人教版八年級(jí)數(shù)學(xué)下冊(cè)教案
作為一名教職工,就不得不需要編寫(xiě)教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么寫(xiě)教案需要注意哪些問(wèn)題呢?以下是小編收集整理的人教版八年級(jí)數(shù)學(xué)下冊(cè)教案,僅供參考,大家一起來(lái)看看吧。
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案1
一、目標(biāo)要求
1.理解掌握異分母分式加減法法則。
2.能正確熟練地進(jìn)行異分母分式的加減運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn):異分母分式的加減法法則及其運(yùn)用。
難點(diǎn):正確確定最簡(jiǎn)公分母和靈活運(yùn)用法則。
1.異分母分式的加減法法則:異分母分式相加減,先通分,變?yōu)橥帜阜质剑缓笤偌訙p。用式子表示為:±=。
2.分式通分時(shí),要注意幾點(diǎn):(1)如果各分母的系數(shù)都是整數(shù)時(shí)通分,常取它們的系數(shù)的最小公倍數(shù),作為最簡(jiǎn)公分母的系數(shù);(2)若分母的系數(shù)不是整數(shù)時(shí),先用分式的'基本性質(zhì)將其化為整數(shù),再求最小公倍數(shù);(3)分母的系數(shù)若是負(fù)數(shù)時(shí),應(yīng)利用符號(hào)法則,把負(fù)號(hào)提取到分式前面;(4)若分母是多項(xiàng)式時(shí),先按某一字母順序排列,然后再進(jìn)行因式分解,再確定最簡(jiǎn)公分母。
三、解題方法指導(dǎo)
【例1】計(jì)算:(1)++;
。2)-x-1;
。3)--。
分析:(1)把分母的各多項(xiàng)式按x的降冪排列,能先分解因式的將其分解因式,找最簡(jiǎn)公分母,轉(zhuǎn)化為同分母的分式加減法。(2)一個(gè)整式與一個(gè)分式相加減,應(yīng)把這個(gè)整式看作一個(gè)分母是1的式子來(lái)進(jìn)行通分,注意-x-1=,要注意負(fù)號(hào)問(wèn)題。
解:(1)原式=-+=-+====;
(2)原式======;
。3)原式=--===。
【例2】計(jì)算:。+++。
分析:此題若將4個(gè)分式同時(shí)通分,分子將是很復(fù)雜的,計(jì)算也是比較復(fù)雜的。各式的分母適用于平方差公式,所以采取分步通分的方法進(jìn)行加減。
解:原式=++=++=+=+==。
四、激活思維訓(xùn)練
▲知識(shí)點(diǎn):異分母分式的加減
【例】計(jì)算:-+。
分析:此題如果直接通分,運(yùn)算勢(shì)必十分復(fù)雜。當(dāng)各分子的次數(shù)大于或等于分母的次數(shù)時(shí),可利用多項(xiàng)式的除法,將其分離為整式部分與分式部分的和,再加減會(huì)使運(yùn)算簡(jiǎn)便。
解:原式=[x+2-]-[x+3+]
。玔+1]
=x+2--x-3-++1
=--+=====。
五、基礎(chǔ)知識(shí)檢測(cè)
1.填空題:
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案2
一、教學(xué)目標(biāo)
1.使學(xué)生理解并掌握反比例函數(shù)的概念
2.能判斷一個(gè)給定的函數(shù)是否為反比例函數(shù),并會(huì)用待定系數(shù)法求函數(shù)解析式
3.能根據(jù)實(shí)際問(wèn)題中的條件確定反比例函數(shù)的解析式,體會(huì)函數(shù)的模型思想
二、重、難點(diǎn)
1.重點(diǎn):理解反比例函數(shù)的概念,能根據(jù)已知條件寫(xiě)出函數(shù)解析式
2.難點(diǎn):理解反比例函數(shù)的概念
3.難點(diǎn)的突破方法:
。1)在引入反比例函數(shù)的概念時(shí),可適當(dāng)復(fù)習(xí)一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識(shí),這樣以舊帶新,相互對(duì)比,能加深對(duì)反比例函數(shù)概念的理解
。2)注意引導(dǎo)學(xué)生對(duì)反比例函數(shù)概念的理解,看形式,等號(hào)左邊是函數(shù)y,等號(hào)右邊是一個(gè)分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實(shí)數(shù);看函數(shù)y的取值范圍,因?yàn)閗≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時(shí)可對(duì)照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點(diǎn)和不同點(diǎn)。
。3)(k≠0)還可以寫(xiě)成(k≠0)或xy=k(k≠0)的形式
三、例題的意圖分析
教材第46頁(yè)的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實(shí)際問(wèn)題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過(guò)觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會(huì)函數(shù)的模型思想。
教材第47頁(yè)的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對(duì)反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進(jìn)一步體會(huì)函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對(duì)應(yīng)關(guān)系。
補(bǔ)充例1、例2都是常見(jiàn)的'題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補(bǔ)充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個(gè)函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問(wèn)題的能力。
四、課堂引入
1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?
2.體育課上,老師測(cè)試了百米賽跑,那么,時(shí)間與平均速度的關(guān)系是怎樣的?
五、例習(xí)題分析
例1.見(jiàn)教材P47
分析:因?yàn)閥是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。
例1.(補(bǔ)充)下列等式中,哪些是反比例函數(shù)
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫(xiě)成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨(dú)含x,(6)改寫(xiě)后是,分子不是常數(shù),只有(2)、(3)、(5)能寫(xiě)成定義的形式
例2.(補(bǔ)充)當(dāng)m取什么值時(shí),函數(shù)是反比例函數(shù)?
分析:反比例函數(shù)(k≠0)的另一種表達(dá)式是(k≠0),后一種寫(xiě)法中x的次數(shù)是-1,因此m的取值必須滿足兩個(gè)條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯(cuò)誤
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案3
教學(xué)目標(biāo):
學(xué)會(huì)可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解、掌握解分式方程的一般步驟。
教學(xué)重點(diǎn):
去分母法解可化為一元一次方程或一元二次方程的分式方程、驗(yàn)根的方法、
教學(xué)難點(diǎn):
解分式方程的`一般步驟。
教學(xué)過(guò)程:
復(fù)習(xí)引入:
1、什么叫分式方程?
2、解分式方程的基本思想:
分式方程整式方程
3、解方程(學(xué)生板演)
講授新課:
1、由上述學(xué)生的板演歸納出解分式方程的一般步驟
。1)去分母:在方程的兩邊都乘以最簡(jiǎn)公分母,化為整式方程;
(2)解這個(gè)整式方程;
。3)檢驗(yàn):將所得的解代入原方程的最簡(jiǎn)公分母,若最簡(jiǎn)公分母為0,則為增根,必須舍去;若不為0,則為原方程的根、
2、范例講解
。▽W(xué)生嘗試練習(xí)后,教師講評(píng))
例1:解方程例2:解方程例3:解方程講評(píng)時(shí)強(qiáng)調(diào):
1、怎樣確定最簡(jiǎn)公分母?(先將各分母因式分解)
2、解分式方程的步驟、
鞏固練習(xí):P1471t,2t、
課堂小結(jié):解分式方程的一般步驟
布置作業(yè):見(jiàn)作業(yè)本。
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案4
一、創(chuàng)設(shè)情境
在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問(wèn)題.
問(wèn)題1如圖是某地一天內(nèi)的氣溫變化圖.
看圖回答:
(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說(shuō)出這一時(shí)刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?
解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.
從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類(lèi)似的數(shù)量關(guān)系呢?
二、探究歸納
問(wèn)題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的.利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀察上表,說(shuō)說(shuō)隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.
解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).
問(wèn)題3收音機(jī)刻度盤(pán)的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:
觀察上表回答:
(1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?
(2)波長(zhǎng)l越大,頻率f就________.
解(1)l與f的乘積是一個(gè)定值,即
lf=300000,
或者說(shuō).
(2)波長(zhǎng)l越大,頻率f就 越小 .
問(wèn)題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的面積則S與r之間滿足下列關(guān)系:S=_________.
利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問(wèn)題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫(huà)了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問(wèn)題1中,刻畫(huà)氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過(guò)程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個(gè)問(wèn)題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過(guò)程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案5
一、目標(biāo)要求
1.理解掌握分式的四則混合運(yùn)算的順序。
2.能正確熟練地進(jìn)行分式的加、減、乘、除混合運(yùn)算。
二、重點(diǎn)難點(diǎn)
重點(diǎn):分式的加、減、乘、除混合運(yùn)算的順序。
難點(diǎn):分式的加、減、乘、除混合運(yùn)算。
分式的加、減、乘、除混合運(yùn)算的順序是先進(jìn)行乘、除運(yùn)算,再進(jìn)行加、減運(yùn)算,遇有括號(hào),先算括號(hào)內(nèi)的。
三、解題方法指導(dǎo)
【例1】計(jì)算:(1)[++(+)]·;
。2)(x-y-)(x+y-)÷[3(x+y)-]。
分析:分式的.四則混合運(yùn)算要注意運(yùn)算順序及括號(hào)的關(guān)系。
解:(1)原式=[++]·=[++]·=·==。
(2)原式=·÷=··=y-x。
【例2】計(jì)算:(1)(-+)·(a3-b3);
。2)(-)÷。
解:(1)原式=-+=-+ab
=a2+ab+b2-(a2-b2)-ab
=a2+ab+b2-a2+b2-ab=2b2。
。2)原式=[-]·=-=-====。
說(shuō)明:分式的加、減、乘、除混合運(yùn)算注意以下幾點(diǎn):
。1)一般按分式的運(yùn)算順序法則進(jìn)行計(jì)算,但恰當(dāng)?shù)厥褂眠\(yùn)算律會(huì)使運(yùn)算簡(jiǎn)便。
。2)要隨時(shí)注意分子、分母可進(jìn)行因式分解的式子,以備約分或通分時(shí)備用,可避免運(yùn)算煩瑣。
。3)注意括號(hào)的“添”或“去”、“變大”與“變小”。
。4)結(jié)果要化為最簡(jiǎn)分式。
四、激活思維訓(xùn)練
▲知識(shí)點(diǎn):求分式的值
【例】已知x+=3,求下列各式的值:
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案6
一、課堂引入
1.什么叫做平行四邊形?什么叫做矩形?
2.矩形有哪些性質(zhì)?
3.矩形與平行四邊形有什么共同之處?有什么不同之處?
4.事例引入:小華想要做一個(gè)矩形像框送給媽媽做生日禮物,于是找來(lái)兩根長(zhǎng)度相等的短木條和兩根長(zhǎng)度相等的長(zhǎng)木條制作,你有什么辦法可以檢測(cè)他做的是矩形像框嗎?看看誰(shuí)的方法可行?
通過(guò)討論得到矩形的判定方法.
矩形判定方法1:對(duì)角錢(qián)相等的平行四邊形是矩形.
矩形判定方法2:有三個(gè)角是直角的四邊形是矩形.
。ㄖ赋觯号卸ㄒ粋(gè)四邊形是矩形,知道三個(gè)角是直角,條件就夠了.因?yàn)橛伤倪呅蝺?nèi)角和可知,這時(shí)第四個(gè)角一定是直角.)
二、例習(xí)題分析
例1(補(bǔ)充)下列各句判定矩形的說(shuō)法是否正確?為什么?
(1)有一個(gè)角是直角的四邊形是矩形;(×)
。2)有四個(gè)角是直角的四邊形是矩形;(√)
(3)四個(gè)角都相等的四邊形是矩形;(√)
(4)對(duì)角線相等的四邊形是矩形;(×)
(5)對(duì)角線相等且互相垂直的四邊形是矩形;(×)
。6)對(duì)角線互相平分且相等的四邊形是矩形;(√)
。7)對(duì)角線相等,且有一個(gè)角是直角的四邊形是矩形;(×)
(8)一組鄰邊垂直,一組對(duì)邊平行且相等的四邊形是矩形;(√)
。9)兩組對(duì)邊分別平行,且對(duì)角線相等的四邊形是矩形.(√)
指出:
。╨)所給四邊形添加的條件不滿足三個(gè)的肯定不是矩形;
。2)所給四邊形添加的.條件是三個(gè)獨(dú)立條件,但若與判定方法不同,則需要利用定義和判定方法證明或舉反例,才能下結(jié)論.
例2(補(bǔ)充)已知ABCD的對(duì)角線AC、BD相交于點(diǎn)O,△AOB是等邊三角形,AB=4cm,求這個(gè)平行四邊形的面積.
分析:首先根據(jù)△AOB是等邊三角形及平行四邊形對(duì)角線互相平分的性質(zhì)判定出ABCD是矩形,再利用勾股定理計(jì)算邊長(zhǎng),從而得到面積值.
解:∵ 四邊形ABCD是平行四邊形,
∴AO=AC,BO=BD.
∵ AO=BO,
∴ AC=BD.
∴ ABCD是矩形(對(duì)角線相等的平行四邊形是矩形).
在Rt△ABC中,
∵ AB=4cm,AC=2AO=8cm,
∴BC=(cm).
例3(補(bǔ)充)已知:如圖(1),ABCD的四個(gè)內(nèi)角的平分線分別相交于點(diǎn)E,F(xiàn),G,H.求證:四邊形EFGH是矩形.
分析:要證四邊形EFGH是矩形,由于此題目可分解出基本圖形,如圖(2),因此,可選用“三個(gè)角是直角的四邊形是矩形”來(lái)證明
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案7
1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門(mén),活動(dòng)衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?
2.思考:拿一個(gè)活動(dòng)的平行四邊形教具,輕輕拉動(dòng)一個(gè)點(diǎn),觀察不管怎么拉,它還是一個(gè)平行四邊形嗎?為什么?(動(dòng)畫(huà)演示拉動(dòng)過(guò)程如圖)
3.再次演示平行四邊形的移動(dòng)過(guò)程,當(dāng)移動(dòng)到一個(gè)角是直角時(shí)停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過(guò)的長(zhǎng)方形)引出本課題及矩形定義.
矩形定義:有一個(gè)角是直角的平行四邊形叫做矩形(通常也叫長(zhǎng)方形).
矩形是我們最常見(jiàn)的圖形之一,例如書(shū)桌面、教科書(shū)的封面等都有矩形形象.
【探究】在一個(gè)平行四邊形活動(dòng)框架上,用兩根橡皮筋分別套在相對(duì)的兩個(gè)頂點(diǎn)上(作出對(duì)角線),拉動(dòng)一對(duì)不相鄰的頂點(diǎn),改變平行四邊形的形狀.
、匐S著∠α的變化,兩條對(duì)角線的長(zhǎng)度分別是怎樣變化的?
②當(dāng)∠α是直角時(shí),平行四邊形變成矩形,此時(shí)它的`其他內(nèi)角是什么樣的角?它的兩條對(duì)角線的長(zhǎng)度有什么關(guān)系?
操作,思考、交流、歸納后得到矩形的性質(zhì).
矩形性質(zhì)1 矩形的四個(gè)角都是直角.
矩形性質(zhì)2 矩形的對(duì)角線相等.
如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個(gè)性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.
例習(xí)題分析
例1(教材P104例1)已知:如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對(duì)角線的長(zhǎng).
分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅,所以它具有?duì)角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個(gè)特性和已知,可得△OAB是等邊三角形,因此對(duì)角線的長(zhǎng)度可求.
解:∵ 四邊形ABCD是矩形,
∴ AC與BD相等且互相平分.
∴ OA=OB.
又∠AOB=60°,
∴△OAB是等邊三角形.
∴矩形的對(duì)角線長(zhǎng)AC=BD=2OA=2×4=8(cm).
例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長(zhǎng)8cm,對(duì)角線比AD邊長(zhǎng)4cm.求AD的長(zhǎng)及點(diǎn)A到BD的距離AE的長(zhǎng).
分析:(1)因?yàn)榫匦嗡膫(gè)角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案8
教學(xué)目標(biāo):
認(rèn)知目標(biāo):1.了解一次函數(shù)與一元一次不等式的關(guān)系,會(huì)根據(jù)一次函數(shù)的圖象解決一元一次不等式的求解問(wèn)題.
2.學(xué)習(xí)用函數(shù)的觀點(diǎn)看待不等式的方法,初步形成用全面的觀點(diǎn)處理局部問(wèn)題的.
能力情感目標(biāo):經(jīng)歷不等式與函數(shù)關(guān)系問(wèn)題的探究過(guò)程,學(xué)習(xí)用聯(lián)系的觀點(diǎn)看待數(shù)學(xué)問(wèn)題的辨證.
教學(xué)重點(diǎn):一次函數(shù)與一元一次不等式的關(guān)系的理解.
教學(xué)難點(diǎn):利用一次函數(shù)的圖象確定一元一次不等式的解集.
教學(xué)過(guò)程:
一、探究新知:
通過(guò)上節(jié)課的學(xué)習(xí),我們已經(jīng)知道“解一元一次方程ax+b=0”與“求自變量為何值時(shí),一次函數(shù)y=ax+b的值為0”是同一個(gè)問(wèn)題.現(xiàn)在我們來(lái)看看:
。ǎ保┮韵聝蓚(gè)問(wèn)題是否為同一個(gè)問(wèn)題?
、俳獠坏仁剑海玻-4>0
②當(dāng)x為何值時(shí),函數(shù)y=2x-4的值大于0?
。ǎ玻┠闳绾卫煤瘮(shù)的圖象來(lái)說(shuō)明②?
。ǎ常敖獠坏仁剑玻-4<0”可以與怎樣的.一次函數(shù)問(wèn)題是同一的?怎樣在圖象上加以說(shuō)明?
歸納:解一元一次不等式ax+b>0(或ax+b<0)可以看作:當(dāng)一次函數(shù)y=ax+b的值大(。┯0時(shí),求自變量響應(yīng)的取值范圍.
二、應(yīng)用新知:
1.練習(xí):P42練習(xí)1(3)(4)
。.例2 用畫(huà)函數(shù)圖象的方法解不等式5x+4>2x+10.
思考:我們應(yīng)該畫(huà)出什么函數(shù)的圖象來(lái)解?
思路1:將不等式化為3x-6>0,然后畫(huà)出函數(shù)y=3x-6的圖象.
思路2:將不等式5x+4>2x+10的兩邊分別看作兩個(gè)一次函數(shù),畫(huà)出直線y=5x+4和直線y=2x+10,對(duì)于同一個(gè)x,直線y=5x+4上的點(diǎn)在直線y=2x+10上相應(yīng)點(diǎn)的下方,這時(shí)
。担+4>2x+10.
三、鞏固練習(xí)
1.P42練習(xí)2(2)
2.P45習(xí)題11.3第3、4題
四、
五、布置作業(yè)
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案9
活動(dòng)1、提出問(wèn)題
一個(gè)運(yùn)動(dòng)場(chǎng)要修兩塊長(zhǎng)方形草坪,第一塊草坪的長(zhǎng)是10米,寬是米,第二塊草坪的長(zhǎng)是20米,寬也是米。你能告訴運(yùn)動(dòng)場(chǎng)的負(fù)責(zé)人要準(zhǔn)備多少面積的草皮嗎?
問(wèn)題:10+20是什么運(yùn)算?
活動(dòng)2、探究活動(dòng)
下列3個(gè)小題怎樣計(jì)算?
問(wèn)題:1)-還能繼續(xù)往下合并嗎?
2)看來(lái)二次根式有的能合并,有的不能合并,通過(guò)對(duì)以上幾個(gè)題的觀察,你能說(shuō)說(shuō)什么樣的二次根式能合并,什么樣的不能合并嗎?
二次根式加減時(shí),先將二次根式化簡(jiǎn)成最簡(jiǎn)二次根式后,再將被開(kāi)方數(shù)相同的進(jìn)行合并。
活動(dòng)3
練習(xí)1指出下列每組的二次根式中,哪些是可以合并的二次根式?(字母均為正數(shù))
創(chuàng)設(shè)問(wèn)題情景,引起學(xué)生思考。
學(xué)生回答:這個(gè)運(yùn)動(dòng)場(chǎng)要準(zhǔn)備(10+20)平方米的`草皮。
教師提問(wèn):學(xué)生思考并回答教師出示課題并說(shuō)明今天我們就共同來(lái)研究該如何進(jìn)行二次根式的加減法運(yùn)算。
我們可以利用已學(xué)知識(shí)或已有經(jīng)驗(yàn)來(lái)分組討論、交流,看看+到底等于什么?小組展示討論結(jié)果。
教師引導(dǎo)驗(yàn)證:
①設(shè)=,類(lèi)比合并同類(lèi)項(xiàng)或面積法;
、趯W(xué)生思考,得出先化簡(jiǎn),再合并的解題思路
③先化簡(jiǎn),再合并
學(xué)生觀察并歸納:二次根式化為最簡(jiǎn)二次根式后,被開(kāi)方數(shù)相同的能合并。
教師巡視、指導(dǎo),學(xué)生完成、交流,師生評(píng)價(jià)。
提醒學(xué)生注意先化簡(jiǎn)成最簡(jiǎn)二次根式后再判斷。
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案10
一、教學(xué)目標(biāo):
1、會(huì)根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問(wèn)題
2、會(huì)用計(jì)算器求加權(quán)平均數(shù)的值
3、會(huì)運(yùn)用樣本估計(jì)總體的方法來(lái)獲得對(duì)總體的認(rèn)識(shí)
二、重點(diǎn)、難點(diǎn):
1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)
三、教學(xué)過(guò)程:
1、復(fù)習(xí)
組中值的定義:上限與下限之間的中點(diǎn)數(shù)值稱為組中值,它是各組上下限數(shù)值的簡(jiǎn)單平均,即組中值=(上限+上限)/2。
因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過(guò)程中要用到組中值去代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義。
應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個(gè)例子,在一組中如果數(shù)據(jù)分布較為均勻時(shí),比如教材P140探究問(wèn)題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個(gè)數(shù)據(jù),若分布較為平均,41、42、43、44…60個(gè)出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010。而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時(shí)組中值恰好近似等于它的平均數(shù)。所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的`和還是比較合理的,而且這樣做的最大好處是簡(jiǎn)化了計(jì)算量。
為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會(huì)表格的實(shí)際意義。
2、教材P140探究欄目的意圖
、佟⒅饕窍胍龈鶕(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法。
、、加深了對(duì)“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時(shí),頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán)。
這個(gè)探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級(jí)下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義。
3、教材P140的思考的意圖。
①、使學(xué)生通過(guò)思考這兩個(gè)問(wèn)題過(guò)程中體會(huì)利用統(tǒng)計(jì)知識(shí)可以解決生活中的許多實(shí)際問(wèn)題。
、、幫助學(xué)生理解表中所表達(dá)出來(lái)的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力。
4、利用計(jì)算器計(jì)算平均值
這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對(duì)比。一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過(guò)程有差別亦不同,再者,各種計(jì)算器的使用說(shuō)明書(shū)都有詳盡介紹,同時(shí)也說(shuō)明在今后中考趨勢(shì)仍是不允許使用計(jì)算器。所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡(jiǎn)單。統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了。
5、運(yùn)用樣本估計(jì)總體
要使學(xué)生掌握在哪些情況下需要通過(guò)用樣本估計(jì)總體的方法來(lái)獲得對(duì)總體的認(rèn)識(shí);一是所要考察的對(duì)象很多,二是考察本身帶有破壞性;教材P142例3,這個(gè)例子就屬于考察本身帶有破壞性的情況。
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案11
【教學(xué)目標(biāo)】
1、了解三角形的中位線的概念
2、了解三角形的中位線的性質(zhì)
3、探索三角形的中位線的性質(zhì)的一些簡(jiǎn)單的應(yīng)用
【教學(xué)重點(diǎn)、難點(diǎn)】
重點(diǎn):三角形的中位線定理。
難點(diǎn):三角形的中位線定理的證明中添加輔助線的思想方法。
【教學(xué)過(guò)程】
。ㄒ唬﹦(chuàng)設(shè)情景,引入新課
1、如圖,為了測(cè)量一個(gè)池塘的寬BC,在池塘一側(cè)的平地上選一點(diǎn)A,再分別找出線段AB、AC的中點(diǎn)D、E,若測(cè)出DE的長(zhǎng),就可以求出池塘的寬BC,你知道這是為什么嗎?
2、動(dòng)手操作:剪一刀,將一張三角形紙片剪成一張三角形紙片和一張?zhí)菪渭埰?/p>
。1)如果要求剪得的兩張紙片能拼成平行的四邊形,剪痕的位置有什么要求?
。2)要把所剪得的兩個(gè)圖形拼成一個(gè)平行四邊形,可將其中的三角形做怎樣的圖形變換?
3、引導(dǎo)學(xué)生概括出中位線的'概念。
問(wèn)題:
。1)三角形有幾條中位線?
。2)三角形的中位線與中線有什么區(qū)別?
啟發(fā)學(xué)生得出:三角形的中位線的兩端點(diǎn)都是三角形邊的中點(diǎn),而三角形中線只有一個(gè)端點(diǎn)是邊中點(diǎn),另一端點(diǎn)上三角形的一個(gè)頂點(diǎn)。
4、猜想:DE與BC的關(guān)系?(位置關(guān)系與數(shù)量關(guān)系)
。ǘ熒(dòng),探究新知
1、證明你的猜想
引導(dǎo)學(xué)生寫(xiě)出已知,求證,并啟發(fā)分析。
。ㄒ阎酣SABC中,D、E分別是AB、AC的中點(diǎn),求證:DE∥BC,DE=1/2BC)
啟發(fā)1:證明直線平行的方法有哪些?(由角的相等或互補(bǔ)得出平行,由平行四邊形得出平行等)
啟發(fā)2:證明線段的倍分的方法有哪些?(截長(zhǎng)或補(bǔ)短)
學(xué)生分小組討論,教師巡回指導(dǎo),經(jīng)過(guò)分析后,師生共同完成推理過(guò)程,板書(shū)證明過(guò)程,強(qiáng)調(diào)有其他證法。
證明:如圖,以點(diǎn)E為旋轉(zhuǎn)中心,把⊿ADE繞點(diǎn)E,按順時(shí)針?lè)较蛐D(zhuǎn)180゜,得到⊿CFE,則D,E,F(xiàn)同在一直線上,DE=EF,且⊿ADE≌⊿CFE。
∴∠ADE=∠F,AD=CF,∴AB∥CF。
又∵BD=AD=CF,∴四邊形BCFD是平行四邊形(一組對(duì)邊平行且相等的四邊形是平行四邊形)∴DF∥BC(根據(jù)什么?),∴DE 1/2BC
2、啟發(fā)學(xué)生歸納定理,并用文字語(yǔ)言表達(dá):三角形中位線平行于第三邊且等于第三邊的一半。
。ㄈ⿲W(xué)以致用、落實(shí)新知
1、練一練:已知三角形邊長(zhǎng)分別為6、8、10,順次連結(jié)各邊中點(diǎn)所得的三角形周長(zhǎng)是多少?
2、想一想:如果⊿ABC的三邊長(zhǎng)分別為a、b、c,AB、BC、AC各邊中點(diǎn)分別為D、E、F,則⊿DEF的周長(zhǎng)是多少?
3、例題:已知:如圖,在四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點(diǎn)。
求證:四邊形EFGH是平行四邊形。
啟發(fā)1:由E,F(xiàn)分別是AB,BC的中點(diǎn),你會(huì)聯(lián)想到什么圖形?
啟發(fā)2:要使EF成為三角的中位線,應(yīng)如何添加輔助線?應(yīng)用三角形的中位線定理,能得到什么?你能得出EF∥GH嗎?為什么?
證明:如圖,連接AC。
∵EF是⊿ABC的中位線,∴EF 1/2AC(三角形的中位線平行于第三邊,并且等于第三邊的一半)。
同理,HG 1/2AC。
∴EF HG。
∴四邊形EFGH是平行四邊形(一組對(duì)邊平行并且相等的四邊形是平行四邊形)
挑戰(zhàn):順次連結(jié)上題中,所得到的四邊形EFGH四邊中點(diǎn)得到一個(gè)四邊形,繼續(xù)作下去。你能得出什么結(jié)論?
。ㄋ模⿲W(xué)生練習(xí),鞏固新知
如圖,在四邊形ABCD中,AB=CD,M,N,P分別是AD,BC,BD的中點(diǎn)。求證:∠PNM=∠PMN
(五)小結(jié)回顧,反思提高
今天你學(xué)到了什么?還有什么困惑?
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案12
教學(xué)目標(biāo):
1.學(xué)會(huì)根據(jù)定義判別分式方程與整式方程,了解分式方程增根產(chǎn)生的原因,掌握驗(yàn)根的方法。
2.掌握可化為一元一次方程或一元二次方程的分式方程的解法,會(huì)用去分母求方程的解。
教學(xué)重點(diǎn):去分母法解可化為一元一次方程或一元二次方程的分式方程。驗(yàn)根的方法。
教學(xué)難點(diǎn):驗(yàn)根的方法。分式方程增根產(chǎn)生的原因。
教學(xué)準(zhǔn)備:小黑板。
教學(xué)過(guò)程:
復(fù)習(xí)引入:下列方程中哪些分母中含有未知數(shù)?哪些分母中不含有未知數(shù)?
(1);(2);(3);(4);
。5);(6);(7);(8)。
講授新課:
1.由上述歸納出分式方程的概念:只含有分式或整式,且分母里含有未知數(shù)的.方程叫做分式方程。方程兩邊都是整式的方程叫做整式方程。
2.討論分式方程的解法:
(1)復(fù)習(xí)解方程時(shí),怎樣去分母?
。2)講解例1:解方程(按課文講解)
歸納:解分式方程的基本思想:
分式方程整式方程
。3)講解例2:解方程(按課文講解)
歸納:在去分母時(shí),有時(shí)可能產(chǎn)生不適合原方程的根,我們把它叫做增根。因此解分式方程必須檢驗(yàn),常把求得得根代入原方程的最簡(jiǎn)公分母,看它的值是否為0,若為0,則為增根,必須舍去;若不為0,則為原方程的根。
想一想:產(chǎn)生增根的原因是什么?
鞏固練習(xí):P1451t,2t。
課堂小結(jié):什么叫做分式方程?
解分式方程時(shí),為什么要檢驗(yàn)?怎樣檢驗(yàn)?
布置作業(yè):見(jiàn)作業(yè)本。
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案13
教學(xué)目標(biāo):
知識(shí)目標(biāo):
1、初步掌握函數(shù)概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
2、根據(jù)兩個(gè)變量間的關(guān)系式,給定其中一個(gè)量,相應(yīng)地會(huì)求出另一個(gè)量的值。
3、會(huì)對(duì)一個(gè)具體實(shí)例進(jìn)行概括抽象成為數(shù)學(xué)問(wèn)題。
能力目標(biāo):
1、通過(guò)函數(shù)概念,初步形成學(xué)生利用函數(shù)的觀點(diǎn)認(rèn)識(shí)現(xiàn)實(shí)世界的意識(shí)和能力。
2、經(jīng)歷具體實(shí)例的抽象概括過(guò)程,進(jìn)一步發(fā)展學(xué)生的抽象思維能力。
情感目標(biāo):
1、經(jīng)歷函數(shù)概念的抽象概括過(guò)程,體會(huì)函數(shù)的模型思想。
2、讓學(xué)生主動(dòng)地從事觀察、操作、交流、歸納等探索活動(dòng),形成自己對(duì)數(shù)學(xué)知識(shí)的理解和有效的學(xué)習(xí)模式。
教學(xué)重點(diǎn):
掌握函數(shù)概念。
判斷兩個(gè)變量之間的關(guān)系是否可看作函數(shù)。
能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
教學(xué)難點(diǎn):
理解函數(shù)的概念。
能把實(shí)際問(wèn)題抽象概括為函數(shù)問(wèn)題。
教學(xué)過(guò)程設(shè)計(jì):
一、創(chuàng)設(shè)問(wèn)題情境,導(dǎo)入新課
師:同學(xué)們,你們看下圖上面那個(gè)像車(chē)輪狀的物體是什么?
生:摩天輪。
師:你們坐過(guò)嗎?
師:當(dāng)你坐在摩天輪上時(shí),人的高度隨時(shí)在變化,那么變化是否有規(guī)律呢?
生:應(yīng)該有規(guī)律。因?yàn)槿穗S輪一直做圓周運(yùn)動(dòng)。所以人的高度過(guò)一段時(shí)間就會(huì)重復(fù)依次,即轉(zhuǎn)動(dòng)一圈高度就重復(fù)一次。
師:分析有道理。摩天輪上一點(diǎn)的高度h與旋轉(zhuǎn)時(shí)間t之間有一定的關(guān)系。請(qǐng)看下圖,反映了旋轉(zhuǎn)時(shí)間t(分)與摩天輪上一點(diǎn)的高度h(米)之間的關(guān)系。
大家從圖上可以看出,每過(guò)6分鐘摩天輪就轉(zhuǎn)一圈。高度h完整地變化一次。而且從圖中大致可以判斷給定的時(shí)間所對(duì)應(yīng)的高度h。下面根據(jù)圖5-1進(jìn)行填表:
t/分0 1 2 3 4 5 …… h/米
t/分0 1 2 3 4 5 …… h/米3 11 37 45 37 11 ……
師:對(duì)于給定的時(shí)間t,相應(yīng)的高度h確定嗎?
生:確定。
師:在這個(gè)問(wèn)題中,我們研究的對(duì)象有幾個(gè)?分別是什么?
生:研究的對(duì)象有兩個(gè),是時(shí)間t和高度h。
師:生活中充滿著許許多多變化的量,你了解這些變量之間的關(guān)系嗎?如:彈簧的長(zhǎng)度與所掛物體的質(zhì)量,路程的距離與所用時(shí)間……了解這些關(guān)系,可以幫助我們更好地認(rèn)識(shí)世界。下面我們就去研究一些有關(guān)變量的問(wèn)題。
二、新課學(xué)習(xí)
做一做
。1)瓶子或罐子盒等圓柱形的物體,常常如下圖那樣堆放,隨著層數(shù)的增加,物體的.總數(shù)是如何變化的?
填寫(xiě)下表:
層數(shù)n 1 2 3 4 5 …物體總數(shù)y 1 3 6 10 15 … 師:在這個(gè)問(wèn)題中的變量有幾個(gè)?分別師什么?
生:變量有兩個(gè),是層數(shù)與圓圈總數(shù)。
。2)在平整的路面上,某型號(hào)汽車(chē)緊急剎車(chē)后仍將滑行S米,一般地有經(jīng)驗(yàn)公式,其中V表示剎車(chē)前汽車(chē)的速度(單位:千米/時(shí))
、儆(jì)算當(dāng)fenbie為50,60,100時(shí),相應(yīng)的滑行距離S是多少?
、诮o定一個(gè)V值,你能求出相應(yīng)的S值嗎?
解:略
議一議
師:在上面我們研究了三個(gè)問(wèn)題。下面大家探討一下,在這三個(gè)問(wèn)題中的共同點(diǎn)是什么?不同點(diǎn)又是什么?
生:相同點(diǎn)是:這三個(gè)問(wèn)題中都研究了兩個(gè)變量。
不同點(diǎn)是:在第一個(gè)問(wèn)題中,是以圖象的形式表示兩個(gè)變量之間的關(guān)系;第二個(gè)問(wèn)題中是以表格的形式表示兩個(gè)變量間的關(guān)系;第三個(gè)問(wèn)題是以關(guān)系式來(lái)表示兩個(gè)變量間的關(guān)系的。
師:通過(guò)對(duì)這三個(gè)問(wèn)題的研究,明確“給定其中某一個(gè)變量的值,相應(yīng)地就確定了另一個(gè)變量的值”這一共性。
函數(shù)的概念
在上面各例中,都有兩個(gè)變量,給定其中某一各變量(自變量)的值,相應(yīng)地就確定另一個(gè)變量(因變量)的值。
一般地,在某個(gè)變化過(guò)程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。
三、隨堂練習(xí)
書(shū)P152頁(yè)隨堂練習(xí)1、2、3
四、本課小結(jié)
初步掌握函數(shù)的概念,能判斷兩個(gè)變量間的關(guān)系是否可看作函數(shù)。
在一個(gè)函數(shù)關(guān)系式中,能識(shí)別自變量與因變量,給定自變量的值,相應(yīng)地會(huì)求出函數(shù)的值。
函數(shù)的三種表達(dá)式:
圖象;(2)表格;(3)關(guān)系式。
五、探究活動(dòng)
為了加強(qiáng)公民的節(jié)水意識(shí),某市制定了如下用水收費(fèi)標(biāo)準(zhǔn):每戶每月的用水不超過(guò)10噸時(shí),水價(jià)為每噸1。2元;超過(guò)10噸時(shí),超過(guò)的部分按每噸1。8元收費(fèi),該市某戶居民5月份用水x噸(x>10),應(yīng)交水費(fèi)y元,請(qǐng)用方程的知識(shí)來(lái)求有關(guān)x和y的關(guān)系式,并判斷其中一個(gè)變量是否為另一個(gè)變量的函數(shù)?
。ù鸢福篩=1。8x—6或)
六、課后作業(yè)
習(xí)題6.1
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案14
學(xué)習(xí)目標(biāo)
1、能說(shuō)出約分的意義和步驟。
2、能說(shuō)出最簡(jiǎn)分式的意義。
3、能說(shuō)出分式的乘、除和乘方法則,并能用式子表示。
4、能熟練地進(jìn)行分式的乘除和乘方運(yùn)算。
5、會(huì)歸納總結(jié)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)。
6、能熟練地運(yùn)用冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算。
主體知識(shí)歸納
1、約分根據(jù)分式的基本性質(zhì),把一個(gè)分式的分子與分母的公因式約去,叫做分式的約分。
2、約分的步驟把分式的分子與分母分解因式,然后約去分子與分母的公因式。
3、最簡(jiǎn)分式一個(gè)分式的分子與分母沒(méi)有公因式時(shí),叫做最簡(jiǎn)分式。
4、分式的乘法法則分式乘以分式,用分子的積做積的分子,分母的積做積的分母。
5、分式的除法法則分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘。
6、分式的乘方(n為正整數(shù))、就是說(shuō):分式的乘方是把分子、分母各自乘方。
7、整數(shù)指數(shù)冪的運(yùn)算性質(zhì)可歸納如下
。1)am·an=am+n(m、n都是整數(shù));
。2)(am)n=amn(m、n都是整數(shù));
。3)(ab)n=anbn(n是整數(shù))、
基礎(chǔ)知識(shí)精講
1、正確理解分式約分的意義
。1)約分的根據(jù)是分式的基本性質(zhì),約分的實(shí)質(zhì)是一個(gè)分式化成最簡(jiǎn)分式,約分的.關(guān)鍵是將一個(gè)分式的分子與分母的公因式約去。
。2)進(jìn)行約分的前提條件:分子、分母必須都為積的形式且有公因式。
2、分式約分的步驟是:把分式的分子與分母分解因式,然后約去分子、分母和公因式、約分時(shí)應(yīng)注意以下兩點(diǎn):
。1)若分子、分母都是幾個(gè)因式乘積的形式,應(yīng)約去分子、分母中相同因式的最低次冪、當(dāng)分子、分母的系數(shù)是整數(shù)時(shí),還應(yīng)約去它們的最大公約數(shù)。、
。2)若分式的分子、分母是多項(xiàng)時(shí),要先將分子、分母按同一字母降冪排列、首項(xiàng)為負(fù),提取負(fù)號(hào)放到整個(gè)分式的前面,將分子、分母分解因式,然后再約分。、
3、進(jìn)行分式的乘除運(yùn)算時(shí),應(yīng)注意以下幾點(diǎn):
(1)分式的乘除運(yùn)算,實(shí)際上是分式的乘法運(yùn)算,根據(jù)法則應(yīng)先把分子、分母相乘,化成一個(gè)分式后再進(jìn)行約分,化為最簡(jiǎn)分式、但實(shí)際運(yùn)算時(shí),常常先約分再相乘,這樣做既簡(jiǎn)單易行,又不易出錯(cuò)、
。2)如果分式的分子、分母是多項(xiàng)式時(shí),一般應(yīng)先因式分解,再約分。
。3)分式運(yùn)算的結(jié)果必須化成最簡(jiǎn)分式,特別地,若分子(或分母)是公因式,約去公因式后,分子(或分母)是1而不是0。
。4)要注意運(yùn)算順序,對(duì)于分式乘除法來(lái)說(shuō),它只含有同級(jí)乘除運(yùn)算,所以只要沒(méi)有附加條件(如括號(hào)等),就必須按照從左至右的順序進(jìn)行計(jì)算。
人教版八年級(jí)數(shù)學(xué)下冊(cè)教案15
一、回顧交流,合作學(xué)習(xí)
【活動(dòng)方略】
活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.
【問(wèn)題探究1】(投影顯示)
飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過(guò)了20秒,飛機(jī)距離小明頭頂5000米,問(wèn):飛機(jī)飛行了多少千米?
思路點(diǎn)撥:根據(jù)題意,可以先畫(huà)出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長(zhǎng),在這個(gè)問(wèn)題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來(lái)計(jì)算出BC的長(zhǎng).(3000千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問(wèn)題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).
學(xué)生活動(dòng):獨(dú)立完成“問(wèn)題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.
【問(wèn)題探究2】(投影顯示)
一個(gè)零件的形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?
思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過(guò)勾股定理的逆定理予以解決:
AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.
【活動(dòng)方略】
教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.
學(xué)生活動(dòng):思考后,完成“問(wèn)題探究2”,小結(jié)方法.
解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,
∴△ABD為直角三角形,∠A=90°.
在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.
∴△BDC是直角三角形,∠CDB=90°
因此這個(gè)零件符合要求.
【問(wèn)題探究3】
甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?
思路點(diǎn)撥:要求甲、乙兩人的`距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)
【活動(dòng)方略】
教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.
學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示
【八年級(jí)數(shù)學(xué)下冊(cè)教案】相關(guān)文章:
數(shù)學(xué)下冊(cè)教案03-16
八年級(jí)數(shù)學(xué)下冊(cè)教案01-10
八年級(jí)數(shù)學(xué)下冊(cè)教案05-16
八年級(jí)數(shù)學(xué)下冊(cè)教案【優(yōu)秀】05-22
八年級(jí)數(shù)學(xué)下冊(cè)教案【熱門(mén)】05-19
八年級(jí)數(shù)學(xué)下冊(cè)教案[優(yōu)選]05-19
八年級(jí)下冊(cè)數(shù)學(xué)教案01-01