- 相關(guān)推薦
高三數(shù)學上冊教案
作為一名無私奉獻的老師,時常會需要準備好教案,借助教案可以更好地組織教學活動。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編幫大家整理的高三數(shù)學上冊教案,僅供參考,大家一起來看看吧。
高三數(shù)學上冊教案1
【教學目標】
1.會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
2.能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
3.提高學生的觀察能力;培養(yǎng)學生的空間想象能力和抽象括能力。
【教學重難點】
教學重點:讓學生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
教學難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
【教學過程】
1.情景導入
教師提出問題,引導學生觀察、舉例和相互交流,提出本節(jié)課所學內(nèi)容,出示課題。
2.展示目標、檢查預(yù)習
3.合作探究、交流展示
(1)引導學生觀察棱柱的幾何物體以及棱柱的圖片,說出它們各自的特點是什么?它們的共同特點是什么?
(2)組織學生分組討論,每小組選出一名同學發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。有兩個面互相平行;其余各面都是平行四邊形;每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
(3)提出問題:請列舉身邊的棱柱并對它們進行分類
(4)以類似的方法,讓學生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
(5)讓學生觀察圓柱,并實物模型演示,概括出圓柱的概念以及相關(guān)的概念及圓柱的表示。
(6)引導學生以類似的.方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導學生思考、討論、概括。
(7)教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
4.質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學生思考。
(1)有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明)
(2)棱柱的任何兩個平面都可以作為棱柱的底面嗎?
(3)圓柱可以由矩形旋轉(zhuǎn)得到,圓錐可以由直角三角形旋轉(zhuǎn)得到,圓臺可以由什么圖形旋轉(zhuǎn)得到?如何旋轉(zhuǎn)?
(4)棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
(5)繞直角三角形某一邊的幾何體一定是圓錐嗎?
5.典型例題
例:判斷下列語句是否正確。
、庞幸粋面是多邊形,其余各面都是三角形的幾何體是棱錐。
⑵有兩個面互相平行,其余各面都是梯形,則此幾何體是棱柱。
答案AB
6.課堂檢測:
課本P8,習題1.1A組第1題。
7.歸納整理
由學生整理學習了哪些內(nèi)容
高三數(shù)學上冊教案2
一、教學內(nèi)容分析
本節(jié)內(nèi)容是學生在學習了乘法原理、排列、排列數(shù)公式和加法原理以后的知識,學生已經(jīng)掌握了排列問題,并且對順序與排列的關(guān)系已經(jīng)有了一個比較清晰的認識.因此關(guān)鍵是排列與組合的區(qū)別在于問題是否與順序有關(guān).與順序有關(guān)的是排列問題,與順序無關(guān)是組合問題,順序?qū)ε帕小⒔M合問題的求解特別重要.排列與組合的區(qū)別,從定義上來說是簡單的,但在具體求解過程中學生往往感到困惑,分不清到底與順序有無關(guān)系,指導學生根據(jù)生活經(jīng)驗和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學的真諦在于悟,只有學生真正理解了,才能舉一反三、融會貫通.
二、教學目標設(shè)計
1.理解組合的意義,掌握組合數(shù)的計算公式;
2.能正確認識組合與排列的聯(lián)系與區(qū)別
3.通過練習與訓練體驗并初步掌握組合數(shù)的計算公式
三、教學重點及難點
組合概念的理解和組合數(shù)公式;組合與排列的區(qū)別.
四、教學用具準備
多媒體設(shè)備
五、教學流程設(shè)計
六、教學過程設(shè)計
一、 復(fù)習引入
1.復(fù)習
我們在前幾節(jié)中學習了排列、排列數(shù)以及排列數(shù)公式
定 義
特 點
相同排列
公 式
排 列
以上由學生口答.
2.引入
那么請問:平面上有7個點,問以這7點中任何兩個為端點,構(gòu)成有向線段有幾條?
這是一個排列問題
若改為:構(gòu)成的線段有幾條?則為 ,
其實亦可用另一種方法解決,這就是組合.
二、學習新課
探究性質(zhì)
1. 組合定義: P16
一般地,從個不同元素中取出個元素并成一組,叫做從個不同元素中取出個元素的一個組合.
【說明】:⑴不同元素; ⑵“只取不排”——無序性;
、窍嗤M合:元素相同.
2.組合數(shù)定義:
從個不同元素中取出個元素的所有組合的個數(shù),叫做從個不同元素中取出個元素的組合數(shù).用符號表示.
如:引入中的例子可表示為
== 這是為什么呢?
因為 構(gòu)成有向線段的問題可分成2步來完成:
第一步,先從7個點中選2個點出來,共有種選法;
第二步,將選出的2個點做一個排列,有種次序;
根據(jù)乘法原理,共有·= 所以
·判斷何為排列、組合問題: 利用書本P16~P17例題請學生判斷
·這個公式叫組合數(shù)公式
3.組合數(shù)公式:
如= =
用計算器求 、 、 、
可發(fā)現(xiàn)= =
由此猜想:
用實際例子說明:比如要從50人中挑選4個出來參加迎春長跑的選擇方案有,就相當于挑46個人不參加長跑的選擇方案一樣.“取法”與“剩法”是“一 一對應(yīng)”的.
證明:∵
又 ,∴
當m=n時,
此性質(zhì)作用:當時,計算可變?yōu)橛嬎悖軌蚴惯\算簡化.
4. 組合數(shù)性質(zhì):
1、
2、=
可解釋為:從這n 1個不同元素中取出m個元素的組合數(shù)是,這些組合可以分為兩類:一類含有元素,一類不含有.含有的組合是從這n個元素中取出m (1個元素與組成的,共有個;不含有的.組合是從這n個元素中取出m個元素組成的,共有個.根據(jù)加法原理,可以得到組合數(shù)的另一個性質(zhì).在這里,主要體現(xiàn)從特殊到一般的歸納思想,“含與不含其元素”的分類思想.
證明:
得證.
【說明】1( 公式特征:下標相同而上標差1的兩個組合數(shù)之和,等于下標比原下標多1而上標與高的相同的一個組合數(shù).
2( 此性質(zhì)的作用:恒等變形,簡化運算.在今后學習“二項式定理”時,我們會看到它的主要應(yīng)用.
2.例題分析
例1、(1),求x
(2)
(3)
略解:(1)
(2)
(3)
例2、應(yīng)用題:
有15本不同的書,其中6本是數(shù)學書,問:
分給甲4本,且都不是數(shù)學書;
略解:(1)
3.問題拓展
例3.題設(shè)同例2:
。2)平均分給3人;
。3)若平均分為3份;
。4)甲分2本,乙分7本,丙分6本;
。5)1人2本,1人7本,1人6本.
略解:(2) (3)
。4) (5)
三、課堂小結(jié)
指導學生根據(jù)生活經(jīng)驗和問題的內(nèi)涵領(lǐng)悟其中體現(xiàn)出來的順序.教的秘訣在于度,學的真諦在于于悟,只有學生真正理解了,才能舉一反三、融會貫通.
能列舉出某種方法時,讓學生通過交換元素位置的辦法加以鑒別.
學生易于辨別組合、全排列問題,而排列問題就是先組合后全排列.在求解排列、組合問題時,可引導學生找出兩定義的關(guān)系后,按以下兩步思考:首先要考慮如何選出符合題意要求的元素來,選出元素后再去考慮是否要對元素進行排隊,即第一步僅從組合的角度考慮,第二步則考慮元素是否需全排列,如果不需要,是組合問題;否則是排列問題.
排列、組合問題大都來源于同學們生活和學習中所熟悉的情景,解題思路通常是依據(jù)具體做事的過程,用數(shù)學的原理和語言加以表述.也可以說解排列、組合題就是從生活經(jīng)驗、知識經(jīng)驗、具體情景的出發(fā),正確領(lǐng)會問題的實質(zhì),抽象出“按部就班”的處理問題的過程.據(jù)觀察,有些同學之所以學習中感到抽象,不知如何思考,并不是因為數(shù)學知識跟不上,而是因為平時做事、考慮問題就缺乏條理性,或解題思路是自己主觀想象的做法(很可能是有悖于常理或常規(guī)的做法).要解決這個問題,需要師生一道在分析問題時要根據(jù)實際情況,怎么做事就怎么分析,若能借助適當?shù)墓ぞ,模擬做事的過程,則更能說明問題.久而久之,學生的邏輯思維能力將會大大提高.
四、作業(yè)布置
(略)
七、教學設(shè)計說明
在學習過程中,從排列問題引入,隨即自然地過渡到組合問題.由此讓學生對于排列與組合兩者的異同有深刻理解,并能自如地進行判斷.
本節(jié)課在教學技術(shù)上通過多媒體課件大大縮短了教師板書抄題的時間,讓學生能夠更加連貫的思考以及探索問題.
在例題的設(shè)計上從最基本的組合數(shù)公式的利用,到簡單的應(yīng)用題,再到組合中較難的分組分配以及平均不平均分配問題的訓練,由淺入深,層層遞進,以積極發(fā)揮課堂教學的基礎(chǔ)型和研究型功能,培養(yǎng)學生的基礎(chǔ)性學力和發(fā)展性學力.
在課堂教學中教師遵循“以學生為主體”的思想,鼓勵學生善于觀察和發(fā)現(xiàn);鼓勵學生積極思考和探究;鼓勵學生大膽猜想,努力營造一個民主和諧、平等交流的課堂氛圍,采取對話式教學,調(diào)動學生學習的積極性,激發(fā)學生學習的熱情,使學生開闊思維空間,讓學生積極參與教學活動,提高學生的數(shù)學思維能力.
高三數(shù)學上冊教案3
一、教學目標
知識與技能:
理解任意角的概念(包括正角、負角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學生的推理能力;
2、培養(yǎng)學生應(yīng)用意識。
二、教學重點、難點:
教學重點:
任意角概念的理解;區(qū)間角的集合的書寫。
教學難點:
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學過程
(一)導入新課
回顧角的定義
、俳堑牡谝环N定義是有公共端點的.兩條射線組成的圖形叫做角。
、诮堑牡诙N定義是角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
(二)教學新課
1、角的有關(guān)概念:
、俳堑亩x:
角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
、诮堑拿Q:
注意:
⑴在不引起混淆的情況下,“角α”或“∠α”可以簡化成“α”;
⑵零角的終邊與始邊重合,如果α是零角α=0°;
⑶角的概念經(jīng)過推廣后,已包括正角、負角和零角。
請說出角α、β、γ各是多少度?
2、象限角的概念:
定義:若將角頂點與原點重合,角的始邊與x軸的非負半軸重合,那么角的終邊(端點除外)在第幾象限,我們就說這個角是第幾象限角。
【高三數(shù)學上冊教案】相關(guān)文章:
數(shù)學上冊教案01-15
高三數(shù)學數(shù)列教案01-17
高三數(shù)學優(yōu)秀教案01-12
高三數(shù)學備課教案01-03
高三數(shù)學教案11-07
人教版高三數(shù)學教案11-02
數(shù)學上冊期末復(fù)習教案01-09
初二數(shù)學上冊教案11-14
初一的數(shù)學上冊教案11-09