四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>高中數(shù)學(xué)必修5教案

高中數(shù)學(xué)必修5教案

時(shí)間:2023-11-15 07:01:18 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)必修5教案

  作為一位杰出的教職工,就不得不需要編寫(xiě)教案,借助教案可以更好地組織教學(xué)活動(dòng)。那么應(yīng)當(dāng)如何寫(xiě)教案呢?下面是小編精心整理的高中數(shù)學(xué)必修5教案,歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)必修5教案

高中數(shù)學(xué)必修5教案1

  一、教材分析

  《正弦定理》是人教版教材必修五第一章《解三角形》的第一節(jié)內(nèi)容,也是三角形理論中的一個(gè)重要內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系。在此之前,學(xué)生已經(jīng)學(xué)習(xí)過(guò)了正弦函數(shù)和余弦函數(shù),知識(shí)儲(chǔ)備已足夠。它是后續(xù)課程中解三角形的理論依據(jù),也是解決實(shí)際生活中許多測(cè)量問(wèn)題的工具。因此熟練掌握正弦定理能為接下來(lái)學(xué)習(xí)解三角形打下堅(jiān)實(shí)基礎(chǔ),并能在實(shí)際應(yīng)用中靈活變通。

  二、教學(xué)目標(biāo)

  根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

  知識(shí)目標(biāo):理解并掌握正弦定理的證明,運(yùn)用正弦定理解三角形。

  能力目標(biāo):探索正弦定理的證明過(guò)程,用歸納法得出結(jié)論,并能掌握多種證明方法。

  情感目標(biāo):通過(guò)推導(dǎo)得出正弦定理,讓學(xué)生感受數(shù)學(xué)公式的整潔對(duì)稱(chēng)美和數(shù)學(xué)的實(shí)際應(yīng)用價(jià)值。

  三、教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

  四、教法分析

  依據(jù)本節(jié)課內(nèi)容的特點(diǎn),學(xué)生的認(rèn)識(shí)規(guī)律,本節(jié)知識(shí)遵循以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想,采用與學(xué)生共同探索的教學(xué)方法,命題教學(xué)的發(fā)生型模式,以問(wèn)題實(shí)際為參照對(duì)象,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的好奇心和求知欲,讓學(xué)生的思維由問(wèn)題開(kāi)始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化,并且運(yùn)用例題和習(xí)題來(lái)強(qiáng)化內(nèi)容的掌握,突破重難點(diǎn)。即指導(dǎo)學(xué)生掌握“觀(guān)察——猜想——證明——應(yīng)用”這一思維方法。學(xué)生采用自主式、合作式、探討式的學(xué)習(xí)方法,這樣能使學(xué)生積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng),培養(yǎng)學(xué)生的合作意識(shí)和探究精神。

  五、教學(xué)過(guò)程

  本節(jié)知識(shí)教學(xué)采用發(fā)生型模式:

  1、問(wèn)題情境

  有一個(gè)旅游景點(diǎn),為了吸引更多的游客,想在風(fēng)景區(qū)兩座相鄰的山之間搭建一條觀(guān)光索道。已知一座山A到山腳C的'上面斜距離是1500米,在山腳測(cè)得兩座山頂之間的夾角是450,在另一座山頂B測(cè)得山腳與A山頂之間的夾角是300。求需要建多長(zhǎng)的索道?

  可將問(wèn)題數(shù)學(xué)符號(hào)化,抽象成數(shù)學(xué)圖形。即已知AC=1500m,∠C=450,∠B=300。求AB=?

  此題可運(yùn)用做輔助線(xiàn)BC邊上的高來(lái)間接求解得出。

  提問(wèn):有沒(méi)有根據(jù)已提供的數(shù)據(jù),直接一步就能解出來(lái)的方法?

  思考:我們知道,在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系。那我們能不能得到關(guān)于邊、角關(guān)系準(zhǔn)確量化的表示呢?

  2、歸納命題

  我們從特殊的三角形直角三角形中來(lái)探討邊與角的數(shù)量關(guān)系:

  在如圖Rt三角形ABC中,根據(jù)正弦函數(shù)的定義

高中數(shù)學(xué)必修5教案2

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  1.數(shù)列求和的綜合應(yīng)用

  教學(xué)重難點(diǎn)

  2.數(shù)列求和的綜合應(yīng)用

  教學(xué)過(guò)程

  典例分析

  3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,

  (1)求{an}的通項(xiàng)公式

  (2)求{|an|}的前n項(xiàng)和Tn

  4.等差數(shù)列{an}的公差為,S100=145,則a1+a3 + a5 + …+a99=

  5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=

  6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12

  (1)求{an}的通項(xiàng)公式

  (2)令bn=anxn ,求數(shù)列{bn}前n項(xiàng)和公式

  7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)

  8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10= S15,求當(dāng)n為何值時(shí),Sn有最大值,并求出它的最大值

  .已知數(shù)列{an},an∈N,Sn= (an+2)2

  (1)求證{an}是等差數(shù)列

  (2)若bn= an-30 ,求數(shù)列{bn}前n項(xiàng)的最小值

  0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

  (1)設(shè)f(x)的圖象的'頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列

  (2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.

  11 .購(gòu)買(mǎi)一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購(gòu)買(mǎi)后1個(gè)月第1次付款,再過(guò)1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)

  12 .某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的

  函數(shù)關(guān)系式是f(t)=

  銷(xiāo)售量g(t)與時(shí)間t的函數(shù)關(guān)系是

  g(t)= -t/3 +109/3 (0≤t≤100)

  求這種商品的日銷(xiāo)售額的最大值

  注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的最大值,應(yīng)分別求出函數(shù)在各段中的最大值,通過(guò)比較,確定最大值

高中數(shù)學(xué)必修5教案3

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  進(jìn)一步熟悉正、余弦定理內(nèi)容,能熟練運(yùn)用余弦定理、正弦定理解答有關(guān)問(wèn)題,如判斷三角形的形狀,證明三角形中的三角恒等式。

  教學(xué)重難點(diǎn)

  教學(xué)重點(diǎn):熟練運(yùn)用定理。

  教學(xué)難點(diǎn):應(yīng)用正、余弦定理進(jìn)行邊角關(guān)系的相互轉(zhuǎn)化。

  教學(xué)過(guò)程

  一、復(fù)習(xí)準(zhǔn)備:

  1、寫(xiě)出正弦定理、余弦定理及推論等公式。

  2、討論各公式所求解的三角形類(lèi)型。

  二、講授新課:

  1、教學(xué)三角形的解的討論:

 、俪鍪纠1:在△ABC中,已知下列條件,解三角形。

  分兩組練習(xí)→討論:解的個(gè)數(shù)情況為何會(huì)發(fā)生變化?

 、谟萌缦聢D示分析解的情況。(A為銳角時(shí))

 、诰毩(xí):在△ABC中,已知下列條件,判斷三角形的解的情況。

  2、教學(xué)正弦定理與余弦定理的活用:

 、俪鍪纠2:在△ABC中,已知sinA∶sinB∶sinC=6∶5∶4,求最大角的余弦。

  分析:已知條件可以如何轉(zhuǎn)化?→引入?yún)?shù)k,設(shè)三邊后利用余弦定理求角。

 、诔鍪纠3:在ΔABC中,已知a=7,b=10,c=6,判斷三角形的.類(lèi)型。

  分析:由三角形的什么知識(shí)可以判別?→求最大角余弦,由符號(hào)進(jìn)行判斷

 、鄢鍪纠4:已知△ABC中,試判斷△ABC的形狀。

  分析:如何將邊角關(guān)系中的邊化為角?→再思考:又如何將角化為邊?

  3、小結(jié):三角形解的情況的討論;判斷三角形類(lèi)型;邊角關(guān)系如何互化。

  三、鞏固練習(xí):

  3、作業(yè):教材P11 B組1、2題。

高中數(shù)學(xué)必修5教案4

  教學(xué)目標(biāo)

  1、知識(shí)與能力目標(biāo):理解掌握基本不等式,并能運(yùn)用基本不等式解決一些簡(jiǎn)單的求最值問(wèn)題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;培養(yǎng)學(xué)生探究能力以及分析問(wèn)題解決問(wèn)題的能力。

  2、過(guò)程與方法目標(biāo):按照創(chuàng)設(shè)情景,提出問(wèn)題→剖析歸納證明→幾何解釋→應(yīng)用(最值的求法、實(shí)際問(wèn)題的解決)的過(guò)程呈現(xiàn)。啟動(dòng)觀(guān)察、分析、歸納、總結(jié)、抽象概括等思維活動(dòng),培養(yǎng)學(xué)生的思維能力,體會(huì)數(shù)學(xué)概念的學(xué)習(xí)方法,通過(guò)運(yùn)用多媒體的教學(xué)手段,引領(lǐng)學(xué)生主動(dòng)探索基本不等式性質(zhì),體會(huì)學(xué)習(xí)數(shù)學(xué)規(guī)律的方法,體驗(yàn)成功的樂(lè)趣。

  3、情感與態(tài)度目標(biāo):通過(guò)問(wèn)題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來(lái),培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過(guò)數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。

  教學(xué)重難點(diǎn)

  1、基本不等式成立時(shí)的三個(gè)限制條件(簡(jiǎn)稱(chēng)一正、二定、三相等);

  2、利用基本不等式求解實(shí)際問(wèn)題中的最大值和最小值。

  教學(xué)過(guò)程

  一、創(chuàng)設(shè)情景,提出問(wèn)題;

  設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問(wèn)題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:

  上圖是在北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車(chē),代表中國(guó)人民熱情好客。

  [問(wèn)]你能在這個(gè)圖中找出一些相等關(guān)系或不等關(guān)系嗎?

  本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式

  在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。

  三、理解升華:

  1、文字語(yǔ)言敘述:

  兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。

  2、聯(lián)想數(shù)列的知識(shí)理解基本不等式

  已知a,b是正數(shù),A是a,b的等差中項(xiàng),G是a,b的正的等比中項(xiàng),A與G有無(wú)確定的大小關(guān)系?

  兩個(gè)正數(shù)的等差中項(xiàng)不小于它們正的等比中項(xiàng)。

  3、符號(hào)語(yǔ)言敘述:

  4、探究基本不等式證明方法:

  [問(wèn)]如何證明基本不等式?

  (意圖在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。)

  方法一:作差比較或由

  展開(kāi)證明。

  方法二:分析法(完成課本填空)

  設(shè)計(jì)依據(jù):課本是學(xué)生了解世界的窗口和工具,所以,課本必須成為學(xué)生賴(lài)以學(xué)會(huì)學(xué)習(xí)的文本.在教學(xué)中要讓學(xué)生學(xué)會(huì)認(rèn)真看書(shū)、用心思考,養(yǎng)成講講議議、

  動(dòng)手動(dòng)筆、仔細(xì)觀(guān)察、用心體會(huì)的好習(xí)慣,真正學(xué)會(huì)讀“數(shù)學(xué)書(shū)”。

  點(diǎn)評(píng):證明方法叫做分析法,實(shí)際上是尋找結(jié)論的充分條件,執(zhí)果索因的一種思維方法.

  5、探究基本不等式的幾何意義:

  借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生

  幾何解釋實(shí)質(zhì)可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高。

  四、探究歸納

  下列命題中正確的是

  結(jié)論:

  若兩正數(shù)的乘積為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的和有最小值;

  若兩正數(shù)的`和為定值,則當(dāng)且僅當(dāng)兩數(shù)相等時(shí),它們的乘積有最大值。

  簡(jiǎn)記為:“一正、二定、三相等”。

  五、領(lǐng)悟練習(xí):

  公式應(yīng)用之二:(最優(yōu)化問(wèn)題)

  設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問(wèn)題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中

  (1)在學(xué)農(nóng)期間,生態(tài)園中有一塊面積為100m2的矩形茶地,為了保護(hù)茶葉的健康生長(zhǎng),學(xué)校決定用籬笆圍起來(lái),問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),所用籬笆最短。最短的籬笆是多少?

  (2)現(xiàn)在學(xué)校倉(cāng)庫(kù)有一段長(zhǎng)為36m的籬笆,要圍成一個(gè)矩形菜園,問(wèn)這個(gè)矩形的長(zhǎng)、寬各為多少時(shí),菜園的面積最大。最大面積是多少?

  六、反思總結(jié),整合新知:

  通過(guò)本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問(wèn)題需要

  請(qǐng)教?

  設(shè)計(jì)意圖:通過(guò)反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.

  老師根據(jù)情況完善如下:

  兩種思想:數(shù)形結(jié)合思想、歸納類(lèi)比思想。

  三個(gè)注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”

高中數(shù)學(xué)必修5教案5

  (一)課標(biāo)要求

  本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過(guò)本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):

 。1)通過(guò)對(duì)任意三角形邊長(zhǎng)和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡(jiǎn)單的三角形度量問(wèn)題。

  (2)能夠熟練運(yùn)用正弦定理、余弦定理等知識(shí)和方法解決一些與測(cè)量和幾何計(jì)算有關(guān)的生活實(shí)際問(wèn)題。

  (二)編寫(xiě)意圖與特色

  1.?dāng)?shù)學(xué)思想方法的重要性

  數(shù)學(xué)思想方法的教學(xué)是中學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,有利于學(xué)生加深數(shù)學(xué)知識(shí)的理解和掌握。

  本章重視與內(nèi)容密切相關(guān)的數(shù)學(xué)思想方法的教學(xué),并且在提出問(wèn)題、思考解決問(wèn)題的策略等方面對(duì)學(xué)生進(jìn)行具體示范、引導(dǎo)。本章的兩個(gè)主要數(shù)學(xué)結(jié)論是正弦定理和余弦定理,它們都是關(guān)于三角形的邊角關(guān)系的結(jié)論。在初中,學(xué)生已經(jīng)學(xué)習(xí)了相關(guān)邊角關(guān)系的定性的知識(shí),就是“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角”,“如果已知兩個(gè)三角形的兩條對(duì)應(yīng)邊及其所夾的角相等,那么這兩個(gè)三角形全”等。

  教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題:“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題!痹O(shè)置這些問(wèn)題,都是為了加強(qiáng)數(shù)學(xué)思想方法的教學(xué)。

  2.注意加強(qiáng)前后知識(shí)的聯(lián)系

  加強(qiáng)與前后各章教學(xué)內(nèi)容的聯(lián)系,注意復(fù)習(xí)和應(yīng)用已學(xué)內(nèi)容,并為后續(xù)章節(jié)教學(xué)內(nèi)容做好準(zhǔn)備,能使整套教科書(shū)成為一個(gè)有機(jī)整體,提高教學(xué)效益,并有利于學(xué)生對(duì)于數(shù)學(xué)知識(shí)的.學(xué)習(xí)和鞏固。

  本章內(nèi)容處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系,已知三角形的邊和角相等判定三角形全等的知識(shí)有著密切聯(lián)系。教科書(shū)在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問(wèn)題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”,在引入余弦定理內(nèi)容時(shí),提出探究性問(wèn)題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋?lái)研究這個(gè)問(wèn)題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問(wèn)題。”這樣,從聯(lián)系的觀(guān)點(diǎn),從新的角度看過(guò)去的問(wèn)題,使學(xué)生對(duì)于過(guò)去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu)。

  《課程標(biāo)準(zhǔn)》和教科書(shū)把“解三角形”這部分內(nèi)容安排在數(shù)學(xué)五的第一部分內(nèi)容,

  位置相對(duì)靠后,在此內(nèi)容之前學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、平面向量、直線(xiàn)和圓的方程等與本章知識(shí)聯(lián)系密切的內(nèi)容,這使這部分內(nèi)容的處理有了比較多的工具,某些內(nèi)容可以處理得更加簡(jiǎn)潔。比如對(duì)于余弦定理的證明,常用的方法是借助于三角的方法,需要對(duì)于三角形進(jìn)行討論,方法不夠簡(jiǎn)潔,教科書(shū)則用了向量的方法,發(fā)揮了向量方法在解決問(wèn)題中的威力。

  在證明了余弦定理及其推論以后,教科書(shū)從余弦定理與勾股定理的比較中,提出了一個(gè)思考問(wèn)題“勾股定理指出了直角三角形中三邊平方之間的關(guān)系,余弦定理則指出了一般三角形中三邊平方之間的關(guān)系,如何看這兩個(gè)定理之間的關(guān)系?”,并進(jìn)而指出,“從余弦定理以及余弦函數(shù)的性質(zhì)可知,如果一個(gè)三角形兩邊的平方和等于第三邊的平方,那么第三邊所對(duì)的角是直角;如果小于第三邊的平方,那么第三邊所對(duì)的角是鈍角;如果大于第三邊的平方,那么第三邊所對(duì)的角是銳角.從上可知,余弦定理是勾股定理的推廣.”

  3.重視加強(qiáng)意識(shí)和數(shù)學(xué)實(shí)踐能力

  學(xué)數(shù)學(xué)的最終目的是應(yīng)用數(shù)學(xué),而如今比較突出的兩個(gè)問(wèn)題是,學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)不強(qiáng),創(chuàng)造能力較弱。學(xué)生往往不能把實(shí)際問(wèn)題抽象成數(shù)學(xué)問(wèn)題,不能把所學(xué)的數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際問(wèn)題中去,對(duì)所學(xué)數(shù)學(xué)知識(shí)的實(shí)際背景了解不多,雖然學(xué)生機(jī)械地模仿一些常見(jiàn)數(shù)學(xué)問(wèn)題解法的能力較強(qiáng),但當(dāng)面臨一種新的問(wèn)題時(shí)卻辦法不多,對(duì)于諸如觀(guān)察、分析、歸納、類(lèi)比、抽象、概括、猜想等發(fā)現(xiàn)問(wèn)題、解決問(wèn)題的科學(xué)思維方法了解不夠。針對(duì)這些實(shí)際情況,本章重視從實(shí)際問(wèn)題出發(fā),引入數(shù)學(xué)課題,最后把數(shù)學(xué)知識(shí)應(yīng)用于實(shí)際問(wèn)題。

  (三)教學(xué)內(nèi)容及課時(shí)安排建議

  1.1正弦定理和余弦定理(約3課時(shí))

  1.2應(yīng)用舉例(約4課時(shí))

  1.3實(shí)習(xí)作業(yè)(約1課時(shí))

  (四)評(píng)價(jià)建議

  1.要在本章的教學(xué)中,應(yīng)該根據(jù)教學(xué)實(shí)際,啟發(fā)學(xué)生不斷提出問(wèn)題,研究問(wèn)題。在對(duì)于正弦定理和余弦定理的證明的探究過(guò)程中,應(yīng)該因勢(shì)利導(dǎo),根據(jù)具體教學(xué)過(guò)程中學(xué)生思考問(wèn)題的方向來(lái)啟發(fā)學(xué)生得到自己對(duì)于定理的證明。如對(duì)于正弦定理,可以啟發(fā)得到有應(yīng)用向量方法的證明,對(duì)于余弦定理則可以啟發(fā)得到三角方法和解析的方法。在應(yīng)用兩個(gè)定理解決有關(guān)的解三角形和測(cè)量問(wèn)題的過(guò)程中,一個(gè)問(wèn)題也常常有多種不同的解決方案,應(yīng)該鼓勵(lì)學(xué)生提出自己的解決辦法,并對(duì)于不同的方法進(jìn)行必要的分析和比較。對(duì)于一些常見(jiàn)的測(cè)量問(wèn)題甚至可以鼓勵(lì)學(xué)生設(shè)計(jì)應(yīng)用的程序,得到在實(shí)際中可以直接應(yīng)用的算法。

  2.適當(dāng)安排一些實(shí)習(xí)作業(yè),目的是讓學(xué)生進(jìn)一步鞏固所學(xué)的知識(shí),提高學(xué)生分析問(wèn)題的解決實(shí)際問(wèn)題的能力、動(dòng)手操作的能力以及用數(shù)學(xué)語(yǔ)言表達(dá)實(shí)習(xí)過(guò)程和實(shí)習(xí)結(jié)果能力,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和數(shù)學(xué)實(shí)踐能力。教師要注意對(duì)于學(xué)生實(shí)習(xí)作業(yè)的指導(dǎo),包括對(duì)于實(shí)際測(cè)量問(wèn)題的選擇,及時(shí)糾正實(shí)際操作中的錯(cuò)誤,解決測(cè)量中出現(xiàn)的一些問(wèn)題。

高中數(shù)學(xué)必修5教案6

  一、概述

  教材內(nèi)容:等比數(shù)列的概念和通項(xiàng)公式的推導(dǎo)及簡(jiǎn)單應(yīng)用 教材難點(diǎn):靈活應(yīng)用等比數(shù)列及通項(xiàng)公式解決一般問(wèn)題 教材重點(diǎn):等比數(shù)列的概念和通項(xiàng)公式

  二、教學(xué)目標(biāo)分析

  1. 知識(shí)目標(biāo)

  1)

  2) 掌握等比數(shù)列的定義 理解等比數(shù)列的通項(xiàng)公式及其推導(dǎo)

  2.能力目標(biāo)

  1)學(xué)會(huì)通過(guò)實(shí)例歸納概念

  2)通過(guò)學(xué)習(xí)等比數(shù)列的通項(xiàng)公式及其推導(dǎo)學(xué)會(huì)歸納假設(shè)

  3)提高數(shù)學(xué)建模的`能力

  3、情感目標(biāo):

  1)充分感受數(shù)列是反映現(xiàn)實(shí)生活的模型

  2)體會(huì)數(shù)學(xué)是來(lái)源于現(xiàn)實(shí)生活并應(yīng)用于現(xiàn)實(shí)生活

  3)數(shù)學(xué)是豐富多彩的而不是枯燥無(wú)味的

  三、教學(xué)對(duì)象及學(xué)習(xí)需要分析

  1、 教學(xué)對(duì)象分析:

  1)高中生已經(jīng)有一定的學(xué)習(xí)能力,對(duì)各方面的知識(shí)有一定的基礎(chǔ),理解能力較強(qiáng)。并掌握了函數(shù)及個(gè)別特殊函數(shù)的性質(zhì)及圖像,如指數(shù)函數(shù)。之前也剛學(xué)習(xí)了等差數(shù)列,在學(xué)習(xí)這一章節(jié)時(shí)可聯(lián)系以前所學(xué)的進(jìn)行引導(dǎo)教學(xué)。

  2)對(duì)歸納假設(shè)較弱,應(yīng)加強(qiáng)這方面教學(xué)

  2、學(xué)習(xí)需要分析:

  四. 教學(xué)策略選擇與設(shè)計(jì)

  1.課前復(fù)習(xí)

  1)復(fù)習(xí)等差數(shù)列的概念及通向公式

  2)復(fù)習(xí)指數(shù)函數(shù)及其圖像和性質(zhì)

  2.情景導(dǎo)入

高中數(shù)學(xué)必修5教案7

  教學(xué)準(zhǔn)備

  教學(xué)目標(biāo)

  解三角形及應(yīng)用舉例

  教學(xué)重難點(diǎn)

  解三角形及應(yīng)用舉例

  教學(xué)過(guò)程

  一、基礎(chǔ)知識(shí)精講

  掌握三角形有關(guān)的定理

  利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

 。1)已知兩角和任一邊,求其他兩邊和一角;

 。2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

  利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

 。1)已知三邊,求三角;

  (2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問(wèn)題。

  二、問(wèn)題討論

  思維點(diǎn)撥:已知兩邊和其中一邊的`對(duì)角解三角形問(wèn)題,用正弦定理解,但需注意解的情況的討論。

  思維點(diǎn)撥:三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理。在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì)。

  例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測(cè),當(dāng)前臺(tái)

  風(fēng)中心位于城市O(如圖)的東偏南方向

  300 km的海面P處,并以20 km / h的速度向西偏北的

  方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60 km,并以10 km / h的速度不斷增加,問(wèn)幾小時(shí)后該城市開(kāi)始受到

  臺(tái)風(fēng)的侵襲。

  一、小結(jié):

  1、利用正弦定理,可以解決以下兩類(lèi)問(wèn)題:

 。1)已知兩角和任一邊,求其他兩邊和一角;

 。2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);

  2、利用余弦定理,可以解決以下兩類(lèi)問(wèn)題:

 。1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。

  3、邊角互化是解三角形問(wèn)題常用的手段。

  三。作業(yè):P80闖關(guān)訓(xùn)練

【高中數(shù)學(xué)必修5教案】相關(guān)文章:

高中數(shù)學(xué)必修教案03-01

高中數(shù)學(xué)必修五教案優(yōu)秀10-14

高中數(shù)學(xué)必修教學(xué)反思06-02

高中必修5數(shù)學(xué)教學(xué)教案03-02

高中數(shù)學(xué) 數(shù)列教案5篇01-03

高中數(shù)學(xué)數(shù)列教案5篇12-30

高二語(yǔ)文必修五教案5篇04-28

高二語(yǔ)文必修五教案(5篇)04-28

數(shù)學(xué)必修4教案01-12

高一數(shù)學(xué)必修一優(yōu)秀教案(5篇)12-31