高二數(shù)學(xué)教案(精選15篇)
作為一名為他人授業(yè)解惑的教育工作者,可能需要進(jìn)行教案編寫工作,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。那要怎么寫好教案呢?下面是小編收集整理的高二數(shù)學(xué)教案,僅供參考,歡迎大家閱讀。
高二數(shù)學(xué)教案1
教學(xué)目的:
1、使學(xué)生理解線段的垂直平分線的性質(zhì)定理及逆定理,掌握這兩個(gè)定理的關(guān)系并會(huì)用這兩個(gè)定理解決有關(guān)幾何問題。
2、了解線段垂直平分線的軌跡問題。
3、結(jié)合教學(xué)內(nèi)容培養(yǎng)學(xué)生的動(dòng)作思維、形象思維和抽象思維能力。
教學(xué)重點(diǎn):
線段的垂直平分線性質(zhì)定理及逆定理的引入證明及運(yùn)用。
教學(xué)難點(diǎn):
線段的垂直平分線性質(zhì)定理及逆定理的關(guān)系。
教學(xué)關(guān)鍵:
1、垂直平分線上所有的點(diǎn)和線段兩端點(diǎn)的距離相等。
2、到線段兩端點(diǎn)的距離相等的所有點(diǎn)都在這條線段的垂直平分線上。
教具:投影儀及投影膠片。
教學(xué)過程:
一、提問
1、角平分線的性質(zhì)定理及逆定理是什么?
2、怎樣做一條線段的垂直平分線?
二、新課
1、請(qǐng)同學(xué)們?cè)谡n堂練習(xí)本上做線段AB的垂直平分線EF(請(qǐng)一名同學(xué)在黑板上做)。
2、在EF上任取一點(diǎn)P,連結(jié)PA、PB量出PA=?,PB=?引導(dǎo)學(xué)生觀察這兩個(gè)值有什么關(guān)系?
通過學(xué)生的觀察、分析得出結(jié)果PA=PB,再取一點(diǎn)P'試一試仍然有P'A=P'B,引導(dǎo)學(xué)生猜想EF上的所有點(diǎn)和點(diǎn)A、點(diǎn)B的距離都相等,再請(qǐng)同學(xué)把這一結(jié)論敘述成命題(用幻燈展示)。
定理:線段的垂直平分線上的點(diǎn)和這條線段的兩個(gè)端點(diǎn)的'距離相等。
這個(gè)命題,是我們通過作圖、觀察、猜想得到的,還得在理論上加以證明是真命題才能做為定理。
例題:
已知:如圖,直線EF⊥AB,垂足為C,且AC=CB,點(diǎn)P在EF上
求證:PA=PB
如何證明PA=PB學(xué)生分析得出只要證RTΔPCA≌RTΔPCB
答:證明:∵PC⊥AB(已知)
∴∠PCA=∠PCB(垂直的定義)
在ΔPCA和ΔPCB中
∴ΔPCA≌ΔPCB(SAS)
即:PA=PB(全等三角形的對(duì)應(yīng)邊相等)。
反過來,如果PA=PB,P1A=P1B,點(diǎn)P,P1在什么線上?
過P,P1做直線EF交AB于C,可證明ΔPAP1≌PBP1(SSS)
∴EF是等腰三角型ΔPAB的頂角平分線
∴EF是AB的垂直平分線(等腰三角形三線合一性質(zhì))
∴P,P1在AB的垂直平分線上,于是得出上述定理的逆定理(啟發(fā)學(xué)生敘述)(用幻燈展示)。
逆定理:和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。
根據(jù)上述定理和逆定理可以知道:直線MN可以看作和兩點(diǎn)A、B的距離相等的所有點(diǎn)的集合。
線段的垂直平分線可以看作是和線段兩個(gè)端點(diǎn)距離相等的所有點(diǎn)的集合。
三、舉例(用幻燈展示)
例:已知,如圖ΔABC中,邊AB,BC的垂直平分線相交于點(diǎn)P,求證:PA=PB=PC。
證明:∵點(diǎn)P在線段AB的垂直平分線上
∴PA=PB
同理PB=PC
∴PA=PB=PC
由例題PA=PC知點(diǎn)P在AC的垂直平分線上,所以三角形三邊的垂直平分線交于一點(diǎn)P,這點(diǎn)到三個(gè)頂點(diǎn)的距離相等。
四、小結(jié)
正確的運(yùn)用這兩個(gè)定理的關(guān)鍵是區(qū)別它們的條件與結(jié)論,加強(qiáng)證明前的分析,找出證明的途徑。定理的作用是可證明兩條線段相等或點(diǎn)在線段的垂直平分線上。
《教案設(shè)計(jì)說明》
線段的垂直平分線的性質(zhì)定理及逆定理,都是幾何中的重要定理,也是一條重要軌跡。在幾何證明、計(jì)算、作圖中都有重要應(yīng)用。我講授這節(jié)課是線段垂直平分線的第一節(jié)課,主要完成定理的引出、證明和初步的運(yùn)用。
在設(shè)計(jì)教案時(shí),我結(jié)合教材內(nèi)容,對(duì)如何導(dǎo)入新課,引出定理以及證明進(jìn)行了探索。在導(dǎo)入新課這一環(huán)節(jié)上我先讓學(xué)生做一條線段AB的垂直平分線EF,在EF上取一點(diǎn)P,讓學(xué)生量出PA、PB的長(zhǎng)度,引導(dǎo)學(xué)生觀察、討論每個(gè)人量得的這兩個(gè)長(zhǎng)度之間有什么關(guān)系:得到什么結(jié)論?學(xué)生回答:PA=PB。然后再讓學(xué)生取一點(diǎn)試一試,這兩個(gè)長(zhǎng)度也相等,由此引導(dǎo)學(xué)生猜想到線段垂直平分線的性質(zhì)定理。在這一過程中讓學(xué)生主動(dòng)積極的參與到教學(xué)中來,使學(xué)生通過作圖、觀察、量一量再得出結(jié)論。從而把知識(shí)的形成過程轉(zhuǎn)化為學(xué)生親自參與、發(fā)現(xiàn)、探索的過程。在教學(xué)時(shí),引導(dǎo)學(xué)生分析性質(zhì)定理的題設(shè)與結(jié)論,畫圖寫出已知、求證,通過分析由學(xué)生得出證明性質(zhì)定理的方法,這個(gè)過程既是探索過程也是調(diào)動(dòng)學(xué)生動(dòng)腦思考的過程,只有學(xué)生動(dòng)腦思考了,才能真正理解線段垂直平分線的性質(zhì)定理,以及證明方法。在此基礎(chǔ)上再提出如果有兩點(diǎn)到線段的兩端點(diǎn)的距離相等,這樣的點(diǎn)應(yīng)在什么樣的直線上?由條件得出這樣的點(diǎn)在線段的垂直平分線上,從而引出性質(zhì)定理的逆定理,由上述兩個(gè)定理使學(xué)生再進(jìn)一步知道線段的垂直平分線可以看作是到線段兩端點(diǎn)距離的所有點(diǎn)的集合。這樣可以幫助學(xué)生認(rèn)識(shí)理論來源于實(shí)踐又服務(wù)于實(shí)踐的道理,也能提高他們學(xué)習(xí)的積極性,加深對(duì)所學(xué)知識(shí)的理解。在講解例題時(shí)引導(dǎo)學(xué)生用所學(xué)的線段垂直平分線的性質(zhì)定理以及逆定理來證,避免用三角形全等來證。最后總結(jié)點(diǎn)P是三角形三邊垂直平分線的交點(diǎn),這個(gè)點(diǎn)到三個(gè)頂點(diǎn)的距離相等。為了使學(xué)生當(dāng)堂掌握兩個(gè)定理的靈活運(yùn)用,讓學(xué)生做87頁的兩個(gè)練習(xí),以達(dá)到鞏固知識(shí)的目的。
高二數(shù)學(xué)教案2
學(xué)習(xí)目標(biāo):
1、了解本章的學(xué)習(xí)的內(nèi)容以及學(xué)習(xí)思想方法
2、能敘述隨機(jī)變量的定義
3、能說出隨機(jī)變量與函數(shù)的關(guān)系,
4、能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示
重點(diǎn):能夠把一個(gè)隨機(jī)試驗(yàn)結(jié)果用隨機(jī)變量表示
難點(diǎn):隨機(jī)事件概念的透徹理解及對(duì)隨機(jī)變量引入目的的認(rèn)識(shí):
環(huán)節(jié)一:隨機(jī)變量的定義
1.通過生活中的一些隨機(jī)現(xiàn)象,能夠概括出隨機(jī)變量的定義
2能敘述隨機(jī)變量的定義
3能說出隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系
一、閱讀課本33頁問題提出和分析理解,回答下列問題?
1、了解一個(gè)隨機(jī)現(xiàn)象的規(guī)律具體指的是什么?
2、分析理解中的兩個(gè)隨機(jī)現(xiàn)象的`隨機(jī)試驗(yàn)結(jié)果有什么不同?建立了什么樣的對(duì)應(yīng)關(guān)系?
總結(jié):
3、隨機(jī)變量
(1)定義:
這種對(duì)應(yīng)稱為一個(gè)隨機(jī)變量。即隨機(jī)變量是從隨機(jī)試驗(yàn)每一個(gè)可能的結(jié)果所組成的
到的映射。
(2)表示:隨機(jī)變量常用大寫字母.等表示.
(3)隨機(jī)變量與函數(shù)的區(qū)別與聯(lián)系
函數(shù)隨機(jī)變量
自變量
因變量
因變量的范圍
相同點(diǎn)都是映射都是映射
環(huán)節(jié)二隨機(jī)變量的應(yīng)用
1、能正確寫出隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果2、能用隨機(jī)變量的描述隨機(jī)事件
例1:已知在10件產(chǎn)品中有2件不合格品,F(xiàn)從這10件產(chǎn)品中任取3件,其中含有的次品數(shù)為隨機(jī)變量的學(xué)案.這是一個(gè)隨機(jī)現(xiàn)象。(1)寫成該隨機(jī)現(xiàn)象所有可能出現(xiàn)的結(jié)果;(2)試用隨機(jī)變量來描述上述結(jié)果。
變式:已知在10件產(chǎn)品中有2件不合格品。從這10件產(chǎn)品中任取3件,這是一個(gè)隨機(jī)現(xiàn)象。若Y表示取出的3件產(chǎn)品中的合格品數(shù),試用隨機(jī)變量描述上述結(jié)果
例2連續(xù)投擲一枚均勻的硬幣兩次,用X表示這兩次正面朝上的次數(shù),則X是一個(gè)隨機(jī)變
量,分別說明下列集合所代表的隨機(jī)事件:
(1){X=0}(2){X=1}
(3){X<2}(4){x>0}
變式:連續(xù)投擲一枚均勻的硬幣三次,用X表示這三次正面朝上的次數(shù),則X是一個(gè)隨機(jī)變量,X的可能取值是?并說明這些值所表示的隨機(jī)試驗(yàn)的結(jié)果.
練習(xí):寫出下列隨機(jī)變量可能取的值,并說明隨機(jī)變量所取的值表示的隨機(jī)變量的結(jié)果。
(1)從學(xué);丶乙(jīng)過5個(gè)紅綠燈路口,可能遇到紅燈的次數(shù);
(2)一個(gè)袋中裝有5只同樣大小的球,編號(hào)為1,2,3,4,5,現(xiàn)從中隨機(jī)取出3只球,被取出的球的號(hào)碼數(shù);
小結(jié)(對(duì)標(biāo))
高二數(shù)學(xué)教案3
一、教學(xué)目標(biāo):
1、知識(shí)與技能目標(biāo)
①理解循環(huán)結(jié)構(gòu),能識(shí)別和理解簡(jiǎn)單的框圖的功能。
、谀苓\(yùn)用循環(huán)結(jié)構(gòu)設(shè)計(jì)程序框圖解決簡(jiǎn)單的問題。
2、過程與方法目標(biāo)
通過模仿、操作、探索,學(xué)習(xí)設(shè)計(jì)程序框圖表達(dá),解決問題的過程,發(fā)展有條理的思考與表達(dá)的能力,提高邏輯思維能力。
3、情感、態(tài)度與價(jià)值觀目標(biāo)
通過本節(jié)的自主性學(xué)習(xí),讓學(xué)生感受和體會(huì)算法思想在解決具體問題中的意義,增強(qiáng)學(xué)生的創(chuàng)新能力和應(yīng)用數(shù)學(xué)的意識(shí)。三、教法分析
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):理解循環(huán)結(jié)構(gòu),能識(shí)別和畫出簡(jiǎn)單的循環(huán)結(jié)構(gòu)框圖,
難點(diǎn):循環(huán)結(jié)構(gòu)中循環(huán)條件和循環(huán)體的確定。
三、教法、學(xué)法
本節(jié)課我遵循引導(dǎo)發(fā)現(xiàn),循序漸進(jìn)的思路,采用問題探究式教學(xué)。運(yùn)用多媒體,投影儀輔助。倡導(dǎo)“自主、合作、探究”的學(xué)習(xí)方式。
四、 教學(xué)過程:
(一)創(chuàng)設(shè)情境,溫故求新
引例:寫出求 的值的一個(gè)算法,并用框圖表示你的算法。
此例由學(xué)生動(dòng)手完成,投影展示學(xué)生的做法,師生共同點(diǎn)評(píng)。鼓勵(lì)學(xué)生一題多解——求創(chuàng)。
設(shè)計(jì)引例的目的是復(fù)習(xí)順序結(jié)構(gòu),提出遞推求和的方法,導(dǎo)入新課。此環(huán)節(jié)旨在提升學(xué)生的求知欲、探索欲,使學(xué)生保持良好、積極的情感體驗(yàn)。
(二)講授新課
1、循序漸進(jìn),理解知識(shí)
【1】選擇“累加器”作為載體,借助“累加器”使學(xué)生經(jīng)歷把“遞推求和”轉(zhuǎn)化為“循環(huán)求和”的'過程,同時(shí)經(jīng)歷初始化變量,確定循環(huán)體,設(shè)置循環(huán)終止條件3個(gè)構(gòu)造循環(huán)結(jié)構(gòu)的關(guān)鍵步驟。
(1)將“遞推求和”轉(zhuǎn)化為“循環(huán)求和”的緣由及轉(zhuǎn)化的方法和途徑
引例“求 的值”這個(gè)問題的自然求和過程可以表示為:
用遞推公式表示為:
直接利用這個(gè)遞推公式構(gòu)造算法在步驟 中使用了 共100個(gè)變量,計(jì)算機(jī)執(zhí)行這樣的算法時(shí)需要占用較大的內(nèi)存。為了節(jié)省變量,充分體現(xiàn)計(jì)算機(jī)能以極快的速度進(jìn)行重復(fù)計(jì)算的優(yōu)勢(shì),需要從上述遞推求和的步驟 中提取出共同的結(jié)構(gòu),即第n步的結(jié)果=第(n-1)步的結(jié)果+n。若引進(jìn)一個(gè)變量 來表示每一步的計(jì)算結(jié)果,則第n步可以表示為賦值過程 。
(2)“ ”的含義
利用多媒體動(dòng)畫展示計(jì)算機(jī)中累加器的工作原理,借助形象直觀對(duì)知識(shí)點(diǎn)進(jìn)行強(qiáng)調(diào)說明① 的作用是將賦值號(hào)右邊表達(dá)式 的值賦給賦值號(hào)左邊的變量 。
、谫x值號(hào)“=”右邊的變量“ ”表示前一步累加所得的和,賦值號(hào)“=”左邊的“ ”表示該步累加所得的和,含義不同。
③賦值號(hào)“=”與數(shù)學(xué)中的等號(hào)意義不同。 在數(shù)學(xué)中是不成立的。
借助“累加器”既突破了難點(diǎn),同時(shí)也使學(xué)生理解了 中 的變化和 的含義。
(3)初始化變量,設(shè)置循環(huán)終止條件
由 的初始值為0, 的值由1增加到100,可以初始化循環(huán)變量和設(shè)置循環(huán)終止條件。
【2】循環(huán)結(jié)構(gòu)的概念
根據(jù)指定條件決定是否重復(fù)執(zhí)行一條或多條指令的控制結(jié)構(gòu)稱為循環(huán)結(jié)構(gòu)。
教師學(xué)生一起共同完成引例的框圖表示,并由此引出本節(jié)課的重點(diǎn)知識(shí)循環(huán)結(jié)構(gòu)的概念。這樣講解既突出了重點(diǎn)又突破了難點(diǎn),同時(shí)使學(xué)生體會(huì)了問題的抽象過程和算法的構(gòu)建過程。還體現(xiàn)了我們研究問題常用的“由特殊到一般”的思維方式。
2、類比探究,掌握知識(shí)
例1:改造引例的程序框圖表示①求 的值
、谇 的值
、矍 的值
、芮 的值
此例可由學(xué)生獨(dú)立思考、回答,師生共同點(diǎn)評(píng)完成。
通過對(duì)引例框圖的反復(fù)改造逐步幫助學(xué)生深入理解循環(huán)結(jié)構(gòu),體會(huì)用循環(huán)結(jié)構(gòu)表達(dá)算法,關(guān)鍵要做好三點(diǎn):①確定循環(huán)變量和初始值②確定循環(huán)體③確定循環(huán)終止條件。
高二數(shù)學(xué)教案4
課題:命題
課時(shí):001
課型:新授課
教學(xué)目標(biāo)
。薄⒅R(shí)與技能:理解命題的概念和命題的構(gòu)成,能判斷給定陳述句是否為命題,能判斷命題的真假;能把命題改寫成“若p,則q”的形式;
。、過程與方法:多讓學(xué)生舉命題的例子,培養(yǎng)他們的辨析能力;以及培養(yǎng)他們的分析問題和解決問題的能力;
。、情感、態(tài)度與價(jià)值觀:通過學(xué)生的參與,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):命題的概念、命題的構(gòu)成
難點(diǎn):分清命題的條件、結(jié)論和判斷命題的真假
教學(xué)過程
一、復(fù)習(xí)回顧
引入:初中已學(xué)過命題的知識(shí),請(qǐng)同學(xué)們回顧:什么叫做命題?
二、新課教學(xué)
下列語句的表述形式有什么特點(diǎn)?你能判斷他們的真假嗎?
。1)若直線a∥b,則直線a與直線b沒有公共點(diǎn).
(2)2+4=7.
。3)垂直于同一條直線的兩個(gè)平面平行.
(4)若x2=1,則x=1.
(5)兩個(gè)全等三角形的面積相等.
。6)3能被2整除.
討論、判斷:學(xué)生通過討論,總結(jié):所有句子的表述都是陳述句的形式,每句話都判斷什么事情。其中(1)(3)(5)的判斷為真,(2)(4)(6)的判斷為假。
教師的引導(dǎo)分析:所謂判斷,就是肯定一個(gè)事物是什么或不是什么,不能含混不清。
抽象、歸納:
1、命題定義:一般地,我們把用語言、符號(hào)或式子表達(dá)的,可以判斷真假的陳述句叫做命題.
命題的定義的要點(diǎn):能判斷真假的陳述句.
在數(shù)學(xué)課中,只研究數(shù)學(xué)命題,請(qǐng)學(xué)生舉幾個(gè)數(shù)學(xué)命題的例子.教師再與學(xué)生共同從命題的定義,判斷學(xué)生所舉例子是否是命題,從“判斷”的角度來加深對(duì)命題這一概念的理解.
例1:判斷下列語句是否為命題?
。1)空集是任何集合的子集.
。2)若整數(shù)a是素?cái)?shù),則是a奇數(shù).
(3)指數(shù)函數(shù)是增函數(shù)嗎?
。4)若平面上兩條直線不相交,則這兩條直線平行.
(5)=-2.
。6)x>15.
讓學(xué)生思考、辨析、討論解決,且通過練習(xí),引導(dǎo)學(xué)生總結(jié):判斷一個(gè)語句是不是命題,關(guān)鍵看兩點(diǎn):第一是“陳述句”,第二是“可以判斷真假”,這兩個(gè)條件缺一不可.疑問句、祈使句、感嘆句均不是命題.
解略。
引申:以前,同學(xué)們學(xué)習(xí)了很多定理、推論,這些定理、推論是否是命題?同學(xué)們可否舉出一些定理、推論的例子來看看?
通過對(duì)此問的思考,學(xué)生將清晰地認(rèn)識(shí)到定理、推論都是命題.
過渡:同學(xué)們都知道,一個(gè)定理或推論都是由條件和結(jié)論兩部分構(gòu)成(結(jié)合學(xué)生所舉定理和推論的例子,讓學(xué)生分辨定理和推論條件和結(jié)論,明確所有的定理、推論都是由條件和結(jié)論兩部分構(gòu)成)。緊接著提出問題:命題是否也是由條件和結(jié)論兩部分構(gòu)成呢?
2、命題的構(gòu)成――條件和結(jié)論
定義:從構(gòu)成來看,所有的命題都具由條件和結(jié)論兩部分構(gòu)成.在數(shù)學(xué)中,命題常寫成“若p,則q”或者“如果p,那么q”這種形式,通常,我們把這種形式的命題中的p叫做命題的條件,q叫做命題結(jié)論.
例2:指出下列命題中的條件p和結(jié)論q,并判斷各命題的真假.
(1)若整數(shù)a能被2整除,則a是偶數(shù).
(2)若四邊行是菱形,則它的對(duì)角線互相垂直平分.
。ǎ常┤鬭>0,b>0,則a+b>0.
(4)若a>0,b>0,則a+b<0.
。ǎ担┐怪庇谕粭l直線的兩個(gè)平面平行.
此題中的(1)(2)(3)(4),較容易,估計(jì)學(xué)生較容易找出命題中的條件p和結(jié)論q,并能判斷命題的真假。其中設(shè)置命題(3)與(4)的目的在于:通過這兩個(gè)例子的比較,學(xué)更深刻地理解命題的定義——能判斷真假的陳述句,不管判斷的結(jié)果是對(duì)的還是錯(cuò)的。
此例中的命題(5),不是“若P,則q”的形式,估計(jì)學(xué)生會(huì)有困難,此時(shí),教師引導(dǎo)學(xué)生一起分析:已知的事項(xiàng)為“條件”,由已知推出的事項(xiàng)為“結(jié)論”.
解略。
過渡:從例2中,我們可以看到命題的兩種情況,即有些命題的結(jié)論是正確的,而有些命題的結(jié)論是錯(cuò)誤的,那么我們就有了對(duì)命題的一種分類:真命題和假命題.
3、命題的分類
真命題:如果由命題的條件P通過推理一定可以得出命題的結(jié)論q,那么這樣的`命題叫做真命題.
假命題:如果由命題的條件P通過推理不一定可以得出命題的結(jié)論q,那么這樣的命題叫做假命題.
強(qiáng)調(diào):
。ǎ保┳⒁饷}與假命題的區(qū)別.如:“作直線AB”.這本身不是命題.也更不是假命題.
(2)命題是一個(gè)判斷,判斷的結(jié)果就有對(duì)錯(cuò)之分.因此就要引入真命題、假命題的的概念,強(qiáng)調(diào)真假命題的大前提,首先是命題。
判斷一個(gè)數(shù)學(xué)命題的真假方法:
。ǎ保⿺(shù)學(xué)中判定一個(gè)命題是真命題,要經(jīng)過證明.
(2)要判斷一個(gè)命題是假命題,只需舉一個(gè)反例即可.
例3:把下列命題寫成“若P,則q”的形式,并判斷是真命題還是假命題:
。1)面積相等的兩個(gè)三角形全等。
。2)負(fù)數(shù)的立方是負(fù)數(shù)。
。3)對(duì)頂角相等。
分析:要把一個(gè)命題寫成“若P,則q”的形式,關(guān)鍵是要分清命題的條件和結(jié)論,然后寫成“若條件,則結(jié)論”即“若P,則q”的形式.解略。
三、鞏固練習(xí):
P4第2,3。
四、作業(yè):
P8:習(xí)題1.1A組~第1題
五、教學(xué)反思
師生共同回憶本節(jié)的學(xué)習(xí)內(nèi)容.
1、什么叫命題?真命題?假命題?
2、命題是由哪兩部分構(gòu)成的?
3、怎樣將命題寫成“若P,則q”的形式.
4、如何判斷真假命題.
高二數(shù)學(xué)教案5
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù):
(1) 一般地,如果 ,那么實(shí)數(shù) 叫做________________,記為________,其中 叫做對(duì)數(shù)的_______, 叫做________.
(2)以10為底的對(duì)數(shù)記為________,以 為底的對(duì)數(shù)記為_______.
(3) , .
2.對(duì)數(shù)的運(yùn)算性質(zhì):
(1)如果 ,那么 ,
.
(2)對(duì)數(shù)的換底公式: .
3.對(duì)數(shù)函數(shù):
一般地,我們把函數(shù)____________叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是______.
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì):
a1 0
圖象性
質(zhì) 定義域:___________
值域:_____________
過點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)_________
x(1,+)時(shí)________ x(0,1)時(shí)_________
x(1,+)時(shí)________
在___________上是增函數(shù) 在__________上是減函數(shù)
【自我檢測(cè)】
1. 的定義域?yàn)開________.
2.化簡(jiǎn): .
3.不等式 的'解集為________________.
4.利用對(duì)數(shù)的換底公式計(jì)算: .
5.函數(shù) 的奇偶性是____________.
6.對(duì)于任意的 ,若函數(shù) ,則 與 的大小關(guān)系是___________________________.
二、課堂活動(dòng):
【例1】填空題:
(1) .
(2)比較 與 的大小為___________.
(3)如果函數(shù) ,那么 的最大值是_____________.
(4)函數(shù) 的奇偶性是___________.
【例2】求函數(shù) 的定義域和值域.
【例3】已知函數(shù) 滿足 .
(1)求 的解析式;
(2)判斷 的奇偶性;
(3)解不等式 .
課堂小結(jié)
三、課后作業(yè)
1. .略
2.函數(shù) 的定義域?yàn)開______________.
3.函數(shù) 的值域是_____________.
4.若 ,則 的取值范圍是_____________.
5.設(shè) 則 的大小關(guān)系是_____________.
6.設(shè)函數(shù) ,若 ,則 的取值范圍為_________________.
7.當(dāng) 時(shí),不等式 恒成立,則 的取值范圍為______________.
8.函數(shù) 在區(qū)間 上的值域?yàn)?,則 的最小值為____________.
9.已知 .
(1)求 的定義域;
(2)判斷 的奇偶性并予以證明;
(3)求使 的 的取值范圍.
10.對(duì)于函數(shù) ,回答下列問題:
(1)若 的定義域?yàn)?,求實(shí)數(shù) 的取值范圍;
(2)若 的值域?yàn)?,求實(shí)數(shù) 的取值范圍;
(3)若函數(shù) 在 內(nèi)有意義,求實(shí)數(shù) 的取值范圍.
四、糾錯(cuò)分析
錯(cuò)題卡 題 號(hào) 錯(cuò) 題 原 因 分 析
高二數(shù)學(xué)教案:對(duì)數(shù)與對(duì)數(shù)函數(shù)
一、課前準(zhǔn)備:
【自主梳理】
1.對(duì)數(shù)
(1)以 為底的 的對(duì)數(shù), ,底數(shù),真數(shù).
(2) , .
(3)0,1.
2.對(duì)數(shù)的運(yùn)算性質(zhì)
(1) , , .
(2) .
3.對(duì)數(shù)函數(shù)
, .
4.對(duì)數(shù)函數(shù)的圖像與性質(zhì)
a1 0
圖象性質(zhì) 定義域:(0,+)
值域:R
過點(diǎn)(1,0),即當(dāng)x=1時(shí),y=0
x(0,1)時(shí)y0
x(1,+)時(shí)y0 x(0,1)時(shí)y0
x(1,+)時(shí)y0
在(0,+)上是增函數(shù) 在(0,+)上是減函數(shù)
【自我檢測(cè)】
1. 2. 3.
4. 5.奇函數(shù) 6. .
二、課堂活動(dòng):
【例1】填空題:
(1)3.
(2) .
(3)0.
(4)奇函數(shù).
【例2】解:由 得 .所以函數(shù) 的定義域是(0,1).
因?yàn)?,所以,當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?;當(dāng) 時(shí), ,函數(shù) 的值域?yàn)?.
【例3】解:(1) ,所以 .
(2)定義域(-3,3)關(guān)于原點(diǎn)對(duì)稱,所以
,所以 為奇函數(shù).
(3) ,所以當(dāng) 時(shí), 解得
當(dāng) 時(shí), 解得 .
高二數(shù)學(xué)教案6
●三維目標(biāo):
(1)知識(shí)與技能:
掌握歸納推理的技巧,并能運(yùn)用解決實(shí)際問題。
(2)過程與方法:
通過“自主、合作與探究”實(shí)現(xiàn)“一切以學(xué)生為中心”的理念。
(3)情感、態(tài)度與價(jià)值觀:
感受數(shù)學(xué)的人文價(jià)值,提高學(xué)生的學(xué)習(xí)興趣,使其體會(huì)到數(shù)學(xué)學(xué)習(xí)的美感。
●教學(xué)重點(diǎn):
歸納推理及方法的總結(jié)。
●教學(xué)難點(diǎn):
歸納推理的.含義及其具體應(yīng)用。
●教具準(zhǔn)備:
與教材內(nèi)容相關(guān)的資料。
●課時(shí)安排:
1課時(shí)
●教學(xué)過程:
一.問題情境
(1)原理初探
、僖耄骸鞍⒒椎略鴮(duì)國(guó)王說,給我一個(gè)支點(diǎn),我將撬起整個(gè)地球!”
、谔釂枺捍蠹艺J(rèn)為可能嗎?他為何敢夸下如此??理由何在?
③探究:他是怎么發(fā)現(xiàn)“杠桿原理”的?
從而引入兩則小典故:
A:一個(gè)小孩,為何輕輕松松就能提起一大桶水?
B:修筑河堤時(shí),奴隸們是怎樣搬運(yùn)巨石的?
高二數(shù)學(xué)教案7
第06課時(shí)
2、2、3 直線的參數(shù)方程
學(xué)習(xí)目標(biāo)
1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2. 初步掌握運(yùn)用參數(shù)方程解決問題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)過程
一、學(xué)前準(zhǔn)備
復(fù)習(xí):
1、若由 共線,則存在實(shí)數(shù) ,使得 ,
2、設(shè) 為 方向上的 ,則 =︱ ︱ ;
3、經(jīng)過點(diǎn) ,傾斜角為 的直線的普通方程為 。
二、新課導(dǎo)學(xué)
探究新知(預(yù)習(xí)教材P35~P39,找出疑惑之處)
1、選擇怎樣的參數(shù),才能使直線上任一點(diǎn)M的坐標(biāo) 與點(diǎn) 的坐標(biāo) 和傾斜角 聯(lián)系起來呢?由于傾斜角可以與方向聯(lián)系, 與 可以用距離或線段 數(shù)量的大小聯(lián)系,這種方向有向線段數(shù)量大小啟發(fā)我們想到利用向量工具建立直線的參數(shù)方程。
如圖,在直線上任取一點(diǎn) ,則 = ,
而直線
的單位方向
向量
=( , )
因?yàn)?,所以存在實(shí)數(shù) ,使得 = ,即有 ,因此,經(jīng)過點(diǎn)
,傾斜角為 的直線的.參數(shù)方程為:
2.方程中參數(shù)的幾何意義是什么?
應(yīng)用示例
例1.已知直線 與拋物線 交于A、B兩點(diǎn),求線段AB的長(zhǎng)和點(diǎn) 到A ,B兩點(diǎn)的距離之積。(教材P36例1)
解:
例2.經(jīng)過點(diǎn) 作直線 ,交橢圓 于 兩點(diǎn),如果點(diǎn) 恰好為線段 的中點(diǎn),求直線 的方程.(教材P37例2)
解:
反饋練習(xí)
1.直線 上兩點(diǎn)A ,B對(duì)應(yīng)的參數(shù)值為 ,則 =( )
A、0 B、
C、4 D、2
2.設(shè)直線 經(jīng)過點(diǎn) ,傾斜角為 ,
(1)求直線 的參數(shù)方程;
(2)求直線 和直線 的交點(diǎn)到點(diǎn) 的距離;
(3)求直線 和圓 的兩個(gè)交點(diǎn)到點(diǎn) 的距離的和與積。
三、總結(jié)提升
本節(jié)小結(jié)
1.本節(jié)學(xué)習(xí)了哪些內(nèi)容?
答:1.了解直線參數(shù)方程的條件及參數(shù)的意義;
2. 初步掌握運(yùn)用參數(shù)方程解決問題,體會(huì)用參數(shù)方程解題的簡(jiǎn)便性。
學(xué)習(xí)評(píng)價(jià)
一、自我評(píng)價(jià)
你完成本節(jié)導(dǎo)學(xué)案的情況為( )
A.很好 B.較好 C. 一般 D.較差
課后作業(yè)
1. 已知過點(diǎn) ,斜率為 的直線和拋物線 相交于 兩點(diǎn),設(shè)線段 的中點(diǎn)為 ,求點(diǎn) 的坐標(biāo)。
2.經(jīng)過點(diǎn) 作直線交雙曲線 于 兩點(diǎn),如果點(diǎn) 為線段 的中點(diǎn),求直線 的方程
3.過拋物線 的焦點(diǎn)作傾斜角為 的弦AB,求弦AB的長(zhǎng)及弦的中點(diǎn)M到焦點(diǎn)F的距離。
高二數(shù)學(xué)教案8
一、教材分析
【教材地位及作用】
基本不等式又稱為均值不等式,選自北京師范大學(xué)出版社普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)必修5第3章第3節(jié)內(nèi)容。教學(xué)對(duì)象為高二學(xué)生,本節(jié)課為第一課時(shí),重在研究基本不等式的證明及幾何意義。本節(jié)課是在系統(tǒng)的學(xué)習(xí)了不等關(guān)系和掌握了不等式性質(zhì)的基礎(chǔ)上展開的,作為重要的基本不等式之一,為后續(xù)進(jìn)一步了解不等式的性質(zhì)及運(yùn)用,研究最值問題奠定基礎(chǔ)。因此基本不等式在知識(shí)體系中起了承上啟下的作用,同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,它也是對(duì)學(xué)生進(jìn)行情感價(jià)值觀教育的好素材,所以基本不等式應(yīng)重點(diǎn)研究。
【教學(xué)目標(biāo)】
依據(jù)《新課程標(biāo)準(zhǔn)》對(duì)《不等式》學(xué)段的目標(biāo)要求和學(xué)生的實(shí)際情況,特確定如下目標(biāo):
知識(shí)與技能目標(biāo):理解掌握基本不等式,理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學(xué)會(huì)構(gòu)造條件使用基本不等式;
過程與方法目標(biāo):通過探究基本不等式,使學(xué)生體會(huì)知識(shí)的形成過程,培養(yǎng)分析、解決問題的能力;
情感與態(tài)度目標(biāo):通過問題情境的設(shè)置,使學(xué)生認(rèn)識(shí)到數(shù)學(xué)是從實(shí)際中來,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光看世界,通過數(shù)學(xué)思維認(rèn)知世界,從而培養(yǎng)學(xué)生善于思考、勤于動(dòng)手的良好品質(zhì)。
【教學(xué)重難點(diǎn)】
重點(diǎn):理解掌握基本不等式,能借助幾何圖形說明基本不等式的意義。
難點(diǎn):利用基本不等式推導(dǎo)不等式.
關(guān)鍵是對(duì)基本不等式的理解掌握.
二、教法分析
本節(jié)課采用觀察——感知——抽象——?dú)w納——探究;啟發(fā)誘導(dǎo)、講練結(jié)合的教學(xué)方法,以學(xué)生為主體,以基本不等式為主線,從實(shí)際問題出發(fā),放手讓學(xué)生探究思索。利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動(dòng)得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率.
三、學(xué)法指導(dǎo)
新課改的精神在于以學(xué)生的發(fā)展為本,把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,倡導(dǎo)積極主動(dòng),勇于探索的學(xué)習(xí)方法,因此,本課主要采取以自主探索與合作交流的學(xué)習(xí)方式,通過讓學(xué)生想一想,做一做,用一用,建構(gòu)起自己的知識(shí),使學(xué)生成為學(xué)習(xí)的主人。
四、教學(xué)過程
教學(xué)過程設(shè)計(jì)以問題為中心,以探究解決問題的方法為主線展開。這種安排強(qiáng)調(diào)過程,符合學(xué)生的認(rèn)知規(guī)律,使數(shù)學(xué)教學(xué)過程成為學(xué)生對(duì)知識(shí)的再創(chuàng)造、再發(fā)現(xiàn)的過程,從而培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。
具體過程安排如下:
(一)基本不等式的教學(xué)設(shè)計(jì)創(chuàng)設(shè)情景,提出問題
設(shè)計(jì)意圖:數(shù)學(xué)教育必須基于學(xué)生的“數(shù)學(xué)現(xiàn)實(shí)”,現(xiàn)實(shí)情境問題是數(shù)學(xué)教學(xué)的平臺(tái),數(shù)學(xué)教師的任務(wù)之一就是幫助學(xué)生構(gòu)造數(shù)學(xué)現(xiàn)實(shí),并在此基礎(chǔ)上發(fā)展他們的數(shù)學(xué)現(xiàn)實(shí).基于此,設(shè)置如下情境:
上圖是在北京召開的第24屆國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國(guó)古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去像一個(gè)風(fēng)車,代表中國(guó)人民熱情好客。
[問題1]請(qǐng)觀察會(huì)標(biāo)圖形,圖中有哪些特殊的幾何圖形?它們?cè)诿娣e上有哪些相等關(guān)系和不等關(guān)系?(讓學(xué)生分組討論)
(二)探究問題,抽象歸納
基本不等式的教學(xué)設(shè)計(jì)1.探究圖形中的不等關(guān)系
形的角度----(利用多媒體展示會(huì)標(biāo)圖形的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)四個(gè)直角三角形的面積之和小于或等于正方形的面積.)
數(shù)的角度
[問題2]若設(shè)直角三角形的兩直角邊分別為a、b,應(yīng)怎樣表示這種不等關(guān)系?
學(xué)生討論結(jié)果:。
[問題3]大家看,這個(gè)圖形里還真有點(diǎn)奧妙。我們從圖中找到了一個(gè)不等式。這里a、b的取值有沒有什么限制條件?不等式中的等號(hào)什么時(shí)候成立呢?(師生共同探索)
咱們?cè)倏匆豢磮D形的變化,(教師演示)
(學(xué)生發(fā)現(xiàn))當(dāng)a=b四個(gè)直角三角形都變成了等腰直角三角形,他們的面積和恰好等于正方形的面積,即.探索結(jié)論:我們得到不等式,當(dāng)且僅當(dāng)時(shí)等號(hào)成立。
設(shè)計(jì)意圖:本背景意圖在于利用圖中相關(guān)面積間存在的數(shù)量關(guān)系,抽象出不等式基本不等式的教學(xué)設(shè)計(jì)。在此基礎(chǔ)上,引導(dǎo)學(xué)生認(rèn)識(shí)基本不等式。
2.抽象歸納:
一般地,對(duì)于任意實(shí)數(shù)a,b,有,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
[問題4]你能給出它的證明嗎?
學(xué)生在黑板上板書。
[問題5]特別地,當(dāng)時(shí),在不等式中,以、分別代替a、b,得到什么?
學(xué)生歸納得出。
設(shè)計(jì)意圖:類比是學(xué)習(xí)數(shù)學(xué)的一種重要方法,此環(huán)節(jié)不僅讓學(xué)生理解了基本不等式的來源,突破了重點(diǎn)和難點(diǎn),而且感受了其中的函數(shù)思想,為今后學(xué)習(xí)奠定基礎(chǔ).
【歸納總結(jié)】
如果a,b都是非負(fù)數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。
我們稱此不等式為基本不等式。其中稱為a,b的算術(shù)平均數(shù),稱為a,b的幾何平均數(shù)。
3.探究基本不等式證明方法:
[問題6]如何證明基本不等式?
設(shè)計(jì)意圖:在于引領(lǐng)學(xué)生從感性認(rèn)識(shí)基本不等式到理性證明,實(shí)現(xiàn)從感性認(rèn)識(shí)到理性認(rèn)識(shí)的升華,前面是從幾何圖形中的面積關(guān)系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導(dǎo)這個(gè)不等式。
方法一:作差比較或由基本不等式的教學(xué)設(shè)計(jì)展開證明。
方法二:分析法
要證
只要證2
要證,只要證2
要證,只要證
顯然,是成立的。當(dāng)且僅當(dāng)a=b時(shí),中的等號(hào)成立。
4.理解升華
1)文字語言敘述:
兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
2)符號(hào)語言敘述:
若,則有,當(dāng)且僅當(dāng)a=b時(shí),。
[問題7]怎樣理解“當(dāng)且僅當(dāng)”?(學(xué)生小組討論,交流看法,師生總結(jié))
“當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立”的含義是:
當(dāng)a=b時(shí),取等號(hào),即;
僅當(dāng)a=b時(shí),取等號(hào),即。
3)探究基本不等式的幾何意義:
基本不等式的教學(xué)設(shè)計(jì)借助初中階段學(xué)生熟知的幾何圖形,引導(dǎo)學(xué)生探究不等式的幾何解釋,通過數(shù)形結(jié)合,賦予不等式幾何直觀。進(jìn)一步領(lǐng)悟不等式中等號(hào)成立的條件。
如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),
CD⊥AB,AC=a,CB=b,
[問題8]你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?
(教師演示,學(xué)生直觀感覺)
易證RtACDRtDCB,那么CD2=CA·CB
即CD=.
這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即a=b時(shí),等號(hào)成立.
因此:基本不等式幾何意義可認(rèn)為是:在同一半圓中,半徑不小于半弦(直徑是最長(zhǎng)的弦);或者認(rèn)為是,直角三角形斜邊的一半不小于斜邊上的高.
4)聯(lián)想數(shù)列的知識(shí)理解基本不等式
從形的角度來看,基本不等式具有特定的幾何意義;從數(shù)的角度來看,基本不等式揭示了“和”與“積”這兩種結(jié)構(gòu)間的不等關(guān)系.
[問題9]回憶一下你所學(xué)的知識(shí)中,有哪些地方出現(xiàn)過“和”與“積”的結(jié)構(gòu)?
歸納得出:
均值不等式的代數(shù)解釋為:兩個(gè)正數(shù)的等差中項(xiàng)不小它們的等比中項(xiàng).
基本不等式的教學(xué)設(shè)計(jì)(四)體會(huì)新知,遷移應(yīng)用
例1:(1)設(shè)均為正數(shù),證明不等式:基本不等式的教學(xué)設(shè)計(jì)
(2)如圖:AB是圓的直徑,點(diǎn)C是AB上一點(diǎn),設(shè)AC=a,CB=b,
,過作交于,你能利用這個(gè)圖形得出這個(gè)不等式的一種幾何解釋嗎?
設(shè)計(jì)意圖:以上例題是根據(jù)基本不等式的使用條件中的難點(diǎn)和關(guān)鍵處設(shè)置的,目的是利用學(xué)生原有的平面幾何知識(shí),進(jìn)一步領(lǐng)悟到不等式成立的條件,及當(dāng)且僅當(dāng)時(shí),等號(hào)成立。這里完全放手讓學(xué)生自主探究,老師指導(dǎo),師生歸納總結(jié)。
(五)演練反饋,鞏固深化
公式應(yīng)用之一:
1.試判斷與與2的大小關(guān)系?
問題:如果將條件“x>0”去掉,上述結(jié)論是否仍然成立?
2.試判斷與7的大小關(guān)系?
公式應(yīng)用之二:
設(shè)計(jì)意圖:新穎有趣、簡(jiǎn)單易懂、貼近生活的問題,不僅極大地增強(qiáng)學(xué)生的興趣,拓寬學(xué)生的視野,更重要的是調(diào)動(dòng)學(xué)生探究鉆研的興趣,引導(dǎo)學(xué)生加強(qiáng)對(duì)生活的關(guān)注,讓學(xué)生體會(huì):數(shù)學(xué)就在我們身邊的生活中
(1)用一個(gè)兩臂長(zhǎng)短有差異的天平稱一樣物品,有人說只要左右各秤一次,將兩次所稱重量相加后除以2就可以了.你覺得這種做法比實(shí)際重量輕了還是重了?
(2)甲、乙兩商場(chǎng)對(duì)單價(jià)相同的同類產(chǎn)品進(jìn)行促銷.甲商場(chǎng)采取的促銷方式是在原價(jià)p折的`基礎(chǔ)上再打q折;乙商場(chǎng)的促銷方式則是兩次都打折.對(duì)顧客而言,哪種打折方式更合算?(0≠q)
(五)反思總結(jié),整合新知:
通過本節(jié)課的學(xué)習(xí)你有什么收獲?取得了哪些經(jīng)驗(yàn)教訓(xùn)?還有哪些問題需要請(qǐng)教?
設(shè)計(jì)意圖:通過反思、歸納,培養(yǎng)概括能力;幫助學(xué)生總結(jié)經(jīng)驗(yàn)教訓(xùn),鞏固知識(shí)技能,提高認(rèn)知水平.從各種角度對(duì)均值不等式進(jìn)行總結(jié),目的是為了讓學(xué)生掌握本節(jié)課的重點(diǎn),突破難點(diǎn)
老師根據(jù)情況完善如下:
知識(shí)要點(diǎn):
(1)重要不等式和基本不等式的條件及結(jié)構(gòu)特征
(2)基本不等式在幾何、代數(shù)及實(shí)際應(yīng)用三方面的意義
思想方法技巧:
(1)數(shù)形結(jié)合思想、“整體與局部”
(2)歸納與類比思想
(3)換元法、比較法、分析法
(七)布置作業(yè),更上一層
1.閱讀作業(yè):預(yù)習(xí)基本不等式的教學(xué)設(shè)計(jì)
2.書面作業(yè):已知a,b為正數(shù),證明不等式基本不等式的教學(xué)設(shè)計(jì)
3.思考題:類比基本不等式,當(dāng)a,b,c均為正數(shù),猜想會(huì)有怎樣的不等式?
設(shè)計(jì)意圖:作業(yè)分為三種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則,同時(shí)考慮學(xué)生的差異性。閱讀作業(yè)是后續(xù)課堂的鋪墊,而思考題不做統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
五、評(píng)價(jià)分析
1.在建立新知的過程中,教師力求引導(dǎo)、啟發(fā),讓學(xué)生逐步應(yīng)用所學(xué)的知識(shí)來分析問題、解決問題,以形成比較系統(tǒng)和完整的知識(shí)結(jié)構(gòu)。每個(gè)問題在設(shè)計(jì)時(shí),充分考慮了學(xué)生的具體情況,力爭(zhēng)提問準(zhǔn)確到位,便于學(xué)生思考和回答。使思考和提問持續(xù)在學(xué)生的最近發(fā)展區(qū)內(nèi),學(xué)生的思考有價(jià)值,對(duì)知識(shí)的理解和掌握在不斷的思考和討論中完善和加深。
2.本節(jié)的教學(xué)中要求學(xué)生對(duì)基本不等式在數(shù)與形兩個(gè)方面都有比較充分的認(rèn)識(shí),特別強(qiáng)調(diào)數(shù)與形的統(tǒng)一,教學(xué)過程從形得到數(shù),又從數(shù)回到形,意圖使學(xué)生在比較中對(duì)基本不等式得以深刻理解。“數(shù)形結(jié)合”作為一種重要的數(shù)學(xué)思想方法,不是教師提一提學(xué)生就能夠掌握并且會(huì)用的,只有學(xué)生通過實(shí)踐,意識(shí)到它的好處之后,學(xué)生才會(huì)在解決問題時(shí)去嘗試使用,只有通過不斷的使用才能促進(jìn)學(xué)生對(duì)這種思想方法的再理解,從而達(dá)到掌握它的目的。
高二數(shù)學(xué)教案9
教學(xué)目標(biāo)
(1)掌握?qǐng)A的標(biāo)準(zhǔn)方程,能根據(jù)圓心坐標(biāo)和半徑熟練地寫出圓的標(biāo)準(zhǔn)方程,也能根據(jù)圓的標(biāo)準(zhǔn)方程熟練地寫出圓的圓心坐標(biāo)和半徑.
(2)掌握?qǐng)A的一般方程,了解圓的一般方程的結(jié)構(gòu)特征,熟練掌握?qǐng)A的標(biāo)準(zhǔn)方程和一般方程之間的互化.
(3)了解參數(shù)方程的概念,理解圓的參數(shù)方程,能夠進(jìn)行圓的普通方程與參數(shù)方程之間的互化,能應(yīng)用圓的參數(shù)方程解決有關(guān)的簡(jiǎn)單問題.
(4)掌握直線和圓的位置關(guān)系,會(huì)求圓的切線.
(5)進(jìn)一步理解曲線方程的概念、熟悉求曲線方程的方法.
教學(xué)建議
教材分析
(1)知識(shí)結(jié)構(gòu)
(2)重點(diǎn)、難點(diǎn)分析
、俦竟(jié)內(nèi)容教學(xué)的重點(diǎn)是圓的標(biāo)準(zhǔn)方程、一般方程、參數(shù)方程的推導(dǎo),根據(jù)條件求圓的方程,用圓的方程解決相關(guān)問題.
、诒竟(jié)的難點(diǎn)是圓的一般方程的結(jié)構(gòu)特征,以及圓方程的求解和應(yīng)用.
教法建議
(1)圓是最簡(jiǎn)單的曲線.這節(jié)教材安排在學(xué)習(xí)了曲線方程概念和求曲線方程之后,學(xué)習(xí)三大圓錐曲線之前,旨在熟悉曲線和方程的理論,為后繼學(xué)習(xí)做好準(zhǔn)備.同時(shí),有關(guān)圓的問題,特別是直線與圓的位置關(guān)系問題,也是解析幾何中的基本問題,這些問題的解決為圓錐曲線問題的解決提供了基本的思想方法.因此教學(xué)中應(yīng)加強(qiáng)練習(xí),使學(xué)生確實(shí)掌握這一單元的知識(shí)和方法.
(2)在解決有關(guān)圓的問題的過程中多次用到配方法、待定系數(shù)法等思想方法,教學(xué)中應(yīng)多總結(jié).
(3)解決有關(guān)圓的問題,要經(jīng)常用到一元二次方程的理論、平面幾何知識(shí)和前邊學(xué)過的'解析幾何的基本知識(shí),教師在教學(xué)中要注意多復(fù)習(xí)、多運(yùn)用,培養(yǎng)學(xué)生運(yùn)算能力和簡(jiǎn)化運(yùn)算過程的意識(shí).
(4)有關(guān)圓的內(nèi)容非常豐富,有很多有價(jià)值的問題.建議適當(dāng)選擇一些內(nèi)容供學(xué)生研究.例如由過圓上一點(diǎn)的切線方程引申到切點(diǎn)弦方程就是一個(gè)很有價(jià)值的問題.類似的還有圓系方程等問題.
教學(xué)設(shè)計(jì)示例
圓的一般方程
教學(xué)目標(biāo):
(1)掌握?qǐng)A的一般方程及其特點(diǎn).
(2)能將圓的一般方程轉(zhuǎn)化為圓的標(biāo)準(zhǔn)方程,從而求出圓心和半徑.
(3)能用待定系數(shù)法,由已知條件求出圓的一般方程.
(4)通過本節(jié)課學(xué)習(xí),進(jìn)一步掌握配方法和待定系數(shù)法.
教學(xué)重點(diǎn):(1)用配方法,把圓的一般方程轉(zhuǎn)化成標(biāo)準(zhǔn)方程,求出圓心和半徑.
(2)用待定系數(shù)法求圓的方程.
教學(xué)難點(diǎn):圓的一般方程特點(diǎn)的研究.
教學(xué)用具:計(jì)算機(jī).
教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法.
教學(xué)過程:
【引入】
前邊已經(jīng)學(xué)過了圓的標(biāo)準(zhǔn)方程
把它展開得
任何圓的方程都可以通過展開化成形如
、
的方程
【問題1】
形如①的方程的曲線是否都是圓?
師生共同討論分析:
如果①表示圓,那么它一定是某個(gè)圓的標(biāo)準(zhǔn)方程展開整理得到的我們把它再寫成原來的形式不就可以看出來了嗎?運(yùn)用配方法,得
、
顯然②是不是圓方程與是什么樣的數(shù)密切相關(guān),具體如下:
(1)當(dāng)時(shí),②表示以為圓心、以為半徑的圓;
(2)當(dāng)時(shí),②表示一個(gè)點(diǎn);
(3)當(dāng)時(shí),②不表示任何曲線.
總結(jié):任意形如①的方程可能表示一個(gè)圓,也可能表示一個(gè)點(diǎn),還有可能什么也不表示.
圓的一般方程的定義:
當(dāng)時(shí),①表示以為圓心、以為半徑的圓,
此時(shí)①稱作圓的一般方程.
即稱形如的方程為圓的一般方程.
【問題2】圓的一般方程的特點(diǎn),與圓的標(biāo)準(zhǔn)方程的異同.
(1)和的系數(shù)相同,都不為0.
(2)沒有形如的二次項(xiàng).
圓的一般方程與一般的二元二次方程
③
相比較,上述(1)、(2)兩個(gè)條件僅是③表示圓的必要條件,而不是充分條件或充要條件.
圓的一般方程與圓的標(biāo)準(zhǔn)方程各有千秋:
(1)圓的標(biāo)準(zhǔn)方程帶有明顯的幾何的影子,圓心和半徑一目了然.
(2)圓的一般方程表現(xiàn)出明顯的代數(shù)的形式與結(jié)構(gòu),更適合方程理論的運(yùn)用.
【實(shí)例分析】
例1:下列方程各表示什么圖形.
(1) ;
(2) ;
一、教學(xué)內(nèi)容分析
向量作為工具在數(shù)學(xué)、物理以及實(shí)際生活中都有著廣泛的應(yīng)用.
本小節(jié)的重點(diǎn)是結(jié)合向量知識(shí)證明數(shù)學(xué)中直線的平行、垂直問題,以及不等式、三角公式的證明、物理學(xué)中的應(yīng)用.
二、教學(xué)目標(biāo)設(shè)計(jì)
1、通過利用向量知識(shí)解決不等式、三角及物理問題,感悟向量作為一種工具有著廣泛的應(yīng)用,體會(huì)從不同角度去看待一些數(shù)學(xué)問題,使一些數(shù)學(xué)知識(shí)有機(jī)聯(lián)系,拓寬解決問題的思路.
2、了解構(gòu)造法在解題中的運(yùn)用.
三、教學(xué)重點(diǎn)及難點(diǎn)
重點(diǎn):平面向量知識(shí)在各個(gè)領(lǐng)域中應(yīng)用.
難點(diǎn):向量的構(gòu)造.
四、教學(xué)流程設(shè)計(jì)
五、教學(xué)過程設(shè)計(jì)
一、復(fù)習(xí)與回顧
1、提問:下列哪些量是向量?
(1)力(2)功(3)位移(4)力矩
2、上述四個(gè)量中,(1)(3)(4)是向量,而(2)不是,那它是什么?
[說明]復(fù)習(xí)數(shù)量積的有關(guān)知識(shí).
二、學(xué)習(xí)新課
例1(書中例5)
向量作為一種工具,不僅在物理學(xué)科中有廣泛的應(yīng)用,同時(shí)它在數(shù)學(xué)學(xué)科中也有許多妙用!請(qǐng)看
例2(書中例3)
證法(一)原不等式等價(jià)于,由基本不等式知(1)式成立,故原不等式成立.
證法(二)向量法
[說明]本例關(guān)鍵引導(dǎo)學(xué)生觀察不等式結(jié)構(gòu)特點(diǎn),構(gòu)造向量,并發(fā)現(xiàn)(等號(hào)成立的充要條件是)
例3(書中例4)
[說明]本例的關(guān)鍵在于構(gòu)造單位圓,利用向量數(shù)量積的兩個(gè)公式得到證明.
二、鞏固練習(xí)
1、如圖,某人在靜水中游泳,速度為km/h.
(1)如果他徑直游向河對(duì)岸,水的流速為4 km/h,他實(shí)際沿什么方向前進(jìn)?速度大小為多少?
答案:沿北偏東方向前進(jìn),實(shí)際速度大小是8 km/h.
(2)他必須朝哪個(gè)方向游才能沿與水流垂直的方向前進(jìn)?實(shí)際前進(jìn)的速度大小為多少?
答案:朝北偏西方向前進(jìn),實(shí)際速度大小為km/h.
三、課堂小結(jié)
1、向量在物理、數(shù)學(xué)中有著廣泛的應(yīng)用.
2、要學(xué)會(huì)從不同的角度去看一個(gè)數(shù)學(xué)問題,是數(shù)學(xué)知識(shí)有機(jī)聯(lián)系.
四、作業(yè)布置
1、書面作業(yè):課本P73,練習(xí)8.4 4
高二數(shù)學(xué)教案10
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
1、知識(shí)與技能:
。1)推廣角的概念、引入大于角和負(fù)角;
(2)理解并掌握正角、負(fù)角、零角的定義;
。3)理解任意角以及象限角的概念;
。4)掌握所有與角終邊相同的角(包括角)的表示方法;
。5)樹立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;
。6)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣;
。7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí)。
2、過程與方法:
通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個(gè)終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。
3、情態(tài)與價(jià)值:
通過本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)角的概念有了一個(gè)新的認(rèn)識(shí),即有正角、負(fù)角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物。
教學(xué)重難點(diǎn)
重點(diǎn):理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法。
難點(diǎn):終邊相同的角的表示。
教學(xué)工具
投影儀等。
教學(xué)過程
【創(chuàng)設(shè)情境】
思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1。25小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?
我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時(shí)轉(zhuǎn)不到一周,有時(shí)轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。
【探究新知】
1、初中時(shí),我們已學(xué)習(xí)了角的概念,它是如何定義的`呢?
[展示投影]角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個(gè)位置旋轉(zhuǎn)到另一個(gè)位置所成的圖形。如圖1.1—1,一條射線由原來的位置,繞著它的端點(diǎn)o按逆時(shí)針方向旋轉(zhuǎn)到終止位置OB,就形成角a。旋轉(zhuǎn)開始時(shí)的射線叫做角的始邊,OB叫終邊,射線的端點(diǎn)o叫做叫a的頂點(diǎn)。
2、如上述情境中所說的校準(zhǔn)時(shí)鐘問題以及在體操比賽中我們經(jīng)常聽到這樣的術(shù)語:“轉(zhuǎn)體”(即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,都是遇到大于的角以及按不同方向旋轉(zhuǎn)而成的角。同學(xué)們思考一下:能否再舉出幾個(gè)現(xiàn)實(shí)生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說明了什么問題?又該如何區(qū)分和表示這些角呢?
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時(shí)成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時(shí)針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時(shí)針方向旋轉(zhuǎn)所形成的角叫負(fù)角(negativeangle)。如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角(zeroangle)。
3、學(xué)習(xí)小結(jié):
。1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會(huì)寫終邊落在x軸、y軸、直線上的角的集合。
課后習(xí)題
作業(yè):
1、習(xí)題1.1A組第1,2,3題。
2。多舉出一些日常生活中的“大于的角和負(fù)角”的例子,熟練掌握他們的表示,
進(jìn)一步理解具有相同終邊的角的特點(diǎn)。
高二數(shù)學(xué)教案11
[新知初探]
1.向量的數(shù)乘運(yùn)算
(1)定義:規(guī)定實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作:λa,它的長(zhǎng)度和方向規(guī)定如下:
、質(zhì)λa|=|λ||a|;
②當(dāng)λ>0時(shí),λa的方向與a的方向相同;
當(dāng)λ<0時(shí),λa的方向與a的方向相反.
(2)運(yùn)算律:設(shè)λ,μ為任意實(shí)數(shù),則有:
、佴(μa)=(λμ)a;
②(λ+μ)a=λa+μa;
、郐(a+b)=λa+λb;
特別地,有(-λ)a=-(λa)=λ(-a);
λ(a-b)=λa-λb.
[點(diǎn)睛](1)實(shí)數(shù)與向量可以進(jìn)行數(shù)乘運(yùn)算,但不能進(jìn)行加減運(yùn)算,如λ+a,λ-a均無法運(yùn)算.
(2)λa的結(jié)果為向量,所以當(dāng)λ=0時(shí),得到的結(jié)果為0而不是0.
2.向量共線的條件
向量a(a≠0)與b共線,當(dāng)且僅當(dāng)有一個(gè)實(shí)數(shù)λ,使b=λa.
[點(diǎn)睛](1)定理中a是非零向量,其原因是:若a=0,b≠0時(shí),雖有a與b共線,但不存在實(shí)數(shù)λ使b=λa成立;若a=b=0,a與b顯然共線,但實(shí)數(shù)λ不,任一實(shí)數(shù)λ都能使b=λa成立.
(2)a是非零向量,b可以是0,這時(shí)0=λa,所以有λ=0,如果b不是0,那么λ是不為零的實(shí)數(shù).
3.向量的線性運(yùn)算
向量的.加、減、數(shù)乘運(yùn)算統(tǒng)稱為向量的線性運(yùn)算.對(duì)于任意向量a,b及任意實(shí)數(shù)λ,μ1,μ2,恒有λ(μ1a±μ2b)=λμ1a±λμ2b.
[小試身手]
1.判斷下列命題是否正確.(正確的打“√”,錯(cuò)誤的打“×”)
(1)λa的方向與a的方向一致.()
(2)共線向量定理中,條件a≠0可以去掉.()
(3)對(duì)于任意實(shí)數(shù)m和向量a,b,若ma=mb,則a=b.()
答案:(1)×(2)×(3)×
2.若|a|=1,|b|=2,且a與b方向相同,則下列關(guān)系式正確的是()
A.b=2aB.b=-2a
C.a=2bD.a=-2b
答案:A
3.在四邊形ABCD中,若=-12,則此四邊形是()
A.平行四邊形B.菱形
C.梯形D.矩形
答案:C
高二數(shù)學(xué)教案12
教學(xué)目標(biāo)
鞏固二元一次不等式和二元一次不等式組所表示的平面區(qū)域,能用此來求目標(biāo)函數(shù)的最值.
重點(diǎn)難點(diǎn)
理解二元一次不等式表示平面區(qū)域是教學(xué)重點(diǎn).
如何擾實(shí)際問題轉(zhuǎn)化為線性規(guī)劃問題,并給出解答是教學(xué)難點(diǎn).
教學(xué)步驟
【新課引入】
我們知道,二元一次不等式和二元一次不等式組都表示平面區(qū)域,在這里開始,教學(xué)又翻開了新的一頁,在今后的學(xué)習(xí)中,我們可以逐步看到它的運(yùn)用.
【線性規(guī)劃】
先討論下面的問題
設(shè),式中變量x、y滿足下列條件
求z的值和最小值.
我們先畫出不等式組①表示的平面區(qū)域,如圖中內(nèi)部且包括邊界.點(diǎn)(0,0)不在這個(gè)三角形區(qū)域內(nèi),當(dāng)時(shí),,點(diǎn)(0,0)在直線上.
作一組和平等的直線
可知,當(dāng)l在的右上方時(shí),直線l上的點(diǎn)滿足.
即,而且l往右平移時(shí),t隨之增大,在經(jīng)過不等式組①表示的三角形區(qū)域內(nèi)的點(diǎn)且平行于l的直線中,以經(jīng)過點(diǎn)A(5,2)的直線l,所對(duì)應(yīng)的t,以經(jīng)過點(diǎn)的'直線,所對(duì)應(yīng)的t最小,所以
在上述問題中,不等式組①是一組對(duì)變量x、y的約束條件,這組約束條件都是關(guān)于x、y的一次不等式,所以又稱線性約束條件.
是欲達(dá)到值或最小值所涉及的變量x、y的解析式,叫做目標(biāo)函數(shù),由于又是x、y的解析式,所以又叫線性目標(biāo)函數(shù),上述問題就是求線性目標(biāo)函數(shù)在線性約束條件①下的值和最小值問題.
線性約束條件除了用一次不等式表示外,有時(shí)也有一次方程表示.
一般地,求線性目標(biāo)函數(shù)在線性約束條件下的值或最小值的問題,統(tǒng)稱為線性規(guī)劃問題,滿足線性約束條件的解叫做可行解,由所有可行解組成的集合叫做可行域,在上述問題中,可行域就是陰影部分表示的三角形區(qū)域,其中可行解(5,2)和(1,1)分別使目標(biāo)函數(shù)取得值和最小值,它們都叫做這個(gè)問題的解.
高二數(shù)學(xué)教案13
。1)平面向量基本定理的內(nèi)容是什么?
(2)如何定義平面向量基底?
。3)兩向量夾角的定義是什么?如何定義向量的垂直?
[新知初探]
1、平面向量基本定理
條件e1,e2是同一平面內(nèi)的兩個(gè)不共線向量
結(jié)論這一平面內(nèi)的任意向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2,使a=λ1e1+λ2e2
基底不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底
[點(diǎn)睛]對(duì)平面向量基本定理的理解應(yīng)注意以下三點(diǎn):①e1,e2是同一平面內(nèi)的兩個(gè)不共線向量;②該平面內(nèi)任意向量a都可以用e1,e2線性表示,且這種表示是的;③基底不,只要是同一平面內(nèi)的兩個(gè)不共線向量都可作為基底。
2、向量的夾角
條件兩個(gè)非零向量a和b
產(chǎn)生過程
作向量=a,=b,則∠AOB叫做向量a與b的夾角
范圍0°≤θ≤180°
特殊情況θ=0°a與b同向
θ=90°a與b垂直,記作a⊥b
θ=180°a與b反向
[點(diǎn)睛]當(dāng)a與b共線同向時(shí),夾角θ為0°,共線反向時(shí),夾角θ為180°,所以兩個(gè)向量的夾角的范圍是0°≤θ≤180°。
[小試身手]
1、判斷下列命題是否正確。(正確的打“√”,錯(cuò)誤的打“×”)
。1)任意兩個(gè)向量都可以作為基底。()
(2)一個(gè)平面內(nèi)有無數(shù)對(duì)不共線的向量都可作為表示該平面內(nèi)所有向量的基底。()
(3)零向量不可以作為基底中的向量。()
答案:(1)×(2)√(3)√
2、若向量a,b的夾角為30°,則向量—a,—b的夾角為()
A、60°B、30°
C、120°D、150°
答案:B
3、設(shè)e1,e2是同一平面內(nèi)兩個(gè)不共線的向量,以下各組向量中不能作為基底的是()
A、e1,e2B、e1+e2,3e1+3e2
C、e1,5e2D、e1,e1+e2
答案:B
4、在等腰Rt△ABC中,∠A=90°,則向量,的夾角為XXXXXX。
答案:135°
用基底表示向量
[典例]如圖,在平行四邊形ABCD中,設(shè)對(duì)角線=a,=b,試用基底a,b表示,。
[解]法一:由題意知,==12=12a,==12=12b。
所以=+=—=12a—12b,
=+=12a+12b,
法二:設(shè)=x,=y,則==y,
又+=,—=,則x+y=a,y—x=b,
所以x=12a—12b,y=12a+12b,
即=12a—12b,=12a+12b。
用基底表示向量的`方法
將兩個(gè)不共線的向量作為基底表示其他向量,基本方法有兩種:一種是運(yùn)用向量的線性運(yùn)算法則對(duì)待求向量不斷進(jìn)行轉(zhuǎn)化,直至用基底表示為止;另一種是通過列向量方程或方程組的形式,利用基底表示向量的性求解。
[活學(xué)活用]
如圖,已知梯形ABCD中,AD∥BC,E,F(xiàn)分別是AD,BC邊上的中點(diǎn),且BC=3AD,=a,=b。試以a,b為基底表示。
解:∵AD∥BC,且AD=13BC,
∴=13=13b。
∵E為AD的中點(diǎn),
∴==12=16b。
∵=12,∴=12b,
∴=++
=—16b—a+12b=13b—a,
=+=—16b+13b—a=16b—a,
=+=—(+)
=—(+)=—16b—a+12b
=a—23b。
高二數(shù)學(xué)教案14
教學(xué)目標(biāo):
1.理解平面直角坐標(biāo)系的意義;掌握在平面直角坐標(biāo)系中刻畫點(diǎn)的位置的方法。
2.掌握坐標(biāo)法解決幾何問題的步驟;體會(huì)坐標(biāo)系的作用。
教學(xué)重點(diǎn):
體會(huì)直角坐標(biāo)系的作用。
教學(xué)難點(diǎn):
能夠建立適當(dāng)?shù)闹苯亲鴺?biāo)系,解決數(shù)學(xué)問題。
授課類型:
新授課
教學(xué)模式:
啟發(fā)、誘導(dǎo)發(fā)現(xiàn)教學(xué).
教 具:
多媒體、實(shí)物投影儀
教學(xué)過程:
一、復(fù)習(xí)引入:
情境1:為了確保宇宙飛船在預(yù)定的軌道上運(yùn)行,并在按計(jì)劃完成科學(xué)考察任務(wù)后,安全、準(zhǔn)確的返回地球,從火箭升空的時(shí)刻開始,需要隨時(shí)測(cè)定飛船在空中的位置機(jī)器運(yùn)動(dòng)的軌跡。
情境2:運(yùn)動(dòng)會(huì)的開幕式上常常有大型團(tuán)體操的表演,其中不斷變化的背景圖案是由看臺(tái)上座位排列整齊的人群不斷翻動(dòng)手中的一本畫布構(gòu)成的。要出現(xiàn)正確的背景圖案,需要缺點(diǎn)不同的畫布所在的位置。
問題1:如何刻畫一個(gè)幾何圖形的位置?
問題2:如何創(chuàng)建坐標(biāo)系?
二、學(xué)生活動(dòng)
學(xué)生回顧
刻畫一個(gè)幾何圖形的位置,需要設(shè)定一個(gè)參照系
1、數(shù)軸 它使直線上任一點(diǎn)P都可以由惟一的實(shí)數(shù)x確定
2、平面直角坐標(biāo)系
在平面上,當(dāng)取定兩條互相垂直的直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這兩條直線的方向,就建立了平面直角坐標(biāo)系。它使平面上任一點(diǎn)P都可以由惟一的實(shí)數(shù)對(duì)(x,y)確定。
3、空間直角坐標(biāo)系
在空間中,選擇兩兩垂直且交于一點(diǎn)的三條直線,當(dāng)取定這三條直線的交點(diǎn)為原點(diǎn),并確定了度量單位和這三條直線方向,就建立了空間直角坐標(biāo)系。它使空間上任一點(diǎn)P都可以由惟一的`實(shí)數(shù)對(duì)(x,y,z)確定。
三、講解新課:
1、建立坐標(biāo)系是為了確定點(diǎn)的位置,因此,在所建的坐標(biāo)系中應(yīng)滿足:
任意一點(diǎn)都有確定的坐標(biāo)與其對(duì)應(yīng);反之,依據(jù)一個(gè)點(diǎn)的坐標(biāo)就能確定這個(gè)點(diǎn)的位置
2、確定點(diǎn)的位置就是求出這個(gè)點(diǎn)在設(shè)定的坐標(biāo)系中的坐標(biāo)
四、數(shù)學(xué)運(yùn)用
例1 選擇適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,表示邊長(zhǎng)為1的正六邊形的頂點(diǎn)。
變式訓(xùn)練
如何通過它們到點(diǎn)O的距離以及它們相對(duì)于點(diǎn)O的方位來刻畫,即用”距離和方向”確定點(diǎn)的位置
例2 已知B村位于A村的正西方1公里處,原計(jì)劃經(jīng)過B村沿著北偏東60的方向設(shè)一條地下管線m.但在A村的西北方向400米出,發(fā)現(xiàn)一古代文物遺址W.根據(jù)初步勘探的結(jié)果,文物管理部門將遺址W周圍100米范圍劃為禁區(qū).試問:埋設(shè)地下管線m的計(jì)劃需要修改嗎?
變式訓(xùn)練
1一炮彈在某處爆炸,在A處聽到爆炸的時(shí)間比在B處晚2s,已知A、B兩地相距800米,并且此時(shí)的聲速為340m/s,求曲線的方程
2在面積為1的中,,建立適當(dāng)?shù)淖鴺?biāo)系,求以M,N為焦點(diǎn)并過點(diǎn)P的橢圓方程
例3 已知Q(a,b),分別按下列條件求出P 的坐標(biāo)
。1)P是點(diǎn)Q 關(guān)于點(diǎn)M(m,n)的對(duì)稱點(diǎn)
(2)P是點(diǎn)Q 關(guān)于直線l:x-y+4=0的對(duì)稱點(diǎn)(Q不在直線1上)
變式訓(xùn)練
用兩種以上的方法證明:三角形的三條高線交于一點(diǎn)。
思考
通過平面變換可以把曲線變?yōu)橹行脑谠c(diǎn)的單位圓,請(qǐng)求出該復(fù)合變換?
五、小 結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1.平面直角坐標(biāo)系的意義。
2. 利用平面直角坐標(biāo)系解決相應(yīng)的數(shù)學(xué)問題。
六、課后作業(yè):
高二數(shù)學(xué)教案15
一、教學(xué)目標(biāo)
【知識(shí)與技能】
能正確概述“二面角”、“二面角的平面角”的概念,會(huì)做二面角的平面角。
【過程與方法】
利用類比的方法推理二面角的有關(guān)概念,提升知識(shí)遷移的能力。
【情感態(tài)度與價(jià)值觀】
營(yíng)造和諧、輕松的學(xué)習(xí)氛圍,通過學(xué)生之間,師生之間的交流、合作和評(píng)價(jià)達(dá)成共識(shí)、共享、共進(jìn),實(shí)現(xiàn)教學(xué)相長(zhǎng)和共同發(fā)展。
二、教學(xué)重、難點(diǎn)
【重點(diǎn)】
“二面角”和“二面角的平面角”的概念。
【難點(diǎn)】
“二面角的平面角”概念的形成過程。
三、教學(xué)過程
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
請(qǐng)學(xué)生觀察生活中的一些模型,多媒體展示以下一系列動(dòng)畫如:
1.打開書本的過程;
2.發(fā)射人造地球衛(wèi)星,要根據(jù)需要使衛(wèi)星的軌道平面與地球的赤道平面成一定的角度;
3.修筑水壩時(shí),為了使水壩堅(jiān)固耐久,須使水壩坡面與水平面成適當(dāng)?shù)慕嵌?
引導(dǎo)學(xué)生說出書本的兩個(gè)面、水壩面與底面,衛(wèi)星軌道面與地球赤道面均是呈一定的角度關(guān)系,引出課題。
(二)師生互動(dòng),探索新知
學(xué)生閱讀教材,同桌互相討論,教師引導(dǎo)學(xué)生對(duì)比平面角得出二面角的概念
平面角:平面角是從平面內(nèi)一點(diǎn)出發(fā)的兩條射線(半直線)所組成的圖形。
二面角定義:從一條直線出發(fā)的兩個(gè)半面所組成的圖形,叫作二面角。這條直線叫作二面角的棱,這兩個(gè)半平面叫作二面角的面。(動(dòng)畫演示)
(2)二面角的表示
(3)二面角的畫法
(PPT演示)
教師提問:一般地說,量角器只能測(cè)量“平面角”(指兩條相交直線所成的角.相應(yīng)地,我們把異面直線所成的'角,直線與平面所成的角和二面角,均稱為空間角)那么,如何去度量二面角的大小呢?我們以往是如何度量某些角的?教師引導(dǎo)學(xué)生將空間角化為平面角.
教師總結(jié):
(1)二面角的平面角的定義
定義:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角.
“二面角的平面角”的定義三個(gè)主要特征:點(diǎn)在棱上、線在面內(nèi)、與棱垂直(動(dòng)畫演示)
大小:二面角的大小可以用它的平面角的大小來表示。
平面角是直角的二面角叫做直二面角。
(2)二面角的平面角的作法
、冱c(diǎn)P在棱上—定義法
、邳c(diǎn)P在一個(gè)半平面上—三垂線定理法
③點(diǎn)P在二面角內(nèi)—垂面法
(三)生生互動(dòng),鞏固提高
(四)生生互動(dòng),鞏固提高
1.判斷下列命題的真假:
(1)兩個(gè)相交平面組成的圖形叫做二面角。( )
(2)角的兩邊分別在二面角的兩個(gè)面內(nèi),則這個(gè)角是二面角的平面角。( )
(3)二面角的平面角所在平面垂直于二面角的棱。( )
2.作出一下面PAC和面ABC的平面角。
(五)課堂小結(jié),布置作業(yè)
小結(jié):通過本節(jié)課的學(xué)習(xí),你學(xué)到了什么?
作業(yè):以正方體為模型請(qǐng)找出一個(gè)所成角度為四十五度的二面角,并證明。
【高二數(shù)學(xué)教案】相關(guān)文章:
高二數(shù)學(xué)教案12-04
高二數(shù)學(xué)教案08-27
高二數(shù)學(xué)教案15篇12-05
中職高二數(shù)學(xué)教案11-07
最新高二數(shù)學(xué)教案09-29