【優(yōu)】人教版高三數(shù)學教案
作為一無名無私奉獻的教育工作者,時常需要用到教案,編寫教案助于積累教學經(jīng)驗,不斷提高教學質(zhì)量。那么應當如何寫教案呢?下面是小編精心整理的人教版高三數(shù)學教案,僅供參考,希望能夠幫助到大家。
人教版高三數(shù)學教案1
一、教材分析及處理
函數(shù)是高中數(shù)學的重要內(nèi)容之一,函數(shù)的基礎知識在數(shù)學和其他許多學科中有著廣泛的應用;函數(shù)與代數(shù)式、方程、不等式等內(nèi)容聯(lián)系非常密切;函數(shù)是近一步學習數(shù)學的重要基礎知識;函數(shù)的概念是運動變化和對立統(tǒng)一等觀點在數(shù)學中的具體體現(xiàn);函數(shù)概念及其反映出的數(shù)學思想方法已廣泛滲透到數(shù)學的各個領域,《函數(shù)》教學設計。
對函數(shù)概念本質(zhì)的理解,首先應通過與初中定義的比較、與其他知識的聯(lián)系以及不斷地應用等,初步理解用集合與對應語言刻畫的函數(shù)概念。其次在后續(xù)的學習中通過基本初等函數(shù),引導學生以具體函數(shù)為依托、反復地、螺旋式上升地理解函數(shù)的本質(zhì)。
教學重點是函數(shù)的概念,難點是對函數(shù)概念的本質(zhì)的理解。
學生現(xiàn)狀
學生在第一章的時候已經(jīng)學習了集合的概念,同時在初中時已學過一次函數(shù)、反比例函數(shù)和二次函數(shù),那么如何用集合知識來理解函數(shù)概念,結(jié)合原有的知識背景,活動經(jīng)驗和理解走入今天的課堂,如何有效地激活學生的學習興趣,讓學生積極參與到學習活動中,達到理解知識、掌握方法、提高能力的目的,使學生獲得有益有效的學習體驗和情感體驗,是在教學設計中應思考的。
二、教學三維目標分析
1、知識與技能(重點和難點)
(1)、通過實例讓學生能夠進一步體會到函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型。并且在此基礎上學習應用集合與對應的語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的'作用。不但讓學生能完成本節(jié)知識的學習,還能較好的復習前面內(nèi)容,前后銜接。
。2)、了解構(gòu)成函數(shù)的三要素,缺一不可,會求簡單函數(shù)的定義域、值域、判斷兩個函數(shù)是否相等等。
(3)、掌握定義域的表示法,如區(qū)間形式等。
(4)、了解映射的概念。
2、過程與方法
函數(shù)的概念及其相關知識點較為抽象,難以理解,學習中應注意以下問題:
。1)、首先通過多媒體給出實例,在讓學生以小組的形式開展討論,運用猜想、觀察、分析、歸納、類比、概括等方法,探索發(fā)現(xiàn)知識,找出不同點與相同點,實現(xiàn)學生在教學中的主體地位,培養(yǎng)學生的創(chuàng)新意識。
。2)、面向全體學生,根據(jù)課本大綱要求授課。
。3)、加強學法指導,既要讓學生學會本節(jié)知識點,也要讓學生會自我主動學習。
3、情感態(tài)度與價值觀
。1)、通過多媒體給出實例,學生小組討論,給出自己的結(jié)論和觀點,加上老師的輔助講解,培養(yǎng)學生的實踐能力和和大膽創(chuàng)新意識。
。2)、讓學生自己討論給出結(jié)論,培養(yǎng)學生的自我動手能力和小組團結(jié)能力。
三、教學器材
多媒體課件
四、教學過程
教學內(nèi)容教師活動學生活動設計意圖
《函數(shù)》課題的引入(用時一分鐘)配著簡單的音樂,從簡單的例子引入函數(shù)應用的廣泛,將同學們的視線引入函數(shù)的。學習上聽著悠揚的音樂,讓同學們的視線全注意在老師所講的內(nèi)容上從貼近學生生活入手,符合學生的認知特點。讓學生在領略大自然的美妙與和諧中進入函數(shù)的世界,體現(xiàn)了新課標的理念:從知識走向生活
知識回顧:初中所學習的函數(shù)知識(用時兩分鐘)回顧初中函數(shù)定義及其性質(zhì),簡單回顧一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)的性質(zhì)、定義及簡單作圖認真聽老師回顧初中知識,發(fā)現(xiàn)異同在初中知識的基礎上引導學生向更深的內(nèi)容探索、求知。即復習了所學內(nèi)容又做了即將所學內(nèi)容的鋪墊
思考與討論:通過給出的問題,引出本節(jié)課的主要內(nèi)容(用時四分鐘)給出兩個簡單的問題讓同學們思考,講述初中內(nèi)容無法給出正確答案,需要從新的高度來認識函數(shù)結(jié)合老師所回顧的知識,結(jié)合自己所掌握的知識,思考老師給出的問題,小組形式作討論,從簡單問題入手,循序漸進,引出本節(jié)主要知識,回顧前一節(jié)的集合感念,應用到本節(jié)知識,前后聯(lián)系、銜接
新知識的講解:從概念開始講解本節(jié)知識(用時三分鐘)詳細講解函數(shù)的知識,包括定義域,值域等,回到開始提問部分作答做筆記,專心聽講講解函數(shù)概念,由知識講解回到問題身上,解決問題
對提問的回答(用時五分鐘)引導學生自己解決開始所提的兩個問題,然后同個互動給出最后答案通過與老師共同討論回答開始問題,總結(jié)更好的掌握函數(shù)概念,通過問題來更好的掌握知識
函數(shù)區(qū)間(用時五分鐘)引入函數(shù)定義域的表示方法簡潔明了的方法表示函數(shù)的定義域或值域,在集合表示方法的基礎上引入另一種方法
注意點(用時三分鐘)做個簡單的的回顧新內(nèi)容,把難點重點提出來,讓同學們記住通過問題回答,概念解答,把重難點給出,提醒學生注意內(nèi)容和知識點
習題(用時十分鐘)給出習題,分析題意在稿紙上簡單作答,回答問題通過習題練習明確重難點,把不懂的地方記住,課后學生在做進一步的聯(lián)系
映射(用時兩分鐘)從概念方面講解映射的意義,象與原象在新知識的基礎上了解更多知識,映射的學習給以后的知識內(nèi)容做更好的鋪墊
小結(jié)(用時五分鐘)簡單講述本節(jié)的知識點,重難點做筆記前后知識的連貫,總結(jié),使學生更明白知識點
五、教學評價
為了使學生了解函數(shù)概念產(chǎn)生的背景,豐富函數(shù)的感性認識,獲得認識客觀世界的體驗,本課采用"突出主題,循序漸進,反復應用"的方式,在不同的場合考察問題的不同側(cè)面,由淺入深。本課在教學時采用問題探究式的教學方法進行教學,逐層深入,這樣使學生對函數(shù)概念的理解也逐層深入,從而準確理解函數(shù)的概念。函數(shù)引入中的三種對應,與初中時學習函數(shù)內(nèi)容相聯(lián)系,這樣起到了承上啟下的作用。這三種對應既是函數(shù)知識的生長點,又突出了函數(shù)的本質(zhì),為從數(shù)學內(nèi)部研究函數(shù)打下了基礎。
在培養(yǎng)學生的能力上,本課也進行了整體設計,通過探究、思考,培養(yǎng)了學生的實踐能力、觀察能力、判斷能力;通過揭示對象之間的內(nèi)在聯(lián)系,培養(yǎng)了學生的辨證思維能力;通過實際問題的解決,培養(yǎng)了學生的分析問題、解決問題和表達交流能力;通過案例探究,培養(yǎng)了學生的創(chuàng)新意識與探究能力。
雖然函數(shù)概念比較抽象,難以理解,但是通過這樣的教學設計,學生基本上能很好地理解了函數(shù)概念的本質(zhì),達到了課程標準的要求,體現(xiàn)了課改的教學理念。
人教版高三數(shù)學教案2
一、目標
知識與技能:了解可導函數(shù)的單調(diào)性與其導數(shù)的關系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間。
過程與方法:多讓學生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;
情感、態(tài)度與價值觀:通過學生的參與,激發(fā)學生學習數(shù)學的興趣。
二、重點難點
教學重點:利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過4次的多項式函數(shù)的單調(diào)區(qū)間
教學難點:利用導數(shù)研究函數(shù)的單調(diào)性,會求不超過4次的多項式函數(shù)的單調(diào)區(qū)間
三、教學過程:
函數(shù)的贈與減、增減的快與慢以及函數(shù)的最大值或最小值等性質(zhì)是非常重要的。通過研究函數(shù)的這些性質(zhì),我們可以對數(shù)量的變化規(guī)律有一個基本的了解。我們以導數(shù)為工具,對研究函數(shù)的增減及極值和最值帶來很大方便。
四、學情分析
我們的學生屬于平行分班,沒有實驗班,學生已有的知識和實驗水平有差距。需要教師指導并借助動畫給予直觀的認識。
五、教學方法
發(fā)現(xiàn)式、啟發(fā)式
新授課教學基本環(huán)節(jié):預習檢查、總結(jié)疑惑→情境導入、展示目標→合作探究、精講點撥→反思總結(jié)、當堂檢測→發(fā)導學案、布置預習
六、課前準備
1、學生的學習準備:
2、教師的教學準備:多媒體課件制作,課前預習學案,課內(nèi)探究學案,課后延伸拓展學案。
七、課時安排:
1課時
八、教學過程
。ㄒ唬╊A習檢查、總結(jié)疑惑
檢查落實了學生的預習情況并了解了學生的疑惑,使教學具有了針對性。
提問
1、判斷函數(shù)的單調(diào)性有哪些方法?
。ㄒ龑W生回答“定義法”,“圖象法”。)
2、比如,要判斷y=x2的單調(diào)性,如
何進行?(引導學生回顧分別用定義法、圖象法完成。)
3、還有沒有其它方法?如果遇到函數(shù):
y=x3-3x判斷單調(diào)性呢?(讓學生短時
間內(nèi)嘗試完成,結(jié)果發(fā)現(xiàn):用“定義法”,作差后判斷差的符號麻煩;用“圖象法”,圖象很難畫出來。)
4、有沒有捷徑?(學生疑惑,由此引出課題)這就要用到咱們今天要學的導數(shù)法。
以問題形式復習相關的舊知識,同時引出新問題:三次函數(shù)判斷單調(diào)性,定義法、圖象法很不方便,有沒有捷徑?通過創(chuàng)設問題情境,使學生產(chǎn)生強烈的問題意識,積極主動地參與到學習中來。
。ǘ┣榫皩、展示目標。
設計意圖:步步導入,吸引學生的注意力,明確學習目標。
。ㄌ剿骱瘮(shù)的單調(diào)性和導數(shù)的關系)問:函數(shù)的單調(diào)性和導數(shù)有何關系呢?
教師仍以y=x2為例,借助幾何畫板動態(tài)演示,讓學生記錄結(jié)果在課前發(fā)的表格第二行中:
函數(shù)及圖象單調(diào)性切線斜率k的正負導數(shù)的正負
問:有何發(fā)現(xiàn)?(學生回答)
問:這個結(jié)果是否具有一般性呢?
。ㄈ┖献魈骄、精講點撥。
我們來考察兩個一般性的例子:
。ń處熤笇W生動手實驗:把準備的牙簽放在表中曲線y=f(x)的圖象上,作為曲線的切線,移動切線并記錄結(jié)果在上表第三、四行中。)
問:能否得出什么規(guī)律?
讓學生歸納總結(jié),教師簡單板書:
在某個區(qū)間(a,b)內(nèi),若f ' (x)>0,則f(x)在(a,b)上是增函數(shù);
若f ' (x)<0,則在f(x)(a,b)上是減函數(shù)。
教師說明:
要正確理解“某個區(qū)間”的含義,它必需是定義域內(nèi)的某個區(qū)間。
1、這一部分是后面利用導數(shù)求函數(shù)單調(diào)區(qū)間的理論依據(jù),重要性不言而喻,而學生又只學習了導數(shù)的意義和一些基本運算,要想得到嚴格的證明是不現(xiàn)實的,因此,只要求學生能借助幾何直觀得出結(jié)論,這與新課標中的要求是相吻合的。
2、教師對具體例子進行動態(tài)演示,學生對一般情況進行實驗驗證。由觀察、猜想到歸納、總結(jié),讓學生體驗知識的發(fā)現(xiàn)、發(fā)生過程,變灌注知識為學生主動獲取知識,從而使之成為課堂教學活動的主體。
3、得出結(jié)論后,教師強調(diào)正確理解“某個區(qū)間”的含義,它必需是定義域內(nèi)的某個區(qū)間。這一點將在例1的變式3具體體現(xiàn)。
4、考慮到本節(jié)課堂容量較大,這里沒有提到函數(shù)在個別點處導數(shù)為零不影響單調(diào)性的情況(如y=x3在x=0處),這一問題將在后續(xù)課程中給學生補充。
應用導數(shù)求函數(shù)的單調(diào)區(qū)間
例1.求函數(shù)y=x2-3x的單調(diào)區(qū)間。
(引導學生得出解題思路:求導→
令f '(x)>0,得函數(shù)單調(diào)遞增區(qū)間,令f ' (x)<0,得函數(shù)單調(diào)遞減區(qū)間→下結(jié)論)
變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。
。ǜ傎惢顒樱簩⑷嗤瑢W分成兩大組指定分別用單調(diào)性的定義,和用求導數(shù)的方法解答,每組各推薦一位同學的答案進行投影。)
求單調(diào)區(qū)間是導數(shù)的一個重要應用,也是本節(jié)重點,為此,設計了例1及三個變式:
設計例1可引導學生得出用導數(shù)法求單調(diào)區(qū)間的解題步驟
設計變式1及競賽活動可以激發(fā)學生的學習熱情,讓他們學會比較,并深刻體驗導數(shù)法的`優(yōu)越性。
鞏固提高
變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。
(學生上黑板解答)
變式3:求函數(shù)的單調(diào)區(qū)間。
設計變式2且讓學生上黑板解答可以規(guī)范解題格式,同時使學生了解用導數(shù)法可以求更復雜的函數(shù)的單調(diào)區(qū)間。
設計變式3是可使學生體會考慮定義域的必要性
例1及三個變式,依次涉及二次,三次函數(shù),含指數(shù)的函數(shù)、反比例函數(shù),這樣一題多變,逐步深化,從而讓學生領會:如何應用及哪類單調(diào)性問題該應用“導數(shù)法”解決。
多媒體展示探究思考題。
在學生分組實驗的過程中教師巡回觀察指導。(課堂實錄),(四)反思總結(jié),當堂檢測。
教師組織學生反思總結(jié)本節(jié)課的主要內(nèi)容,并進行當堂檢測。
設計意圖:引導學生構(gòu)建知識網(wǎng)絡并對所學內(nèi)容進行簡單的反饋糾正。(課堂實錄)
。ㄎ澹┌l(fā)導學案、布置預習。
設計意圖:布置下節(jié)課的預習作業(yè),并對本節(jié)課鞏固提高。教師課后及時批閱本節(jié)的延伸拓展訓練。
九、板書設計
例1.求函數(shù)y=3x2-3x的單調(diào)區(qū)間。
變式1:求函數(shù)y=3x3-3x2的單調(diào)區(qū)間。
變式2:求函數(shù)y=3e x -3x單調(diào)區(qū)間。
變式3:求函數(shù)的單調(diào)區(qū)間。
十、教學反思
本課的設計采用了課前下發(fā)預習學案,學生預習本節(jié)內(nèi)容,找出自己迷惑的地方。課堂上師生主要解決重點、難點、疑點、考點、探究點以及學生學習過程中易忘、易混點等,最后進行當堂檢測,課后進行延伸拓展,以達到提高課堂效率的目的。
在后面的教學過程中會繼續(xù)研究本節(jié)課,爭取設計的更科學,更有利于學生的學習,也希望大家提出寶貴意見,共同完善,共同進步!
【高三數(shù)學教案】相關文章:
高三數(shù)學教案11-07
人教版高三數(shù)學教案11-02
人教版高三數(shù)學教案12-13
高三數(shù)學教案15篇11-08
高三數(shù)學教案(15篇)11-09
高三數(shù)學教案(精選15篇)01-11
高三數(shù)學教案《函數(shù)單調(diào)性》08-22
人教版高三數(shù)學教案(5篇)01-16
人教版高三數(shù)學教案4篇11-03
人教版高三數(shù)學教案5篇01-16