四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級數(shù)學(xué)上冊教案

八年級數(shù)學(xué)上冊教案

時間:2024-06-08 14:26:04 數(shù)學(xué)教案 我要投稿

八年級數(shù)學(xué)上冊教案[集合15篇]

  作為一名優(yōu)秀的教育工作者,總不可避免地需要編寫教案,借助教案可以恰當(dāng)?shù)剡x擇和運(yùn)用教學(xué)方法,調(diào)動學(xué)生學(xué)習(xí)的積極性?靵韰⒖冀贪甘窃趺磳懙陌!以下是小編精心整理的八年級數(shù)學(xué)上冊教案,希望對大家有所幫助。

八年級數(shù)學(xué)上冊教案[集合15篇]

八年級數(shù)學(xué)上冊教案1

  教學(xué)目標(biāo):

  1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實生活中的應(yīng)用,能夠靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計出簡單的圖案。

  2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗點(diǎn):經(jīng)歷對典型圖案設(shè)計意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計。

  難點(diǎn):分析典型圖案的設(shè)計意圖。

  疑點(diǎn):在設(shè)計的圖案中清晰地表現(xiàn)自己的設(shè)計意圖

  教具學(xué)具準(zhǔn)備:

  提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

  教學(xué)過程設(shè)計:

  1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計作好理論準(zhǔn)備。對教材給出的六個圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

  2、課本

  1 欣賞課本75頁圖3—24的圖案,并分析這個圖案形成過程。

  評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計,同時了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

  評注:可以取其中的任何一個為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習(xí)

  (1) 以小組為單位,由每組指定一個同學(xué)展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行圖案設(shè)計,并簡要說明自己的設(shè)計意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個,并與同伴進(jìn)行交流。

  (四)課時小結(jié)

  本課時的`重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計的基本方法,并能運(yùn)用這些變換設(shè)計出一些簡單的圖案。

  通過今天的學(xué)習(xí),你對圖案的設(shè)計又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計,而且設(shè)計的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)

  八年級數(shù)學(xué)上冊教案(五)延伸拓展

  進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計它,并結(jié)合實際背景分析它的設(shè)計意圖。

八年級數(shù)學(xué)上冊教案2

  教學(xué)目標(biāo):

  1、 理解運(yùn)用平方差公式分解因式的方法。

  2、 掌握提公因式法和平方差公式分解因式的綜合運(yùn)用。

  3、 進(jìn)一步培養(yǎng)學(xué)生綜合、分析數(shù)學(xué)問題的能力。

  教學(xué)重點(diǎn):

  運(yùn)用平方差公式分解因式。

  教學(xué)難點(diǎn):

  高次指數(shù)的轉(zhuǎn)化,提公因式法,平方差公式的靈活運(yùn)用。

  教學(xué)案例:

  我們數(shù)學(xué)組的觀課議課主題:

  1、關(guān)注學(xué)生的合作交流

  2、如何使學(xué)困生能積極參與課堂交流。

  在精心備課過程中,我設(shè)計了這樣的自學(xué)提示:

  1、整式乘法中的平方差公式是___,如何用語言描述?把上述公式反過來就得到_____,如何用語言描述?

  2、下列多項式能用平方差公式分解因式嗎?若能,請寫出分解過程,若不能,說出為什么?

 、-x2+y2 ②-x2-y2 ③4-9x2

 、 (x+y)2-(x-y)2 ⑤ a4-b4

  3、試總結(jié)運(yùn)用平方差公式因式分解的條件是什么?

  4、仿照例4的分析及旁白你能把x3y-xy因式分解嗎?

  5、試總結(jié)因式分解的步驟是什么?

  師巡回指導(dǎo),生自主探究后交流合作。

  生交流熱情很高,但把全部問題分析完已用了30分鐘。

  生展示自學(xué)成果。

  生1: -x2+y2能用平方差公式分解,可分解為(y+x)(y-x)

  生2: -x2+y2=-(x2-y2)=-(x+y)(x-y)

  師:這兩種方法都可以,但第二種方法提出負(fù)號后,一定要注意括號里的各項要變號。

  生3:4-9x2 也能用平方差公式分解,可分解為(2+9x)(2-9x)

  生4:不對,應(yīng)分解為(2+3x)(2-3x),要運(yùn)用平方差公式必須化為兩個數(shù)或整式的平方差的形式。

  生5: a4-b4可分解為(a2+b2)(a2-b2)

  生6:不對,a2-b2 還能繼續(xù)分解為a+b)(a-b)

  師:大家爭論的很好,運(yùn)用平方差公式分解因式,必須化為兩個數(shù)或兩個整式的平方的差的形式,另因式分解必須分解到不能再分解為止!

  反思:這節(jié)課我備課比較認(rèn)真,自學(xué)提示的設(shè)計也動了一番腦筋,為讓學(xué)生順利得出運(yùn)用平方差公式因式分解的條件,我設(shè)計了問題2,為讓學(xué)生能更容易總結(jié)因式分解的步驟,我又設(shè)計了問題4,自認(rèn)為,本節(jié)課一定會上的非常成功,學(xué)生的交流、合作,自學(xué)展示一定會很精彩,結(jié)果卻出乎我的意料,本節(jié)課沒有按計劃完成教學(xué)任務(wù),學(xué)生練習(xí)很少,作業(yè)有很大一部分同學(xué)不能獨(dú)立完成,反思這節(jié)課主要有以下幾個問題:

  (1) 我在備課時,過高估計了學(xué)生的能力,問題2中的'③、④、⑤ 多數(shù)學(xué)生剛預(yù)習(xí)后不能熟練解答,導(dǎo)致在小組交流時,多數(shù)學(xué)生都在交流這幾題該怎樣分解,耽誤了寶貴的時間,也分散了學(xué)生的注意力,導(dǎo)致難點(diǎn)、重點(diǎn)不突出,若能把問題2改為:

  下列多項式能用平方差公式因式分解嗎?為什么?可能效果會更好。

  (2) 教師備課時,要考慮學(xué)生的知識層次,能力水平,真正把學(xué)生放在第一位,要考慮學(xué)生的接受能力,安排習(xí)題要循序漸進(jìn),切莫過于心急,過分追求課堂容量、習(xí)題類型全等等,例如在問題2的設(shè)計時可寫一些簡單的,像④、⑤ 可到練習(xí)時再出現(xiàn),發(fā)現(xiàn)問題后再強(qiáng)調(diào)、歸納,效果也可能會更好。

  我及時調(diào)整了自學(xué)提示的內(nèi)容,在另一個班也上了這節(jié)課。果然,學(xué)生的討論有了重點(diǎn),很快(大約10分鐘)便合作得出了結(jié)論,課堂氣氛非;钴S,練習(xí)量大,準(zhǔn)確率高,但隨之我又發(fā)現(xiàn)我在處理課后練習(xí)時有點(diǎn)不能應(yīng)對自如。例如:師:下面我們把課后練習(xí)做一下,話音剛落,大家紛紛拿著本到我面前批改。師:都完了?生:全完了。我很興奮。來:“我們再做幾題試試!鄙珠_始緊張地練習(xí)……下課后,無意間發(fā)現(xiàn)竟還有好幾個同學(xué)課后題沒做。原因是預(yù)習(xí)時不會,上課又沒時間,還有幾位同學(xué)練習(xí)題竟然有誤,也沒改正,原因是上課慌著展示自己,沒顧上改……?磥,以后上課不能單聽學(xué)生的齊答,要發(fā)揮組長的職責(zé),注重過關(guān)落實。給學(xué)生一點(diǎn)機(jī)動時間,讓學(xué)習(xí)有困難的學(xué)生有機(jī)會釋疑,練習(xí)不在于多,要注意融會貫通,會舉一反三。

  確實,“學(xué)海無涯,教海無邊”。我們備課再認(rèn)真,預(yù)設(shè)再周全,面對不同的學(xué)生,不同的學(xué)情,仍然會產(chǎn)生新的問題,“沒有最好,只有更好!”我會一直探索、努力,不斷完善教學(xué)設(shè)計,更新教育觀念,直到永遠(yuǎn)……

八年級數(shù)學(xué)上冊教案3

  【學(xué)習(xí)目標(biāo)】

  1.掌握等腰三角形的有關(guān)概念和性質(zhì),運(yùn)用等腰三角形的性質(zhì)解決問題。

  2. 通過學(xué)生之間的交流活動,培養(yǎng)學(xué)生主動與他人合作 交流的意識和良好的學(xué)習(xí)習(xí)慣。

  【學(xué)習(xí)重點(diǎn)】

  探索和掌握等腰三角形的'性質(zhì)及其應(yīng)用。

  【學(xué)習(xí)難點(diǎn)】

  等腰三角形的性質(zhì)的應(yīng)用。

  【學(xué)習(xí) 過程】

  一、你知道嗎?

  等腰三角形的有關(guān)概念

  《等腰三角形應(yīng)用》講義

  課前預(yù)習(xí)

  1.SAS,SSS,ASA,AAS,HL

  2.這條線段的兩個端點(diǎn)的距離相等

  3.這個角的兩邊的距離相等

  4.這樣的點(diǎn)有4個

  ?知識點(diǎn)睛

  1.線段垂直平分線上的點(diǎn)到這條線段的兩個端點(diǎn)的距離相等

  2.角平分線上的點(diǎn)到這個角的兩邊距離相等

  3.頂角的平分線 底邊上的中線 底邊上的高 三線合一

  《13.3等腰三角形》專項練習(xí)

  1、填空題

  2、如圖,以等腰直角三角形AOB的斜邊為直角邊向外作第2個等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜邊為直角邊向外作第3個等腰直角三角形A1BB1,如此作下去。若OA=OB=1,則第 個等腰直角三角形的面積 。

八年級數(shù)學(xué)上冊教案4

  教學(xué)目標(biāo)

  1.認(rèn)識變量、常量.

 。玻畬W(xué)會用含一個變量的代數(shù)式表示另一個變量.

  教學(xué)重點(diǎn)

 。保J(rèn)識變量、常量.

 。玻檬阶颖硎咀兞块g關(guān)系.

  教學(xué)難點(diǎn)

  用含有一個變量的式子表示另一個變量.

  教學(xué)過程

  Ⅰ.提出問題,創(chuàng)設(shè)情境

  情景問題:一輛汽車以60千米/小時的速度勻速行駛,行駛里程為s千米.行駛時間為t小時.

 。保埻瑢W(xué)們根據(jù)題意填寫下表:

  t/時 1 2 3 4 5

  s/千米

 。玻谝陨线@個過程中,變化的量是________.變變化的量是__________.

 。常囉煤瑃的式子表示s.

  Ⅱ.導(dǎo)入新課

  首先讓學(xué)生思考上面的幾個問題,可以互相討論一下,然后回答.

  從題意中可以知道汽車是勻速行駛,那么它1小時行駛60千米,2小時行駛2×60千米,即120千米,3小時行駛3×60千米,即180千米,4小時行駛4×60千米,即240千米,5小時行駛5×60千米,即300千米……因此行駛里程s千米與時間t小時之間有關(guān)系:s=60t.其中里程s與時間t是變化的量,速度60千米/小時是不變的量.

  這種問題反映了勻速行駛的汽車所行駛的里程隨行駛時間的變化過程.其實現(xiàn)實生活中有好多類似的問題,都是反映不同事物的變化過程,其中有些量的值是按照某種規(guī)律變化,其中有些量的是按照某種規(guī)律變化的,如上例中的時間t、里程s,有些量的數(shù)值是始終不變的,如上例中的速度60千米/小時.

  [活動一]

 。保繌堧娪捌笔蹆r為10元,如果早場售出票150張,日場售出205張,晚場售出310張.三場電影的票房收入各多少元.設(shè)一場電影售票x張,票房收入y元.怎樣用含x的式子表示y?

 。玻谝桓鶑椈傻南露藨覓熘匚铮淖儾⒂涗浿匚锏馁|(zhì)量,觀察并記錄彈簧長度的變化,探索它們的變化規(guī)律.如果彈簧原長10cm,每1kg重物使彈簧伸長0.5cm,怎樣用含有重物質(zhì)量m的式子表示受力后的彈簧長度?

  引導(dǎo)學(xué)生通過合理、正確的思維方法探索出變化規(guī)律.

  結(jié)論:

 。保鐖鲭娪捌狈渴杖耄150×10=1500(元)

  日場電影票房收入:205×10=20xx(元)

  晚場電影票房收入:310×10=3100(元)

  關(guān)系式:y=10x

  2.掛1kg重物時彈簧長度: 1×0.5+10=10.5(cm)

  掛2kg重物時彈簧長度:2×0.5+10=11(cm)

  掛3kg重物時彈簧長度:3×0.5+10=11.5(cm)

  關(guān)系式:L=0.5m+10

  通過上述活動,我們清楚地認(rèn)識到,要想尋求事物變化過程的規(guī)律,首先需確定在這個過程中哪些量是變化的,而哪些量又是不變的.在一個變化過程中,我們稱數(shù)值發(fā)生變化的`量為變量(variable),那么數(shù)值始終不變的量稱之為常量(constant).如上述兩個過程中,售出票數(shù)x、票房收入y;重物質(zhì)量m,彈簧長度L都是變量.而票價10元,彈簧原長10cm……都是常量.

  [活動二]

 。保嬕粋面積為10cm2的圓,圓的半徑應(yīng)取多少?圓的面積為20cm2呢?怎樣用含有圓面積S的式子表示圓半徑r?

 。玻10m長的繩子圍成矩形,試改變矩形長度.觀察矩形的面積怎樣變化.記錄不同的矩形的長度值,計算相應(yīng)的矩形面積的值,探索它們的變化規(guī)律:設(shè)矩形的長度為xcm,面積為Scm2.怎樣用含有x的式子表示S?

  結(jié)論:

 。保笠阎娣e的圓的半徑,可利用圓的面積公式經(jīng)過變形求出S= r2r=

  面積為10cm2的圓半徑r= ≈1.78(cm)

  面積為20cm2的圓半徑r= ≈2.52(cm)

  關(guān)系式:r=

 。玻蚓匦蝺山M對邊相等,所以它一條長與一條寬的和應(yīng)是周長10cm的一半,即5cm.

  若長為1cm,則寬為5-1=4(cm)

  據(jù)矩形面積公式:S=1×4=4(cm2)

  若長為2cm,則寬為5-2=3(cm)

  面積S=2×(5-2)=6(cm2)

  … …

  若長為xcm,則寬為5-x(cm)

  面積S=x?(5-x)=5x-x2(cm2)

  從以上兩個題中可以看出,在探索變量間變化規(guī)律時,可利用以前學(xué)過的一些有關(guān)知識公式進(jìn)行分析尋找,以便盡快找出之間關(guān)系,確定關(guān)系式.

  Ⅲ.隨堂練習(xí)

  1.購買一些鉛筆,單價0.2元/支,總價y元隨鉛筆支數(shù)x變化,指出其中的常量與變量,并寫出關(guān)系式.

 。玻粋三角形的底邊長5cm,高h(yuǎn)可以任意伸縮.寫出面積S隨h變化關(guān)系式,并指出其中常量與變量.

  解:1.買1支鉛筆價值1×0.2=0.2(元)

  買2支鉛筆價值2×0.2=0.4(元)

  ……

  買x支鉛筆價值x×0.2=0.2x(元)

  所以y=0.2x

  其中單價0.2元/支是常量,總價y元與支數(shù)x是變量.

 。玻鶕(jù)三角形面積公式可知:

  當(dāng)高h(yuǎn)為1cm時,面積S= ×5×1=2.5cm2

  當(dāng)高h(yuǎn)為2cm時,面積S= ×5×2=5cm2

  … …

  當(dāng)高為hcm,面積S= ×5×h=2.5hcm2

八年級數(shù)學(xué)上冊教案5

  一、創(chuàng)設(shè)情景,明確目標(biāo)

  多媒體展示:內(nèi)角三兄弟之爭

  在一個直角三角形里住著三個內(nèi)角,平時,它們?nèi)值芊浅F(tuán)結(jié).可是有一天,老二突然不高興,發(fā)起脾氣來,它指著老大說:“你憑什么度數(shù)最大,我也要和你一樣大!”“不行啊!”老大說:“這是不可能的,否則,我們這個家就再也圍不起來了……”“為什么?”老二很納悶.同學(xué)們,你們知道其中的道理嗎?

  二、自主學(xué)習(xí),指向目標(biāo)

  學(xué)習(xí)至此:請完成《學(xué)生用書》相應(yīng)部分.

  三、合作探究,達(dá)成目標(biāo)

  三角形的內(nèi)角和

  活動一:見教材P11“探究”.

  展示點(diǎn)評:從探究的操作中,你能發(fā)現(xiàn)證明的思路嗎?圖中的直線L與△ABC的邊BC有什么關(guān)系?你能想出證明“三角形內(nèi)角和的方法”嗎?證明命題的步驟是什么?證明三角形的內(nèi)角和定理.

  小組討論:有沒有不同的證明方法?

  反思小結(jié):證明是由題設(shè)出發(fā),經(jīng)過一步步的推理,最后推出結(jié)論正確的過程.三角形三個內(nèi)角的和等于180°.

  針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分

  三角形內(nèi)角和定理的應(yīng)用

  活動二:見教材P12例1

  展示點(diǎn)評:題中所求的`角是哪個三角形的一個內(nèi)角嗎?你能想出幾種解法?

  小組討論:三角形的內(nèi)角和在解題時,如何靈活應(yīng)用?

  反思小結(jié):當(dāng)三角形中已知兩角的讀數(shù)時,可直接用內(nèi)角和定理求第三個內(nèi)角;當(dāng)三角形中未直接給出兩內(nèi)角的度數(shù)時,可根據(jù)它們之間的關(guān)系列方程解決.

  針對訓(xùn)練:見《學(xué)生用書》相應(yīng)部分

  四、總結(jié)梳理,內(nèi)化目標(biāo)

  1.本節(jié)學(xué)習(xí)的數(shù)學(xué)知識是:三角形的內(nèi)角和是180°.

  2.三角形內(nèi)角和定理的證明思路是什么?

  3.數(shù)學(xué)思想是轉(zhuǎn)化、數(shù)形結(jié)合.

  《三角形綜合應(yīng)用》精講精練

  1. 現(xiàn)有3 cm,4 cm,7 cm,9 cm長的四根木棒,任取其中三根組成一個三角形,那么可以組成的三角形的個數(shù)是( )

  A.1個 B.2個 C.3個 D.4個

  2. 如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依次為2,3,4,6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲之間的距離最大值是( )

  A.5 B.6 C.7 D.10

  3.下列五種說法:①三角形的三個內(nèi)角中至少有兩個銳角;

  ②三角形的三個內(nèi)角中至少有一個鈍角;③一個三角形中,至少有一個角不小于60°;④鈍角三角形中,任意兩個內(nèi)角的和必大于90°;⑤直角三角形中兩銳角互余.其中正確的說法有________(填序號).

  《11.2與三角形有關(guān)的角》同步測試

  4.(1)如圖①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,∠ACD與∠B有什么關(guān)系?為什么?

  (2)如圖②,在Rt△ABC中,∠C=90°,D,E分別在AC,AB上,且∠ADE=∠B,判斷△ADE的形狀.為什么?

  (3)如圖③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,點(diǎn)C,B,E在同一直線上,∠A與∠D有什么關(guān)系?為什么?

八年級數(shù)學(xué)上冊教案6

  一、教學(xué)目標(biāo)

 。ㄒ唬、知識與技能:

 。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

 。2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

 。ǘ⑦^程與方法:

 。1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

 。2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

 。3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

 。ㄈ、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點(diǎn)以及實事求是的科學(xué)態(tài)度。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):因式分解的概念及提公因式法。

  難點(diǎn):正確找出多項式各項的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學(xué)過程

  教學(xué)環(huán)節(jié):

  活動1:復(fù)習(xí)引入

  看誰算得快:用簡便方法計算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設(shè)計意圖:

  如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進(jìn)行計算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計的計算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

  注意事項:學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

  活動2:導(dǎo)入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設(shè)計意圖:

  引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的`精神準(zhǔn)備。

  活動3:探究新知

  看誰算得準(zhǔn):

  計算下列式子:

 。1)3x(x-1)= ;

 。2)(a+b+c)= ;

 。3)(+4)(-4)= ;

 。4)(-3)2= ;

 。5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

 。1)a+b+c= ;

 。2)3x2-3x= ;

  (3)2-16= ;

 。4)a3-a= ;

  (5)2-6+9= 。

  在第一組的整式乘法的計算上,學(xué)生通過對第一組式子的觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  活動4:歸納、得出新知

  比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級數(shù)學(xué)上冊教案7

  教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識點(diǎn)

  1.經(jīng)歷探索積的乘方的運(yùn)算法則的過程,進(jìn)一步體會冪的意義。

  2.理解積的乘方運(yùn)算法則,能解決一些實際問題。

 。ǘ┠芰τ(xùn)練要求

  1.在探究積的乘方的運(yùn)算法則的過程中,發(fā)展推理能力和有條理的表達(dá)能力。

  2.學(xué)習(xí)積的乘方的運(yùn)算法則,提高解決問題的能力。

 。ㄈ┣楦信c價值觀要求

  在發(fā)展推理能力和有條理的語言、符號表達(dá)能力的同時,進(jìn)一步體會學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)習(xí)數(shù)學(xué)的信心,感受數(shù)學(xué)的簡潔美。

  教學(xué)重點(diǎn)

  積的乘方運(yùn)算法則及其應(yīng)用。

  教學(xué)難點(diǎn)

  冪的運(yùn)算法則的靈活運(yùn)用。

  教學(xué)方法

  自學(xué)─引導(dǎo)相結(jié)合的方法。

  同底數(shù)冪的乘法、冪的`乘方、積的乘方成一個體系,研究方法類同,有前兩節(jié)課做基礎(chǔ),本節(jié)課可放手讓學(xué)生自學(xué),教師引導(dǎo)學(xué)生總結(jié),從而讓學(xué)生真正理解冪的運(yùn)算方法,能解決一些實際問題。

  教具準(zhǔn)備

  投影片.

  教學(xué)過程

 、瘢岢鰡栴},創(chuàng)設(shè)情境

  [師]還是就上節(jié)課開課提出的問題:若已知一個正方體的棱長為1.1×103cm,你能計算出它的體積是多少嗎?

  [生]它的體積應(yīng)是V=(1.1×103)3cm3。

  [師]這個結(jié)果是冪的乘方形式嗎?

  [生]不是,底數(shù)是1.1和103的乘積,雖然103是冪,但總體來看,我認(rèn)為應(yīng)是積的乘方才有道理。

  [師]你分析得很有道理,積的乘方如何運(yùn)算呢?能不能找到一個運(yùn)算法則?有前兩節(jié)課的探究經(jīng)驗,老師想請同學(xué)們自己探索,發(fā)現(xiàn)其中的奧秒。

  Ⅱ.導(dǎo)入新課

  老師列出自學(xué)提綱,引導(dǎo)學(xué)生自主探究、討論、嘗試、歸納。

  出示投影片

  1.填空,看看運(yùn)算過程用到哪些運(yùn)算律,從運(yùn)算結(jié)果看能發(fā)現(xiàn)什么規(guī)律?

 。1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b()

 。2)(ab)3=______=_______=a()b()

  (3)(ab)n=______=______=a()b()(n是正整數(shù))

  2.把你發(fā)現(xiàn)的規(guī)律用文字語言表述,再用符號語言表達(dá)。

  3.解決前面提到的正方體體積計算問題。

  4.積的乘方的運(yùn)算法則能否進(jìn)行逆運(yùn)算呢?請驗證你的想法。

  5.完成課本P170例3。

  學(xué)生探究的經(jīng)過:

  1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意義;第②步是用乘法的交換律和結(jié)合律;第③步是用同底數(shù)冪的乘法法則。同樣的方法可以算出(2)、(3)題。

八年級數(shù)學(xué)上冊教案8

  【教學(xué)目標(biāo)】

  知識與技能

  會推導(dǎo)平方差公式,并且懂得運(yùn)用平方差公式進(jìn)行簡單計算。

  過程與方法

  經(jīng)歷探索特殊形式的多項式乘法的過程,發(fā)展學(xué)生的符號感和推理能力,使學(xué)生逐漸掌握平方差公式。

  情感、態(tài)度與價值觀

  通過合作學(xué)習(xí),體會在解決具體問題過程中與他人合作的重要性,體驗數(shù)學(xué)活動充滿著探索性和創(chuàng)造性。

  【教學(xué)重難點(diǎn)】

  重點(diǎn):平方差公式的推導(dǎo)和運(yùn)用,以及對平方差公式的幾何背景的了解。

  難點(diǎn):平方差公式的應(yīng)用。

  關(guān)鍵:對于平方差公式的推導(dǎo),我們可以通過教師引導(dǎo),學(xué)生觀察、總結(jié)、猜想,然后得出結(jié)論來突破;抓住平方差公式的本質(zhì)特征,是正確應(yīng)用公式來計算的關(guān)鍵。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,故事引入

  【情境設(shè)置】教師請一位學(xué)生講一講《狗熊掰棒子》的故事

  【學(xué)生活動】1位學(xué)生有聲有色地講述著《狗熊掰棒子》的故事,其他學(xué)生認(rèn)真聽著,不時補(bǔ)充。

  【教師歸納】聽了這則故事之后,同學(xué)們應(yīng)該懂得這么一個道理,學(xué)習(xí)千萬不能像狗熊掰棒子一樣,前面學(xué),后面忘,那么,上節(jié)課我們學(xué)習(xí)了什么呢?還記得嗎?

  【學(xué)生回答】多項式乘以多項式。

  【教師激發(fā)】大家是不是已經(jīng)掌握呢?還是早扔掉了呢?和小狗熊犯了同樣的錯誤呢?下面我們就來做這幾道題,看看你是否掌握了以前的知識。

  【問題牽引】計算:

 。1)(x+2)(x—2);(2)(1+3a)(1—3a);

 。3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

  做完之后,觀察以上算式及運(yùn)算結(jié)果,你能發(fā)現(xiàn)什么規(guī)律?再舉兩個例子驗證你的發(fā)現(xiàn)。

  【學(xué)生活動】分四人小組,合作學(xué)習(xí),獲得以下結(jié)果:

  (1)(x+2)(x—2)=x2—4;

  (2)(1+3a)(1—3a)=1—9a2;

 。3)(x+5y)(x—5y)=x2—25y2;

 。4)(y+3z)(y—3z)=y2—9z2。

  【教師活動】請一位學(xué)生上臺演示,然后引導(dǎo)學(xué)生仔細(xì)觀察以上算式及其運(yùn)算結(jié)果,尋找規(guī)律。

  【學(xué)生活動】討論

  【教師引導(dǎo)】剛才同學(xué)們從上述算式中找到了這一組整式乘法的結(jié)果的規(guī)律,這些是一類特殊的多項式相乘,那么如何用字母來表示剛才同學(xué)們所歸納出來的特殊多項式相乘的規(guī)律呢?

  【學(xué)生回答】可以用(a+b)(a—b)表示左邊,那么右邊就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

  用語言描述就是:兩個數(shù)的和與這兩個數(shù)的`差的積,等于這兩個數(shù)的平方差。

  【教師活動】表揚(yáng)學(xué)生的探索精神,引出課題──平方差,并說明這是一個平方差公式和公式中的字母含義。

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【教師講述】

  平方差公式的運(yùn)用,關(guān)鍵是正確尋找公式中的a和b,只有正確找到a和b,一切就變得容易了,F(xiàn)在大家來看看下面幾個例子,從中得到啟發(fā)。

  例1:運(yùn)用平方差公式計算:

 。1)(2x+3)(2x—3);

 。2)(b+3a)(3a—b);

 。3)(—m+n)(—m—n)。

  《乘法公式》同步練習(xí)

  二、填空題

  5、冪的乘方,底數(shù)______,指數(shù)______,用字母表示這個性質(zhì)是______。

  6、若32×83=2n,則n=______。

  《乘法公式》同步測試題

  25、利用正方形的面積公式和梯形的面積公式即可求解;

  根據(jù)所得的兩個式子相等即可得到。

  此題考查了平方差公式的幾何背景,根據(jù)正方形的面積公式和梯形的面積公式得出它們之間的關(guān)系是解題的關(guān)鍵,是一道基礎(chǔ)題。

  26、由等式左邊兩數(shù)的底數(shù)可知,兩底數(shù)是相鄰的兩個自然數(shù),右邊為兩底數(shù)的和,由此得出規(guī)律;

  等式左邊減數(shù)的底數(shù)與序號相同,由此得出第n個式子;

八年級數(shù)學(xué)上冊教案9

  【教學(xué)目標(biāo)】

  1.了解分式概念.

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學(xué)重難點(diǎn)】

  重點(diǎn):理解分式有意義的條件,分式的值為零的條件.

  難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學(xué)過程】

  一、課堂導(dǎo)入

  1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.

  2.問題:一艘輪船在靜水中的最大航速為20千米/時,它沿江以最大航速順流航行100千米所用實踐,與以最大航速逆流航行60千米所用時間相等,江水的流速為多少?

  設(shè)江水的.流速為x千米/時.

  輪船順流航行100千米所用的時間為小時,逆流航行60千米所用時間小時,所以=.

  3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當(dāng)B≠0時,分式才有意義.

  二、例題講解

  例1:當(dāng)x為何值時,分式有意義.

  【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.

  (補(bǔ)充)例2:當(dāng)m為何值時,分式的值為0?

  (1);(2);(3).

  【分析】分式的值為0時,必須同時滿足兩個條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

  三、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.當(dāng)x取何值時,下列分式有意義?

  3.當(dāng)x為何值時,分式的值為0?

  四、小結(jié)

  談?wù)勀愕氖斋@.

  五、布置作業(yè)

  課本128~129頁練習(xí).

八年級數(shù)學(xué)上冊教案10

  一、知識點(diǎn):

  1.坐標(biāo)(x,y)與點(diǎn)的對應(yīng)關(guān)系

  有序數(shù)對:有順序的兩個數(shù)x與y組成的數(shù)對,記作(x,y);

  注意:x、y的先后順序?qū)ξ恢玫挠绊憽?/p>

  2.平面直角坐標(biāo)系:

  (1)、構(gòu)成坐標(biāo)系的各種名稱:四個象限和兩條坐標(biāo)軸

  (2)、各種特殊點(diǎn)的坐標(biāo)特點(diǎn):坐標(biāo)軸上的點(diǎn)至少有一個坐標(biāo)

  為0;X軸上的點(diǎn)的縱坐標(biāo)為0,y軸上點(diǎn)的橫坐標(biāo)為0,原點(diǎn)

  的坐標(biāo)為(0,0)。

  3.坐標(biāo)(x,y)的幾何意義

  平面直角坐標(biāo)系是代數(shù)與幾何聯(lián)系的紐帶,坐標(biāo)(x,y)有某

  幾何意義,如點(diǎn)A(-3,2)它到x軸、y軸、原點(diǎn)的距離分別是︱x︱

  =︱2︱=2,︱y︱=︱-3︱=3,OA = 。

  4.注意各象限內(nèi)點(diǎn)的坐標(biāo)的符號

  點(diǎn)P(x,y)在第一象限內(nèi),則x0,y0,反之亦然.

  點(diǎn)P(x,y)在第二象限內(nèi),則x0,y0,反之亦然.

  點(diǎn)P(x,y)在第三象限內(nèi),則x0,y0,反之亦然.

  點(diǎn)P(x,y)在第四象限內(nèi),則x0,y0,反之亦然.

  5.平行于坐標(biāo)軸的直線的點(diǎn)的坐標(biāo)特點(diǎn):

  平行于x軸(或橫軸)的直線上的點(diǎn)的這 縱 坐標(biāo)相同;

  平行于y軸(或縱軸)的直線上的點(diǎn)的 橫 坐標(biāo)相同。

  6.各象限的角平分線上的點(diǎn)的坐標(biāo)特點(diǎn):

  第一、三象限角平分線上的點(diǎn)的橫縱坐標(biāo) 相同 ;

  第二、四象限角平分線上的點(diǎn)的橫縱坐標(biāo) 互為相反數(shù) 。

  7.與坐標(biāo)軸、原點(diǎn)對稱的點(diǎn)的坐標(biāo)特點(diǎn):

  關(guān)于x軸對稱的點(diǎn)的橫坐標(biāo) 相同 ,縱坐標(biāo) 互為相反數(shù)

  關(guān)于y軸對稱的點(diǎn)的縱坐標(biāo) 相同 ,橫坐標(biāo) 互為相反數(shù)

  關(guān)于原點(diǎn)對稱的點(diǎn)的橫坐標(biāo)、縱坐標(biāo)都 互為相反數(shù)

  8.特殊位置點(diǎn)的特殊坐標(biāo):

  坐標(biāo)軸上點(diǎn)P(x,y) 連線平行于坐標(biāo)軸的點(diǎn) 點(diǎn)P(x,y)在各象限的坐標(biāo)特點(diǎn)

  X軸 Y軸 原點(diǎn) 平行X軸 平行Y軸 第一象限 第二象限 第三象限 第四象限

  (x,0) (0,y) (0,0) 縱坐標(biāo) 相同

  橫坐標(biāo) 不同 橫坐標(biāo) 相同

  縱坐標(biāo) 不同

  9.利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些點(diǎn)分布情況平面圖過程如下:

  (1)建立坐標(biāo)系,選擇一個適當(dāng)?shù)膮⒄拯c(diǎn)為原點(diǎn),確定x軸、y軸的正方向;

  (2)根據(jù)具體問題確定適當(dāng)?shù)谋壤撸谧鴺?biāo)軸上標(biāo)出單位長度;

  (3)在坐標(biāo)平面內(nèi)畫出這些點(diǎn),寫出各點(diǎn)的坐標(biāo)和各個地點(diǎn)的名稱。

  10.用坐標(biāo)表示平移:見下圖

  二、典型訓(xùn)練:

  1.位置的確定

  1、如圖,圍棋盤的左下角呈現(xiàn)的是一局圍棋比賽中的幾手棋.為記錄棋譜方便,橫線用數(shù)字表示.縱線用英文字母表示,這樣,黑棋①的位置可記為(C,4),白棋②的位置可記為(E,3),則白棋⑨的位置應(yīng)記為 _____.

  2、如圖所示的象棋盤上,若帥位于點(diǎn)(1,﹣3)上,相位于點(diǎn)(3,﹣3)上,則炮位于點(diǎn)( )

  A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)

  2.平面直角坐標(biāo)系內(nèi)的點(diǎn)的特點(diǎn): 一)確定字母取值范圍:

  1、點(diǎn)A(m+3,m+1)在x軸上,則A點(diǎn)的坐標(biāo)為( )

  A (0,-2) B、(2,0) C、(4,0) D、(0,-4)

  2、若點(diǎn)M(1, )在第四象限內(nèi),則 的取值范圍是 .

  3、已知點(diǎn)P(x,y+1)在第二象限,則點(diǎn)Q(﹣x+2,2y+3)在第 象限.

  二)確定點(diǎn)的坐標(biāo):

  1、點(diǎn) 在第二象限內(nèi), 到 軸的距離是4,到 軸的距離是3,那么點(diǎn) 的坐標(biāo)為( )

  A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)

  2、若點(diǎn)P在x軸的下方,y軸的左方,到每條坐標(biāo)軸的距離都是3,則點(diǎn)P的坐標(biāo)為( )

  A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)

  3、在x軸上與點(diǎn)(0,﹣2)距離是4個單位長度的點(diǎn)有 .

  4、若點(diǎn)(5﹣a,a﹣3)在第一、三象限角平分線上,則a= .

  三)確定對稱點(diǎn)的坐標(biāo):

  1、P(﹣1,2)關(guān)于x軸對稱的點(diǎn)是 ,關(guān)于y軸對稱的點(diǎn)是 ,關(guān)于原點(diǎn)對稱的點(diǎn)是 .

  2、已知點(diǎn) 關(guān)于 軸的對稱點(diǎn)為 ,則 的值是( )

  A. B. C. D.

  3、在平面直角坐標(biāo)系中,將點(diǎn)A(1,2)的橫坐標(biāo)乘以﹣1,縱坐標(biāo)不變,

  得到點(diǎn)A,則點(diǎn)A和點(diǎn)A的關(guān)系是( )

  A、關(guān)于x軸對稱 B、將點(diǎn)A向x軸負(fù)方向平移一個單位得點(diǎn)A

  C、關(guān)于原點(diǎn)對稱 D、關(guān)于y軸對稱

  3.與平移有關(guān)的問題

  1、通過平移把點(diǎn)A(2,﹣3)移到點(diǎn)A(4,﹣2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是 .

  2、如圖,點(diǎn)A坐標(biāo)為(-1,1),將此小船ABCD向左平移2個單位,再向上平移3個單位得ABCD.

  (1)畫出平面直角坐標(biāo)系;

  (2)畫出平移后的小船ABCD,

  寫出A,B,C,D各點(diǎn)的坐標(biāo).

  3、在平面直角坐標(biāo)系中,□ABCD的頂點(diǎn)A、B、D的坐標(biāo)分別是(0,0),(5,0),(2,3),則頂點(diǎn)C的坐標(biāo)是( )

  A.(3,7) B.(5,3) C.(7,3) D.(8,2)

  4.建立直角坐標(biāo)系

  1、如圖1是某市市區(qū)四個旅游景點(diǎn)示意圖(圖中每個小正方形的邊長為1個單位長度),請以某景點(diǎn)為原點(diǎn),建立平面直角坐標(biāo)系,用坐標(biāo)表示下列景點(diǎn)的位置.①動物園 ,②烈士陵園 .

  2、如圖,機(jī)器人從A點(diǎn),沿著西南方向,行了4 個單位到達(dá)B點(diǎn)后,觀察到原點(diǎn)O在它的南偏東60的方向上,則原來A的坐標(biāo)為 (結(jié)果保留根號).

  3、如圖,△AOB是邊長為5的等邊三角形,則A,B兩點(diǎn)的坐標(biāo)分別是A ,B .

  5.創(chuàng)新題: 一)規(guī)律探索型:

  1、如圖2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、.則點(diǎn)A2015的坐標(biāo)為________.

  二)閱讀理解型:

  1、在直角坐標(biāo)系中,我們把橫、縱坐標(biāo)都為整數(shù)的點(diǎn)叫做整點(diǎn),設(shè)坐標(biāo)軸的單位長度為1cm,整點(diǎn)P從原點(diǎn)O出發(fā),速度為1cm/s,且整點(diǎn)P作向上或向右運(yùn)動(如圖1所示.運(yùn)動時間(s)與整點(diǎn)(個)的關(guān)系如下表:

  整點(diǎn)P從原點(diǎn)出發(fā)的時間(s) 可以得到整點(diǎn)P的坐標(biāo) 可以得到整點(diǎn)P的`個數(shù)

  1 (0,1)(1,0) 2

  2 (0,2)(1,1),(2,0) 3

  3 (0,3)(1,2)(2,1)(3,0) 4

  根據(jù)上表中的規(guī)律,回答下列問題:

  (1)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)4s時,可以得到的整點(diǎn)的個數(shù)為________個.

  (2)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)8s時,在直角坐標(biāo)系中描出可以得到的所有整點(diǎn),并順次連結(jié)這些整點(diǎn).

  (3)當(dāng)整點(diǎn)P從點(diǎn)O出發(fā)____s時,可以得到整點(diǎn)(16,4)的位置.

  三、易錯題:

  1、 已知點(diǎn)P(4,a)到橫軸的距離是3,則點(diǎn)P的坐標(biāo)是_____.

  2、 已知點(diǎn)P(m,n)到x軸的距離為3,到y(tǒng)軸的距離等于5,則點(diǎn)P的坐標(biāo)是_____.

  3、 已知點(diǎn)P(m,2m-1)在x軸上,則P點(diǎn)的坐標(biāo)是_______.

  4、如圖,四邊形ABCD各個頂點(diǎn)的坐標(biāo)分別為 (2,8),(11,6),(14,0),(0,0)。

  (1)確定這個四邊形的面積;

  (2)如果把原來ABCD各個頂點(diǎn)縱坐標(biāo)保持不變,橫坐標(biāo)增加2,所得的四邊形面積又是多少?

  四、提高題:

  1、在平面直角坐標(biāo)系中,點(diǎn)(-2,4)所在的象限是( )

  A、第一象限 B、第二象限 C、第三象限 D、第四象限

  2、若a0,則點(diǎn)P(-a,2)應(yīng)在 ( )

  A.第象限內(nèi) B.第二象限內(nèi) C.第三象限內(nèi) D.第四象限內(nèi)

  3、已知 ,則點(diǎn) 在第______象限.

  4、若 +(b+2)2=0,則點(diǎn)M(a,b)關(guān)于y軸的對稱點(diǎn)的坐標(biāo)為______.

  5、點(diǎn)P(1,2)關(guān)于y軸對稱點(diǎn)的坐標(biāo)是 . 已知點(diǎn)A和點(diǎn)B(a,-b)關(guān)于y軸對稱,求點(diǎn)A關(guān)于原點(diǎn)的對稱點(diǎn)C的坐標(biāo)___________.

  6、已知點(diǎn) A(3a-1,2-b),B(2a-4,2b+5).

  若A與B關(guān)于x軸對稱,則a=________,b=_______;若A與B關(guān)于y軸對稱,則a=________,b=_______;

  若A與B關(guān)于原點(diǎn)對稱,則a=________,b=_______.

  7、學(xué)生甲錯將P點(diǎn)的橫坐標(biāo)與縱坐標(biāo)的次序顛倒,寫成(m,n),學(xué)生乙錯將Q點(diǎn)的坐標(biāo)寫成它關(guān)于x軸對稱點(diǎn)的坐標(biāo),寫成(-n,-m),則P點(diǎn)和Q點(diǎn)的位置關(guān)系是_________.

  8、點(diǎn)P(x,y)在第四象限內(nèi),且|x|=2,|y| =5,P點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn)的坐標(biāo)是_______.

  9、以點(diǎn)(4,0)為圓心,以5為半徑的圓與y軸交點(diǎn)的坐標(biāo)為______.

  10、點(diǎn)P( , )到x軸的距離為________,到y(tǒng)軸的距離為_________。

  11、點(diǎn)P(m,-n)與兩坐標(biāo)軸的距離___________________________________________________。

  12、已知點(diǎn)P到x軸和y軸的距離分別為3和4,則P點(diǎn)坐標(biāo)為__________________________.

  13、點(diǎn)P在第二象限,若該點(diǎn)到x軸的距離為,到y(tǒng)軸的距離為1,則點(diǎn)P的坐標(biāo)是( )

  A.( 1, ) B.( ,1) C.( , ) D.(1, )

  14、點(diǎn)A(4,y)和點(diǎn)B(x, ),過A,B兩點(diǎn)的直線平行x軸,且 ,則 ______, ______.

  15、已知等邊三角形ABC的邊長是4,以AB邊所在的直線為x軸,AB邊的中點(diǎn)為原點(diǎn),建立直角坐標(biāo)系,則頂點(diǎn)C的坐標(biāo)為________________.

  16、通過平移把點(diǎn)A(2,-3)移到點(diǎn)A(4,-2),按同樣的平移方式,點(diǎn)B(3,1)移到點(diǎn)B,則點(diǎn)B的坐標(biāo)是_____________.

  17、如圖11,若將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)90后得到△ABC,則A點(diǎn)的對應(yīng)點(diǎn)A的坐標(biāo)是( )

  A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)

  18、平面直角坐標(biāo)系 內(nèi)有一點(diǎn)A(a,b),若ab=0,則點(diǎn)A的位置在( ).

  A.原點(diǎn) B. x軸上 C.y 軸上 D.坐標(biāo)軸上

  19、已知等邊△ABC的兩個頂點(diǎn)坐標(biāo)為A(-4,0)、B(2,0),則點(diǎn)C的坐標(biāo)為______,△ABC的面積為______.

  20、(1)將下圖中的各個點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?

  (2)將下圖中的各個點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)都乘以-1,與原圖案相比,所得圖案有什么變化?

  (3)將下圖中的各個點(diǎn)的橫坐標(biāo)都乘以-2,縱坐標(biāo)都乘以-2,與原圖案相比,所得圖案有什么變化?

八年級數(shù)學(xué)上冊教案11

  一、學(xué)生起點(diǎn)分析

  通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

  二、教學(xué)任務(wù)分析

  《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實驗教科書八年級(上)第二章《實數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個課時完成,第1課時讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識,會根據(jù)要求畫線段;第2課時借助計算器感受無理數(shù)是無限不循環(huán)小數(shù),會判斷一個數(shù)是無理數(shù).本課是第1課時,學(xué)生將在具體的實例中,通過操作、估算、分析等活動,感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個數(shù)是不是有理數(shù).

  本節(jié)課的教學(xué)目標(biāo)是:

  ①通過拼圖活動,讓學(xué)生感受客觀世界中無理數(shù)的存在;

  ②能判斷三角形的某邊長是否為無理數(shù);

  ③學(xué)生親自動手做拼圖活動,培養(yǎng)學(xué)生的動手能力和探索精神;

 、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對有理數(shù)和無理數(shù)的理解;

  三、教學(xué)過程設(shè)計

  本節(jié)課設(shè)計了6個教學(xué)環(huán)節(jié):

  第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.

  第一環(huán)節(jié):質(zhì)疑

  內(nèi)容:【想一想】

  ⑴一個整數(shù)的平方一定是整數(shù)嗎?

  ⑵一個分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?

  目的:作必要的知識回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.

  效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用

  第二環(huán)節(jié):課題引入

  內(nèi)容:1.【算一算】

  已知一個直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分?jǐn)?shù))嗎?

  2.【剪剪拼拼】

  把邊長為1的兩個小正方形通過剪、拼,設(shè)法拼成一個大正方形,你會嗎?

  目的:選取客觀存在的“無理數(shù)“實例,讓學(xué)生深刻感受“數(shù)不夠用了”.

  效果:巧設(shè)問題背景,順利引入本節(jié)課題.

  第三環(huán)節(jié):獲取新知

  內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

  【議一議】: 已知 ,請問:① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?

  【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

  釋2.滿足 的 為什么不是分?jǐn)?shù)?

  【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)

  【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段

  目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣

  效果:學(xué)生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.

  第四環(huán)節(jié):應(yīng)用與鞏固

  內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

  【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:

  1.長度是有理數(shù)的線段

  2.長度不是有理數(shù)的線段

  【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個三角形 (右1)

  2.三邊長都是有理數(shù)

  2.只有兩邊長是有理數(shù)

  3.只有一邊長是有理數(shù)

  4.三邊長都不是有理數(shù)

  【仿一仿】:例:在數(shù)軸上表示滿足 的

  解: (右2)

  仿:在數(shù)軸上表示滿足 的

  【賽一賽】:右3是由五個單位正方形組成的紙片,請你把

  它剪成三塊,然后拼成一個正方形,你會嗎?試試看! (右3)

  目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

  效果:加深了對“新知”的理解,鞏固了本課所學(xué)知識.

  第五環(huán)節(jié):課堂小結(jié)

  內(nèi)容:

  1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請問你有什么收獲與體會?

  2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個嗎?

  3.除了本課所認(rèn)識的非有理數(shù)的數(shù)以外,你還能找到嗎?

  目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識要點(diǎn)及數(shù)學(xué)方法,使知識系統(tǒng)化.

  效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會進(jìn)行概括總結(jié).

  第六環(huán)節(jié):布置作業(yè)

  習(xí)題2.1

  六、教學(xué)設(shè)計反思

 。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的`動力

  大量事實都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時間,讓學(xué)生能夠充分的思考與操作.

 。ǘ┗橄鬄榫唧w

  常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動開啟學(xué)生的思維,因此對新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識,還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.

  (三)強(qiáng)化知識間聯(lián)系,注意糾錯

  既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.

八年級數(shù)學(xué)上冊教案12

  教學(xué)目標(biāo):

  1、經(jīng)歷用數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推力意識,主動探究的習(xí)慣,進(jìn)一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。

  2、探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,進(jìn)一步發(fā)展學(xué)生的說理和簡單的推理的意識及能力。

  重點(diǎn)難點(diǎn):

  重點(diǎn):了解勾股定理的由來,并能用它來解決一些簡單的問題。

  難點(diǎn):勾股定理的發(fā)現(xiàn)

  教學(xué)過程

  一、創(chuàng)設(shè)問題的情境,激發(fā)學(xué)生的學(xué)習(xí)熱情,導(dǎo)入課題

  出示投影1(章前的圖文p1)教師道白:介紹我國古代在勾股定理研究方面的貢獻(xiàn),并結(jié)合課本p5談一談,講述我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

  出示投影2(書中的P2圖1—2)并回答:

  1、觀察圖

  1—2,正方形A中有_______個小方格,即A的面積為______個單位。

  正方形B中有_______個小方格,即A的面積為______個單位。

  正方形C中有_______個小方格,即A的面積為______個單位。

  2、你是怎樣得出上面的結(jié)果的?在學(xué)生交流回答的基礎(chǔ)上教師直接發(fā)問:

  3、圖

  1—2中,A,B,C之間的面積之間有什么關(guān)系?

  學(xué)生交流后形成共識,教師板書,A+B=C,接著提出圖1—1中的A。B,C的關(guān)系呢?

  二、做一做

  出示投影3(書中P3圖1—4)提問:

  1、圖

  1—3中,A,B,C之間有什么關(guān)系?

  2、圖

  1—4中,A,B,C之間有什么關(guān)系?

  3、從圖

  1—1,1—2,1—3,1|—4中你發(fā)現(xiàn)什么?

  學(xué)生討論、交流形成共識后,教師總結(jié):

  以三角形兩直角邊為邊的正方形的面積和,等于以斜邊的`正方形面積。

  三、議一議

  1、圖

  1—1、1—2、1—3、1—4中,你能用三角形的邊長表示正方形的面積嗎?

  2、你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?

  在同學(xué)的交流基礎(chǔ)上,老師板書:

  直角三角形邊的兩直角邊的平方和等于斜邊的平方。這就是的“勾股定理”

  也就是說:如果直角三角形的兩直角邊為a,b,斜邊為c

  那么

  我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

  3、分別以

  5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?(回答是肯定的:成立)

  四、想一想

  這里的29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?只的是屏幕的款嗎?那他指什么呢?

  五、鞏固練習(xí)

  1、錯例辨析:

  △ABC的兩邊為3和4,求第三邊

  解:由于三角形的兩邊為3、4

  所以它的第三邊的c應(yīng)滿足=25

  即:c=5

  辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題

  △ ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。

 。2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并為交待C是斜邊

  綜上所述這個題目條件不足,第三邊無法求得。

  2、練習(xí)P

  7 §1.1 1

  六、作業(yè)

  課本P7 §1.1 2、3、4

八年級數(shù)學(xué)上冊教案13

  教學(xué)目標(biāo)

  知識與能力:

  1.運(yùn)用類比的方法,通過學(xué)生的合作探究,得出平行四邊形的判定方法.

  2.理解平行四邊形的另一種判定方法,并學(xué)會簡單運(yùn)用.

  過程與方法:

  1.經(jīng)歷平行四邊行判別條件的探索過程,在有關(guān)活動中發(fā)展學(xué)生的合情推理意識.

  2.在運(yùn)用平行四邊形的判定方法解決問題的過程中,進(jìn)一步培養(yǎng)和發(fā)展學(xué)生的邏輯思維能力和推理論證的表達(dá)能力.

  情感、態(tài)度與價值觀:

  通過平行四邊形判別條件的探索,培養(yǎng)學(xué)生面對挑戰(zhàn),勇于克服困難的意志,鼓勵學(xué)生大膽嘗試,從中獲得成功的體驗,激發(fā)學(xué)生的學(xué)習(xí)熱情.

  教學(xué)方法 啟發(fā)誘導(dǎo)式 教具 三角尺

  教學(xué)重點(diǎn) 平行四邊形判定方法的探究、運(yùn)用.

  教學(xué)難點(diǎn) 對平行四邊形判定方法的探究以及平行四邊形的性質(zhì)和判定的綜合運(yùn)用

  教學(xué)過程:

  第一環(huán)節(jié) 復(fù)習(xí)引入:

  問題1:

  1.平行四邊形的定義是什么?它有什么作用?

  2.判定四邊形是平行四邊形的方法有哪些?

 。1)兩組對邊分別平行的四邊形是平行四邊形.

  (2)一組對邊平行且相等的四邊形是平行四邊形.

 。3)兩條對角線互相平分的四邊形是平行四邊形.

  第二環(huán)節(jié) 探索活動

  活動:

  工具:兩對長度分別相等的木條。

  動手:能否在平面內(nèi)用這四根筆擺成一個平行四邊形?

  思考1.1:你能說明你所擺出的四邊形是平行四邊形嗎?

  已知:四邊形ABCD中,AD=BC,AB=CD. 試說明四邊形ABCD是平行四邊形.

  思考1.2:以上活動事實,能用文字語言表達(dá)嗎?

  學(xué)生以小組為單位,利用課前準(zhǔn)備好的學(xué)具動手操作、觀察,完成探究活動1,共同得到:

 。1)只有將兩兩相等的木條分別作為四邊形的.兩組對邊才能得到平行四邊形.

 。2)通過觀察、實驗、猜想到:

  兩組對邊分別相等的四邊形是平行四邊形.

  在此活動中,教師應(yīng)重點(diǎn)關(guān)注:

  (1)學(xué)生在拼四邊形時,能否將相等兩木條作為四邊形的對邊;

  (2)轉(zhuǎn)動四邊形,改變它的形狀的過程中,能否觀察得到在此過程中它始終是一個平行四邊形;

 。3)學(xué)生能否通過獨(dú)立思考、小組合作得出正確的證明思路.

  第三環(huán)節(jié) 鞏固練習(xí)

  例1 如圖:在四邊形ABCD中,∠1=∠2,∠3=∠4.四邊形ABCD是平行四邊形嗎?為什么?

  八年級數(shù)學(xué)上冊教案例2 如圖所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,圖中有哪些互相平行的線段?

  隨堂練習(xí)

  1.判斷下列說法是否正確

  (1)一組對邊平行且另一組對邊相等的四邊形是平行四邊形 ( )

  (2)兩組對角都相等的四邊形是平行四邊形 ( )

  (3)一組對邊平行且一組對角相等的四邊形是平行四邊形 ( )

  (4)一組對邊平行,一組鄰角互補(bǔ)的四邊形是平行四邊形 ( )

  2.有兩條邊相等,并且另外的兩條邊也相等的四邊形一定是平行四邊形嗎?為什么?

  3.如圖所示,四個全等的三角形拼成一個大的三角形,找出圖中所有的平行四邊形,并說明理由.

  4.如圖:AD是ΔABC的邊BC邊上的中線.

  (1)畫圖:延長AD到點(diǎn)E,使DE=AD,連接BE,CE;

  (2)判斷四邊形ABEC的形狀,并說明理由.

  第四環(huán)節(jié) 小結(jié):

  師生共同小結(jié),主要圍繞下列幾個問題:

 。1)判定一個四邊形是平行四邊形的方法有哪幾種?

 。2)我們是通過什么方法得出平行四邊形的這幾種判定方法的,這樣的探索過程對你有什么啟發(fā)?

 。3)平行四邊形判定的應(yīng)用 集備意見 個案補(bǔ)充

八年級數(shù)學(xué)上冊教案14

  [教學(xué)目標(biāo)]

  知識與技能:

  1.會用多邊形公式進(jìn)行計算。

  2.理解多邊形外角和公式。

  過程與方法:

  經(jīng)歷探究多邊形內(nèi)角和計算方法的過程,培養(yǎng)學(xué)生的合作交流意識力.

  情感態(tài)度與價值觀:

  讓學(xué)生在觀察、合作、討論、交流中感受數(shù)學(xué)轉(zhuǎn)化思想和實際應(yīng)用價值,同時培養(yǎng)學(xué)生善于發(fā)現(xiàn)、積極思考、合作學(xué)習(xí)、勇于創(chuàng)新的學(xué)習(xí)態(tài)度。

  [教學(xué)重點(diǎn)、難點(diǎn)與關(guān)鍵]

  教學(xué)重點(diǎn):多邊形的內(nèi)角和.的應(yīng)用.

  教學(xué)難點(diǎn):探索多邊形的內(nèi)角和與外角和公式過程.

  教學(xué)關(guān)鍵:應(yīng)用化歸的數(shù)學(xué)方法,把多邊形問題轉(zhuǎn)化為三角形問題來解決.

  [教學(xué)方法]

  本節(jié)課采用“探究與互動”的教學(xué)方式,并配以真的情境來引題。

  [教學(xué)過程:]

  (一)探索多邊形的內(nèi)角和

  活動1:判斷下列圖形,從多邊形上任取一點(diǎn)c,作對角線,判斷分成三角形的個數(shù)。

  活動2:①從多邊形的一個頂點(diǎn)出發(fā),可以引多少條對角線?他們將多邊形分成多少個三角形?②總結(jié)多邊形內(nèi)角和,你會得到什么樣的結(jié)論?

  多邊形邊數(shù)分成三角形的個數(shù)圖形

  內(nèi)角和計算規(guī)律

  三角形31180°(3-2)·180°

  四邊形4

  五邊形5

  六邊形6

  七邊形7

  。。。。。。

  n邊形n

  活動3:把一個五邊形分成幾個三角形,還有其他的分法嗎?

  總結(jié)多邊形的內(nèi)角和公式

  一般的,從n邊形的一個頂點(diǎn)出發(fā)可以引____條對角線,他們將n邊形分為____個三角形,n邊形的內(nèi)角和等于180×______。

  鞏固練習(xí):看誰求得又快又準(zhǔn)!(搶答)

  例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?

  (點(diǎn)評:四邊形的`一組對角互補(bǔ),另一組對角也互補(bǔ)。)

  (二)探索多邊形的外角和

  活動4:例2如圖,在五邊形的每個頂點(diǎn)處各取一個外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?

  分析:(1)任何一個外角同于他相鄰的內(nèi)角有什系?

  (2)五邊形的五個外角加上與他們相鄰的內(nèi)角所得總和是多少?

  (3)上述總和與五邊形的內(nèi)角和、外角和有什么關(guān)系?

  解:五邊形的外角和=______________-五邊形的內(nèi)角和

  活動5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結(jié)果嗎?

  也可以理解為:從多邊形的一個頂點(diǎn)A點(diǎn)出發(fā),沿多邊形的各邊走過各點(diǎn)之后回到點(diǎn)A.最后再轉(zhuǎn)回出發(fā)時的方向。由于在這個運(yùn)動過程中身體共轉(zhuǎn)動了一周,也就是說所轉(zhuǎn)的各個角的和等于一個______角。所以多邊形的外角和等于_________。

  結(jié)論:多邊形的外角和=___________。

  練習(xí)1:如果一個多邊形的每一個外角等于30°,則這個多邊形的邊數(shù)是_____。

  練習(xí)2:正五邊形的每一個外角等于________,每一個內(nèi)角等于_______。

  練習(xí)3.已知一個多邊形,它的內(nèi)角和等于外角和,它是幾邊形?

  (三)小結(jié):本節(jié)課你有哪些收獲?

  (四)作業(yè):

  課本P84:習(xí)題7.3的2、6題

  附知識拓展—平面鑲嵌

  (五)隨堂練習(xí)(練一練)

  1、n邊形的內(nèi)角和等于__________,九邊形的內(nèi)角和等于___________。

  2、一個多邊形當(dāng)邊數(shù)增加1時,它的內(nèi)角和增加()。

  3、已知多邊形的每個內(nèi)角都等于150°,求這個多邊形的邊數(shù)?

  4、一個多邊形從一個頂點(diǎn)可引對角線3條,這個多邊形內(nèi)角和等于()

  A:360°B:540°C:720°D:900°

  5.已知一個多邊形,它的內(nèi)角和等于外角和的2倍,求這個多邊形的邊數(shù)?

八年級數(shù)學(xué)上冊教案15

  一、教學(xué)目標(biāo)

  知識與技能

  1、了解立方根的概念,初步學(xué)會用根號表示一個數(shù)的立方根.

  2、了解開立方與立方互為逆運(yùn)算,會用立方運(yùn)算求某些數(shù)的立方根.

  過程與方法

  1讓學(xué)生體會一個數(shù)的立方根的惟一性.

  2培養(yǎng)學(xué)生用類比的思想求立方根的能力,體會立方與開立方運(yùn)算的互逆性,滲透數(shù)學(xué)的轉(zhuǎn)化思想。

  情感態(tài)度與價值觀

  通過立方根符號的引入體會數(shù)學(xué)的簡潔美。

  二、重點(diǎn)難點(diǎn)

  重點(diǎn)

  立方根的概念和求法。

  難點(diǎn)

  立方根與平方根的區(qū)別,立方根的求法

  三、學(xué)情分析

  前面已經(jīng)學(xué)過了平方根的知識,由于平方根與立方根的學(xué)習(xí)有很多相似之處,所以在教學(xué)設(shè)計上,主要還是采取類比的思想,在全面回顧平方根的基礎(chǔ)上,再來引導(dǎo)學(xué)生進(jìn)行立方根知識的學(xué)習(xí),讓學(xué)生感覺到其實立方根知識并不難,可以與平方根知識對比著學(xué),這樣可以克服學(xué)生學(xué)習(xí)新知識的陌生心理。在學(xué)習(xí)方法上,提倡讓學(xué)生在反思中學(xué)習(xí),在概念的得出,歸納性質(zhì),解題之后都要進(jìn)行適當(dāng)?shù)姆此,在反思中看待與理解新知識和新問題,會更理性和全面,會有更大的進(jìn)步。

  四、教學(xué)過程設(shè)計

  教學(xué)環(huán)節(jié)問題設(shè)計師生活動備注

  情境創(chuàng)設(shè)問題:要制作一種容積為27m3的正方體形狀的包裝箱,這種包裝箱的邊長應(yīng)該是多少?

  設(shè)這種包裝箱的邊長為xm,則=27這就是求一個數(shù),使它的立方等于27.

  因為=27,所以x=3.即這種包裝箱的邊長應(yīng)為3m

  歸納:

  立方根的'概念:

  創(chuàng)設(shè)問題情境,引起學(xué)生學(xué)習(xí)的興趣,經(jīng)小組討論后引出概念。

  通過具體問題得出立方根的概念

  探究一:

  根據(jù)立方根的意義填空,看看正數(shù)、0、負(fù)數(shù)的立方根各有什么特點(diǎn)?

  因為(),所以0.125的立方根是()

  因為(),所以-8的立方根是()

  因為(),所以-0.125的立方根是()

  因為(),所以0的立方根是()

  一個正數(shù)有一個正的立方根

  0有一個立方根,是它本身

  一個負(fù)數(shù)有一個負(fù)的立方根

  任何數(shù)都有唯一的立方根

  【總結(jié)歸納】

  一個數(shù)的立方根,記作,讀作:“三次根號”,其中叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。.

  探究二:

  因為所以=

  因為,所以=總結(jié):

  利用開立方和立方互為逆運(yùn)算關(guān)系,求一個數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負(fù)數(shù)的立方根,可以先求出這個負(fù)數(shù)的絕對值的立方根,再取其相反數(shù),即。

【八年級數(shù)學(xué)上冊教案】相關(guān)文章:

八年級上冊數(shù)學(xué)教案11-09

八年級上冊人教版數(shù)學(xué)教案02-27

八年級上冊數(shù)學(xué)教案12-11

八年級數(shù)學(xué)上冊教案06-08

數(shù)學(xué)上冊教案01-15

人教版八年級數(shù)學(xué)上冊教案01-26

人教版八年級上冊數(shù)學(xué)教案02-22

[推薦]八年級上冊數(shù)學(xué)教案05-23

(集合)八年級上冊數(shù)學(xué)教案05-24

八年級上冊數(shù)學(xué)教案優(yōu)秀05-08