,要教給他們好的學(xué)習(xí)方法,讓他們“會學(xué)習(xí)”在本節(jié)課的教學(xué)中,在提出問題后,要鼓勵學(xué)生分析、探索、討論,確定出問題解決的辦法。通過小組探究交流,得到解決問題的不同方法,開拓了思路,培養(yǎng)了思維能力。同時意識到:數(shù)學(xué)是生活實際中的數(shù)學(xué)、大自然中的數(shù)學(xué),萌生了用數(shù)學(xué)解決實際問題的意識、愿望。
六、課時安排:1課時
教學(xué)程序:
一、復(fù)習(xí)鋪墊:
首先利用多媒體出示一組有關(guān)有理數(shù)的加法、減法的題目,讓學(xué)生進行速算比賽,看誰做的又對又快。
1、45+(-23) 2、9-(-5)
3、-28-(-37)4、(-13 )+0
5、(-29)+(-31) 6、(-16)-(-12)-24-(-18) 7、1.6-(-1.2)-2.5 8、(-42)+57+(-84)+(-23)
從四排學(xué)生中個推選一名學(xué)生代表板演6、7、8、題。
通過比賽的方式,符合學(xué)生的心理特點,迎合了學(xué)生好勝的心理,激起了學(xué)生學(xué)習(xí)的內(nèi)在動力,激發(fā)了學(xué)習(xí)的興趣。
然后教師與學(xué)生一起對題目進行評判,對優(yōu)勝的學(xué)生進行表揚,對其他學(xué)生加以鼓勵,使他們意識到“勝敗乃兵家常事”,關(guān)鍵要有信心,要有高昂的斗志。通過練習(xí),學(xué)生已在不知不覺中復(fù)習(xí)了有理數(shù)的加法、減法法則,特別是減法法則,加深了印象,這符合教學(xué)論中的鞏固性原則,為后面學(xué)習(xí)有理數(shù)的加減混合運算奠定了基礎(chǔ)。
二、新知探索:
1、 出示引例1: 一架飛機作特技表演,起飛后的高度變化如下表: 高度變化 記作
上升4.5千米 +4.5千米
下降3.2千米 -3.2千米
上升1.1千米 +1.1千米
下降1.4千米 -1.4千米
此時飛機比起飛點高了多少米?
讓學(xué)生分組探究討論,讓學(xué)生發(fā)表自己的見解,不難得出兩種算法:
① 4.5+(-3.2)+1.1+(-1.4) ②4.5-3.2+1.1-1.4
。1.3+1.1+(-1.4) =1.3+1.1-1.4
。2.4+(-1.4) =2.4-1.4
。1千米 =1千米
教師隨之提出問題:比較以上兩種算法,你發(fā)現(xiàn)了什么?通過學(xué)生的合作討論、教師的引導(dǎo)、規(guī)納、總結(jié)可得出:加減法混合運算可以統(tǒng)一成加法;加法運算可以寫成省略括號及前面加號的形式。使學(xué)生在解決問題的過程中體會到“代數(shù)和“的含義。這里不要求出現(xiàn)“代數(shù)和”的名稱。通過小組合作,探究討論,讓每一個學(xué)
初中數(shù)學(xué)優(yōu)秀教案10
一、課題引入
為了讓學(xué)生更好地理解正數(shù)與負數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實數(shù)理論,實數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅實的基礎(chǔ).
對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.
二、課題研究
在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的.
為了準確表達諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分數(shù)、零,是不夠的.如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的.收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達的.因此,為了準確表達支出5000元,就有必要引入了一種新數(shù)—負數(shù).
我們把所學(xué)過的大于零的.數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.
在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負數(shù).“-5”讀作“負5”,“-5000”讀作“負5000”.
于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達方式.
利用正數(shù)與負數(shù)可以準確地表達或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設(shè)計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設(shè)計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.
借助實際例子能夠讓學(xué)生較好地理解為什么要引入負數(shù),認識到負數(shù)是為了有效表達與實際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.
三、鞏固練習(xí)
例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?
思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.
特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負數(shù)來表示.
再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.
例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當天的收盤價與開盤價的漲跌情況如下表:單位:元
日期周二周三周四周五
開盤+0.16+0.25+0.78+2.12
收盤-0.23-1.32-0.67-0.65
當日收盤價
試在表中填寫周二到周五該股票的收盤價.
思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當天的開盤價降低了0.23元”.
因此,這五天該股票的開盤價與收盤價分別應(yīng)該按如下的方式進行計算:
周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.
初中數(shù)學(xué)優(yōu)秀教案11
教學(xué)目標:
1、初步理解垂直與平行是同一平面內(nèi)兩直線的特殊位置關(guān)系,初步認識垂線和平行線。
2、在“演示操作驗證解釋應(yīng)用”的過程中,發(fā)展學(xué)生的空間觀念,滲透猜想、與驗證的數(shù)學(xué)思想方法。
教學(xué)重點、難點:
正確理解“相交”、“互相平行”、“互相垂直”等概念,發(fā)展學(xué)生的空間想象力。
教學(xué)過程:
一、平面內(nèi)兩直線位置關(guān)系
1、操作:
請每位同學(xué)在一張紙上畫兩條直線,這兩條直線的位置關(guān)系會出現(xiàn)哪些情況?
2、分類:根據(jù)學(xué)生想象,出示下圖(網(wǎng)格):
師:老師課前也繪制了這樣6幅圖,想一想,按兩條直線的不同位置關(guān)系,你可以分成哪幾類?說說你的分類依據(jù)。
3、討論交流,揭示平面內(nèi)兩條直線的位置關(guān)系。
小結(jié):
兩條直線,除了“相交”和“不相交”,還可能存在其他的位置關(guān)系嗎?
板書:
相交
兩條直線的位置關(guān)系
不相交
二、探究一:垂直
1、平面內(nèi)兩直線相交構(gòu)成的4個角的特點。
師:首先來研究平面內(nèi)兩條直線“相交”這一情況。
師:平面內(nèi)直線a和直線b相交與點O,已知1=60,誰能馬上求出2、3、4的度數(shù)?你是怎么想的?
2、平面內(nèi)兩直線相交的特殊情況。
提問:這4個角的度數(shù)有什么特點?固定點O,旋轉(zhuǎn)后,情況還是一樣嗎?
。ㄐD(zhuǎn)至垂直)
師:現(xiàn)在兩條直線相交成直角了。繼續(xù)旋轉(zhuǎn)呢?
除了相交成直角以外,其余的情況,都是任意相交的`。
板書: 任意相交
相交
平面內(nèi)兩條直線的位置關(guān)系 相交成直角
不相交
3、練習(xí):
下列圖形中哪兩條直線相交成直角。
○1 ○2 ○3
4、揭示概念。(媒體出示)
板書: 任意相交
相交
平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直
不相交
5、平面圖形中的垂直現(xiàn)象。
下面圖形中哪些角是直角?在圖上用直角記號標出。哪些線段互相垂直?用垂直符號表示。
○1 ○2 ○3
記作: 記作: 記作:
6、動手操作。
三、探究二:平行
1、提問:長方形中,如果把相對的兩條邊無限延長,是否會在某一點相交?
2、揭示概念
板書: 任意相交
相交
平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直
不相交 平行
3、平面圖中的平行現(xiàn)象
4、練習(xí)
。1)說說下列哪些直線互相垂直?哪些互相平行?
將圖2改為:
提問:e和f還平行嗎?
將圖2改為:
當角1等于角2時,e和f還平行嗎?
。2)滲透“同一”平面觀念
長方體中,這兩條棱相交嗎?那么他們平行嗎?
板書: 任意相交
相交
同一平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直
不相交 平行
四、生活中的平行與垂直
1、舉例:生活中,你有沒有發(fā)現(xiàn)“垂直與平行”的現(xiàn)象?
2、提問:為什么這些地方要設(shè)計成“垂直”或者“平行”?
五、課堂總結(jié)
初中數(shù)學(xué)優(yōu)秀教案12
學(xué)習(xí)目標:
1、進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義。
2、會計算加權(quán)平均數(shù),理解“權(quán)”的意義,能選擇適當?shù)慕y(tǒng)計量表示數(shù)據(jù)的集中趨勢。
3、會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。
4、會用樣本平均數(shù)、方差估計總體的平均數(shù)、方差,進一步感受抽樣的必要性,體會用樣本估計總體的思想。
一、知識點回顧
1、數(shù)學(xué)期末總評成績由作業(yè)分數(shù),課堂參與分數(shù),期考分數(shù)三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業(yè)90分,課堂參與85分,則他的總評成績?yōu)開_______。
2、樣本1、2、3、0、1的平均數(shù)與中位數(shù)之和等于___.
3、一組數(shù)據(jù)5,-2,3,x,3,-2,若每個數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù),則這組數(shù)據(jù)的平均數(shù)是.
4、數(shù)據(jù)1,6,3,9,8的極差是
5、已知一個樣本:1,3,5,x,2,它的平均數(shù)為3,則這個樣本的方差是。
二、專題練習(xí)
1、方程思想:
例:某次考試A、B、C、D、E這5名學(xué)生的'平均分為62分,若學(xué)生A除外,其余學(xué)生的平均得分為60分,那么學(xué)生A的得分是_____________.
點撥:本題可以用統(tǒng)計學(xué)知識和方程組相結(jié)合來解決。
同類題連接:一班級組織一批學(xué)生去春游,預(yù)計共需費用120元,后來又有2人參加進來,總費用不變,于是每人可以少分攤3元,設(shè)原來參加春游的學(xué)生x人?闪蟹匠蹋
2、分類討論法:
例:汶川大地震牽動每個人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻愛心。已知5人平均捐款560元(每人捐款數(shù)額均為百元的整數(shù)倍),捐款數(shù)額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數(shù)額的中位數(shù),那么其余兩人的捐款數(shù)額分別是___________;
點撥:做題過程中要注意滿足的條件。
同類題連接:數(shù)據(jù)-1 , 3 , 0 , x的極差是5 ,則x =_____.
3、平均數(shù)、中位數(shù)、眾數(shù)在實際問題中的應(yīng)用
例:某班50人右眼視力檢查結(jié)果如下表所示:
視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5
人數(shù)2 2 2 3 3 4 5 6 7 11 5
求該班學(xué)生右眼視力的平均數(shù)、眾數(shù)與中位數(shù).發(fā)表一下自己的看法。
4、方差在實際問題中的應(yīng)用
例:甲、乙兩名射擊運動員在相同條件下各射靶5次,各次命中的環(huán)數(shù)如下:
甲:5 8 8 9 10
乙:9 6 10 5 10
(1)分別計算每人的平均成績;
(2)求出每組數(shù)據(jù)的方差;
(3)誰的射擊成績比較穩(wěn)定?
三、知識點回顧
1、平均數(shù):
練習(xí):在一次英語口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績?yōu)?0分,問該班有多少人?
2、中位數(shù)和眾數(shù)
練習(xí):1.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.
2.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.24、25 B.23、24 C.25、25 D.23、25
3.在一次環(huán)保知識競賽中,某班50名學(xué)生成績?nèi)缦卤硭荆?/p>
得分50 60 70 80 90 100 110 120
人數(shù)2 3 6 14 15 5 4 1
分別求出這些學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù).
3.極差和方差
練習(xí):1.一組數(shù)據(jù)X 、X …X的極差是8,則另一組數(shù)據(jù)2X +1、2X +1…,2X +1的極差是( )
A. 8 B.16 C.9 D.17
2.如果樣本方差,
那么這個樣本的平均數(shù)為.樣本容量為.
四、自主探究
1、已知:1、2、3、4、5、這五個數(shù)的平均數(shù)是3,方差是2.
則:101、102、103、104、105、的平均數(shù)是,方差是。
2、4、6、8、10、的平均數(shù)是,方差是。
你會發(fā)現(xiàn)什么規(guī)律?
2、應(yīng)用上面的規(guī)律填空:
若n個數(shù)據(jù)x1x2……xn的平均數(shù)為m,方差為w。
(1)n個新數(shù)據(jù)x1+100,x2+100, …… xn+100的平均數(shù)是,方差為。
(2)n個新數(shù)據(jù)5x1,5x2, ……5xn的平均數(shù),方差為。
五、學(xué)后反思:
xxx
初中數(shù)學(xué)優(yōu)秀教案13
教學(xué)目標:
1、知識與技能:使學(xué)生經(jīng)歷相似多邊形概念的形成過程,了解相似多邊形的定義,并能根據(jù)定義判斷兩個多邊形是否相似。
2、過程與方法:在探索相似多邊形本質(zhì)特征的過程中,進一步發(fā)展學(xué)生歸納、類比、反思、交流等方面的能力,體會反例的作用。
3、情感態(tài)度與價值觀:通過觀察、推斷得到數(shù)學(xué)猜想、獲得數(shù)學(xué)結(jié)論的過程,體驗數(shù)學(xué)活動充滿了探索性和創(chuàng)造性。
教學(xué)重點:探索相似多邊形的定義過程,以及用定義去判斷兩個多邊形是否相似。
教學(xué)難點:探索相似多邊形的定義過程。
教學(xué)過程:
(一)創(chuàng)設(shè)情景,導(dǎo)入新課。(3分鐘)
由于學(xué)生已經(jīng)學(xué)習(xí)了形狀相同的圖形,在這里我向?qū)W生展示一組圖片(課件),引導(dǎo)學(xué)生從中找出形狀相同的圖形。學(xué)生回答后,利用課件演示抽象出多邊形。
大多數(shù)學(xué)生可能會指出黑板邊框的內(nèi)外邊緣所圍成的矩形的形狀也相同。我緊接著創(chuàng)設(shè)懸念:這兩個矩形的形狀相同嗎?
利用課件演示,把內(nèi)邊緣的矩形的長和寬按相同比例放大后不能與外邊緣矩形重合。此時的學(xué)生肯定倍感疑惑,急切想探個究竟。教師順勢導(dǎo)入新課:
那么滿足什么條件的多邊形才是形狀相同的多邊形呢?今天我們一起來探究相似多邊形。
(二)自主學(xué)習(xí),合作探究。(15分鐘)
1、動手實驗,初步感知定義。
課前發(fā)給每個小組一套相似多邊形的圖片(其中包括兩個相似三角形、一個等邊三角形、兩個相似四邊形),組織學(xué)生按形狀相同給多邊形找朋友。然后引導(dǎo)學(xué)生以小組為單位從中選擇一組多邊形探究解決下面問題。
(1)在這兩個多邊形中,是否有相等的內(nèi)角?設(shè)法驗證你的猜想。
(2)在這兩個多邊形中,相等的內(nèi)角的兩邊是否成比例?
(設(shè)計意圖:引導(dǎo)學(xué)生分組討論、探究、驗證、交流,并進行演示,著重引導(dǎo)學(xué)生說明驗證的方法,無論學(xué)生提出什么樣的驗證方式,只要有道理,教師都應(yīng)給予充分肯定和鼓勵。)
對相等內(nèi)角的兩邊是否對應(yīng)成比例這個問題學(xué)生可能會感到困難,由于學(xué)生已經(jīng)學(xué)習(xí)了成比例線段,我會利用這一點啟發(fā)學(xué)生運用測量、計算的方法解決這一難點。
利用多媒體演示形狀相同的六邊形的對應(yīng)角相等,然后讓學(xué)生觀察計算得到,相等的內(nèi)角的兩邊成比例。然后給出對應(yīng)角、對應(yīng)邊的概念,引導(dǎo)學(xué)生明確對應(yīng)角、對應(yīng)邊的含義。
2、特例探究,進一步體驗定義。 (課件出示問題)
例:下列每組圖形形狀相同,它們的對應(yīng)角有怎樣的關(guān)系?對應(yīng)邊呢?
(1)三角形ABC與正三角形DEF;
(2)正方形ABCD與正方形EFGH.
(設(shè)計意圖:引導(dǎo)學(xué)生通過自主探究解決這個問題后進行適當引申,使學(xué)生認識到:邊數(shù)相同的正多邊形都相似。)
3、歸納總結(jié),形成概念。
教師設(shè)問:回憶一下我們剛才探究過的每一組多邊形,你能發(fā)現(xiàn)它們的共同特點嗎?(課件出示四組圖形)
(設(shè)計意圖:引導(dǎo)學(xué)生嘗試用自己的語言敘述定義,教師給予規(guī)范并板書。隨即給出相似多邊形的表示方法和相似比的概念,接下來引導(dǎo)學(xué)生回憶表示全等三角形時應(yīng)注意的問題,也就是要把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上,然后引導(dǎo)學(xué)生用類比的方法得到:在記兩個多邊形相似時也要把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上,說明相似比與兩個多邊形敘述的順序有關(guān)。)
4、深化理解。
(1)滿足什么條件的兩個多邊形相似?
(2)如果兩個多邊形相似,那么它們的對應(yīng)角和對應(yīng)邊有什么關(guān)系?
(設(shè)計意圖:使學(xué)生認識到:相似多邊形的定義既是最基本最重要的判定方法,也是最本質(zhì)最重要的特征。)
(三)辨析研討,知識深化。(14分鐘)
1、議一議:
(1)觀察下面兩組圖形,圖(1)中的兩個圖形相似嗎?為什么?圖(2)中的兩個圖形呢?與同桌交流。 (課件出示圖形)
(2)如果兩個多邊形不相似,那么它們的各角可能對應(yīng)相等嗎?它們的各邊可能對應(yīng)成比例嗎?
(3)如果兩個菱形相似,那么他們需要滿足什么條件?
(設(shè)計意圖:為了培養(yǎng)學(xué)生從多角度理解問題,我運用教材中兩個典型的反例,引導(dǎo)學(xué)生討論探究,使學(xué)生認識到:不相似的兩個多邊形的角也可能對應(yīng)相等,不相似的兩個多邊形的邊也可能對應(yīng)成比例;反過來說:只具備各角分別對應(yīng)相等或各邊分別對應(yīng)成比例的多邊形不一定相似。進而使學(xué)生明確:判斷兩個多邊形形相似,各角分別對應(yīng)相等、各邊分別對應(yīng)成比例這兩個條件缺一不可。通過正反兩方面的對照,能使學(xué)生更深刻地理解相似多邊形的定義。這是個易錯點,教學(xué)時應(yīng)注意給學(xué)生留出充分思考交流的時間。另外在設(shè)計時,我在教材原有內(nèi)容的.基礎(chǔ)上添加了菱形的情況(見課件),引導(dǎo)學(xué)生探索兩個菱形相似需要滿足什么樣的條件。)
2、做一做。
設(shè)問:學(xué)到這兒,你認為黑板邊框內(nèi)外邊緣所成的這兩個矩形相似嗎?請你計算說明。課件出示問題:
一塊長3m、寬1.5m的矩形黑板,鑲在其外圍的木質(zhì)邊框?qū)?.5cm.邊框的內(nèi)外邊緣所成的矩形相似嗎?為什么?(學(xué)生自主探索解決)
(設(shè)計意圖:為了滿足學(xué)生多樣化的學(xué)習(xí)需求,使不同的學(xué)生都能獲得令自己滿意的數(shù)學(xué)知識,我把此題進行了適當?shù)耐卣购脱由臁?
拓展一:如果將黑板的上邊框去掉,其他條件不變。
那么邊框內(nèi)外邊緣所成的矩形相似嗎?為什么?
拓展二:在拓展一的基礎(chǔ)上,如果矩形的長為2a,寬為a,
邊框的寬度為x。那么邊框內(nèi)外邊緣所成的矩形還相似嗎?為什么?
(設(shè)計意圖:引導(dǎo)學(xué)生討論計算,解決問題。目的是讓學(xué)生明確并不是所有相互套疊的兩個矩形都不相似。使學(xué)生初步認識到直觀有時是不可靠的,研究數(shù)學(xué)問題需要在提出猜想的基礎(chǔ)上進行推理和計算,幫助學(xué)生養(yǎng)成嚴謹?shù)膶W(xué)風。)
(四)學(xué)以致用,鞏固提高。(6分鐘)
慧眼識金!
1、判斷下列各題是否正確:
(1)所有的矩形都相似。
(2)所有的正方形都相似。
(3)對應(yīng)邊成比例的兩個多邊形相似 問題解決!
2、下圖中兩面國旗相似,則它們對應(yīng)邊的比為 。
3、如圖,兩個正六邊形廣場磚的邊長分別為a和b,它們相似嗎?為什么?
(課件出示圖形)
(設(shè)計意圖:為了體現(xiàn)相似圖形在生活中的廣泛應(yīng)用,我以實際問題為背景設(shè)計練習(xí)題。這是一組基礎(chǔ)題,意在鞏固相似多邊形的定義以及相似比的計算。)
(五)課堂小結(jié),知識升華。(2分鐘)
師生共同完成。
(設(shè)計意圖:教師首先肯定學(xué)生在課堂中大膽的猜想和思維的積極性,然后引導(dǎo)學(xué)生從幾方面進行反思:我學(xué)會了什么,我最感興趣的是,我發(fā)現(xiàn)了什么,我能解決,我獲得的數(shù)學(xué)方法是幫助學(xué)生構(gòu)成新的知識網(wǎng)絡(luò),形成技能。)
(六)布置作業(yè):
1、 P113 習(xí)題第3題
2、畫一畫:在方格紙中畫出兩個相似多邊形。
3、探究題:小林在一塊長為6m,寬為4m一邊靠墻的矩形的小花園周圍,栽種了一種蝴蝶花裝飾,這種蝴蝶花的邊框?qū)挒?0cm,邊框內(nèi)外邊緣所圍成的兩個矩形相似嗎?第1、2題作為必做題;第3題作為選做題,是對課堂上做一做的再次拓展和延伸:當矩形的長與寬的比不再是2:1時,邊框內(nèi)外邊緣所圍成的兩個矩形還相似嗎?
板書設(shè) 4、相似多邊形
定義: 各角對應(yīng)相等,
各邊對應(yīng)成比例
表示方法:∽
相似比:
初中數(shù)學(xué)優(yōu)秀教案14
一、教學(xué)目的:
1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關(guān)的論證和計算;
2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力。
二、重點、難點
1.教學(xué)重點:菱形的兩個判定方法。
2.教學(xué)難點:判定方法的證明方法及運用。
三、例題的意圖分析
本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會用這些判定方法進行有關(guān)的論證和計算.這些題目的'推理都比較簡單,學(xué)生掌握起來不會有什么困難,可以讓學(xué)生自己去完成.程度好一些的班級,可以選講例3.
四、課堂引入
1.復(fù)習(xí)
。1)菱形的定義:一組鄰邊相等的平行四邊形;
(2)菱形的性質(zhì)1菱形的四條邊都相等;性質(zhì)2菱形的對角線互相平分,并且每條對角線平分一組對角;
。3)運用菱形的定義進行菱形的判定,應(yīng)具備幾個條件?(判定:2個條件)
2.問題
要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?
3.探究
。ń滩腜109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?
通過演示,容易得到:
菱形判定方法1對角線互相垂直的平行四邊形是菱形。
注意此方法包括兩個條件:
。1)是一個平行四邊形。
。2)兩條對角線互相垂直。
初中數(shù)學(xué)優(yōu)秀教案15
學(xué)習(xí)目標
1、了解分式的概念,會判斷一個代數(shù)式是否是分式。
2、能用分式表示簡單問題中數(shù)量之間的關(guān)系,能解釋簡單分式的實際背景或幾何意義。
3、能分析出一個簡單分式有、無意義的條件。
4、會根據(jù)已知條件求分式的值。
學(xué)習(xí)重點
分式的概念,掌握分式有意義的條件
學(xué)習(xí)難點
分式有、無意義的條件
教學(xué)流程
預(yù)習(xí)導(dǎo)航
一、創(chuàng)設(shè)情境:
京滬鐵路是我國東部沿海地區(qū)縱貫?zāi)媳钡慕煌ù髣用},全長1462km,是我國最繁忙的鐵路干線之一。如果貨運列車的速度為akm/h,快速列車的速度為貨運列車2倍,那么:
(1)貨運列車從北京到上海需要多長時間?
(2)快速列車從北京到上海需要多長時間?
(3)已知從北京到上海快速列車比貨運列車少用多少時間?
觀察剛才你們所列的式子,它們有什么特點?
這些式子與分數(shù)有什么相同和不同之處?
合作探究
一、概念探究:
1、列出下列式子:
(1)一塊長方形玻璃板的面積為2㎡,如果寬為am,那么長是
(2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價格是 元。
(3)正n邊形的每個內(nèi)角為 度。
(4)兩塊面積分別為a公頃、b公頃的棉田,產(chǎn)棉花分別為m㎏、n㎏。這兩塊棉田平均每公頃產(chǎn)棉花 ______㎏。
2、兩個數(shù)相除可以把它們的商表示成分數(shù)的形式。如果用字母 分別表示分數(shù)的分子和分母,那么 可以表示成什么形式呢?
3、思考:
上面所列各式有什么共同特點?
(通過對以上幾個實際問題的研討,學(xué)會用 的形式表示實際問題中數(shù)量之間的'關(guān)系,感受把分數(shù)推廣到分式的優(yōu)越性和必要性)
分式的概念:
4、小結(jié)分式的概念中應(yīng)注意的問題.
① 分式是兩個整式相除的商式,其中分子為被除式,分母為除式,分數(shù)線起除號的作用;
、 分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區(qū)別整式的重要依據(jù);
、 如同分數(shù)一樣,在任何情況下,分式的分母的值都不可以為0,否則分式無意義。分式分母不為零是隱含在此分式中而無須注明的條件。
二、例題分析:
例1 : 試解釋分式 所表示的實際意義
例2:求分式 的值 ①a=3 ②a=—
例3:當取什么值時,分式 (1)沒有意義?(2)有意義?(3)值為零。
三、展示交流:
1、在 ____________中,是整式的有_____________________,是分式的有________________;
2、 寫成分式為____________,且當m≠_____時分式有意義;
3、當x_______時,分式 無意義,當x______時,分式的值為1。
4、 若分式 的值為正數(shù),則x的取值應(yīng)是 ( )
A. , B. C. D. 為任意實數(shù)
四、提煉總結(jié):
1、什么叫分式?
2、分式什么時候有意義?怎樣求分式的值
【初中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:
(熱)初中數(shù)學(xué)優(yōu)秀教案06-22
初中數(shù)學(xué)優(yōu)秀教案9篇【精華】12-19
初中數(shù)學(xué)優(yōu)秀教案[范例15篇]06-22
初中數(shù)學(xué) 教案02-24
初中數(shù)學(xué)方差教案12-28
初中數(shù)學(xué)矩形教案12-30