四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>初中數(shù)學(xué)教案

初中數(shù)學(xué)教案

時(shí)間:2023-01-26 13:04:04 數(shù)學(xué)教案 我要投稿

【推薦】初中數(shù)學(xué)教案

  作為一名教學(xué)工作者,常常需要準(zhǔn)備教案,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么你有了解過教案嗎?下面是小編整理的初中數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

【推薦】初中數(shù)學(xué)教案

初中數(shù)學(xué)教案1

  三維目標(biāo)

  一、知識與技能

  1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.

  2.能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實(shí)際問題.

  二、過程與方法

  1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.

  2. 體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識,提高運(yùn)用代數(shù)方法解決問題的能力.

  三、情感態(tài)度與價(jià)值觀

  1.積極參與交流,并積極發(fā)表意見.

  2.體驗(yàn)反比例函數(shù)是有效地描述物理世界的重要手段,認(rèn)識到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.

  教學(xué)重點(diǎn)

  掌握從物理問題中建構(gòu)反比例函數(shù)模型.

  教學(xué)難點(diǎn)

  從實(shí)際問題中尋找變量之間的關(guān)系,關(guān)鍵是充分運(yùn)用所學(xué)知識分析物理問題,建立函數(shù)模型,教學(xué)時(shí)注意分析過程,滲透數(shù)形結(jié)合的思想.

  教具準(zhǔn)備

  多媒體課件.

  教學(xué)過程

  一、創(chuàng)設(shè)問題情境,引入新課

  活動(dòng)1

  問 屬:在物理學(xué)中,有很多量之間的變化是反比例函數(shù)的關(guān)系,因此,我們可以借助于反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,這也稱為跨學(xué)科應(yīng)用.下面的例子就是其中之一.

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當(dāng)電阻R=5歐姆時(shí),電流I=2安培.

  (1)求I與R之間的函數(shù)關(guān)系式;

  (2)當(dāng)電流I=0.5時(shí),求電阻R的值.

  設(shè)計(jì)意圖:

  運(yùn)用反比例函數(shù)解決物理學(xué)中的一些相關(guān)問題,提高各學(xué)科相互之間的綜合應(yīng)用能力.

  師生行為:

  可由學(xué)生獨(dú)立思考,領(lǐng)會(huì)反比例函數(shù)在物理學(xué)中的綜合應(yīng)用.

  教師應(yīng)給“學(xué)困生”一點(diǎn)物理學(xué)知識的引導(dǎo).

  師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關(guān)系,可設(shè)出其表達(dá)式,再由已知條件(I與R的一對對應(yīng)值)得到字母系數(shù)k的值.

  生:(1)解:設(shè)I=kR ∵R=5,I=2,于是

  2=k5 ,所以k=10,∴I=10R .

  (2) 當(dāng)I=0.5時(shí),R=10I=100.5 =20(歐姆).

  師:很好!“給我一個(gè)支點(diǎn),我可以把地球撬動(dòng).”這是哪一位科學(xué)家的名言?這里蘊(yùn)涵著什么 樣的原理呢?

  生:這是古希臘科學(xué)家阿基米德的名言.

  師:是的.公元前3世紀(jì),古希臘科學(xué)家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”: 若兩物體與支點(diǎn)的距離反比于其重量,則杠桿平衡,通俗一點(diǎn)可以描述為;

  阻力×阻力臂=動(dòng)力×動(dòng)力臂(如下圖)

  下面我們就來看一例子.

  二、講授新課

  活動(dòng)2

  小偉欲用撬棍橇動(dòng)一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米.

  (1)動(dòng)力F與動(dòng)力臂l有怎樣的函數(shù)關(guān)系?當(dāng)動(dòng)力臂為1.5米時(shí),撬動(dòng)石頭至少需要多大的力?

  (2)若想使動(dòng)力F不超過題(1)中所用力的一半,則動(dòng)力臂至少要加長多少?

  設(shè)計(jì)意圖:

  物理學(xué)中的很多量之間的變化是反比例函數(shù)關(guān)系.因此,在這兒又一次借助反比例函數(shù)的圖象和性質(zhì)解決一些物理學(xué)中的問題,即跨學(xué)科綜合應(yīng)用.

  師生行為:

  先由學(xué)生根據(jù)“杠桿定律”解決上述問題.

  教師可引導(dǎo)學(xué)生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關(guān)系.

  教師在此活動(dòng)中應(yīng)重點(diǎn)關(guān)注:

  ①學(xué)生能否主動(dòng)用“杠桿定律”中杠桿平衡的條件去理解實(shí)際問題,從而建立與反比例函數(shù)的關(guān)系;

  ②學(xué)生能否面對困難,認(rèn)真思考,尋找解題的途徑;

 、蹖W(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),對數(shù)學(xué)和物理有著濃厚的興趣.

  師:“撬動(dòng)石頭”就意味著達(dá)到了“杠桿平衡”,因此可用“杠桿定律”來解決此問題.

  生:解:(1)根據(jù)“杠桿定律” 有

  Fl=1200×0.5.得F =600l

  當(dāng)l=1.5時(shí),F(xiàn)=6001.5 =400.

  因此,撬動(dòng)石頭至少需要400牛頓的力.

  (2)若想使動(dòng)力F不超過題(1)中所用力的一半,即不超過200牛,根據(jù)“杠桿定律”有

  Fl=600,

  l=600F .

  當(dāng)F=400×12 =200時(shí),

  l=600200 =3.

  3-1.5=1.5(米)

  因此,若想用力不超過400牛頓的一半,則動(dòng)力臂至少要如長1.5米.

  生:也可用不等式來解,如下:

  Fl=600,F(xiàn)=600l .

  而F≤400×12 =200時(shí).

  600l ≤200

  l≥3.

  所以l-1.5≥3-1.5=1.5.

  即若想用力不超過400牛頓的一半,則動(dòng)力臂至少要加長1.5米.

  生:還可由函數(shù)圖象,利用反比例函數(shù)的性質(zhì)求出.

  師:很棒!請同學(xué)們下去親自畫出圖象完成,現(xiàn)在請同學(xué)們思考下列問題:

  用反比例函數(shù)的知識解釋:在我們使用橇棍時(shí),為什么動(dòng)力臂越長越省力?

  生:因?yàn)樽枇妥枇Ρ鄄蛔,設(shè)動(dòng)力臂為l,動(dòng)力為F,阻力×阻力臂=k(常數(shù)且k>0),所以根據(jù)“杠桿定理”得Fl=k,即F=kl (k為常數(shù)且k>0)

  根據(jù)反比例函數(shù)的性質(zhì),當(dāng)k>O時(shí),在第一象限F隨l的增大而減小,即動(dòng)力臂越長越省力.

  師:其實(shí)反比例函數(shù)在實(shí)際運(yùn)用中非常廣泛.例如在解決經(jīng)濟(jì)預(yù)算問題中的.應(yīng)用.

  活動(dòng)3

  問題:某地上年度電價(jià)為0.8元,年用電量為1億度,本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測算,若電價(jià)調(diào)至x元,則本年度新增用電量y(億度)與(x-0.4)元成反比例.又當(dāng)x=0.65元時(shí),y=0.8.(1)求y與x之間的函數(shù)關(guān)系式;(2)若每度電的成本價(jià)0.3元,電價(jià)調(diào)至0.6元,請你預(yù)算一下本年度電力部門的純收人多少?

  設(shè)計(jì)意圖:

  在生活中各部門,經(jīng)常遇到經(jīng)濟(jì)預(yù)算等問題,有時(shí)關(guān)系到因素之間是反比例函數(shù)關(guān)系,對于此類問題我們往往由題目提供的信息得到變量之間的函數(shù)關(guān)系式,進(jìn)而用函數(shù)關(guān)系式解決一個(gè)具體問題.

  師生行為:

  由學(xué)生先獨(dú)立思考,然后小組內(nèi)討論完成.

  教師應(yīng)給予“學(xué)困生”以一定的幫助.

  生:解:(1)∵y與x -0.4成反比例,

  ∴設(shè)y=kx-0.4 (k≠0).

  把x=0.65,y=0.8代入y=kx-0.4 ,得

  k0.65-0.4 =0.8.

  解得k=0.2,

  ∴y=0.2x-0.4=15x-2

  ∴y與x之間的函數(shù)關(guān)系為y=15x-2

  (2)根據(jù)題意,本年度電力部門的純收入為

  (0.6-0.3)(1+y)=0.3(1+15x-2 )=0.3(1+10.6×5-2 )=0.3×2=0.6(億元)

  答:本年度的純收人為0.6億元,

  師生共析:

  (1)由題目提供的信息知y與(x-0.4)之間是反比例函數(shù)關(guān)系,把x-0.4看成一個(gè)變量,于是可設(shè)出表達(dá)式,再由題目的條件x=0.65時(shí),y=0.8得出字母系數(shù)的值;

  (2)純收入=總收入-總成本.

  三、鞏固提高

  活動(dòng)4

  一定質(zhì)量的二氧化碳?xì)怏w,其體積y(m3)是密度ρ(kg/m3)的反比例函數(shù),請根據(jù)下圖中的已知條件求出當(dāng)密度ρ=1.1 kg/m3時(shí)二氧化碳?xì)怏w的體積V的值.

  設(shè)計(jì)意圖:

  進(jìn)一步體現(xiàn)物理和反比例函數(shù)的關(guān)系.

  師生行為

  由學(xué)生獨(dú)立完成,教師講評.

  師:若要求出ρ=1.1 kg/m3時(shí),V的值,首先V和ρ的函數(shù)關(guān)系.

  生:V和ρ的反比例函數(shù)關(guān)系為:V=990ρ .

  生:當(dāng)ρ=1.1kg/m3根據(jù)V=990ρ ,得

  V=990ρ =9901.1 =900(m3).

  所以當(dāng)密度ρ=1. 1 kg/m3時(shí)二氧化碳?xì)怏w的氣體為900m3.

  四、課時(shí)小結(jié)

  活動(dòng)5

  你對本節(jié)內(nèi)容有哪些認(rèn)識?重點(diǎn)掌握利用函數(shù)關(guān)系解實(shí)際問題,首先列出函數(shù)關(guān)系式,利用待定系數(shù)法求出解 析式,再根據(jù)解析式解得.

  設(shè)計(jì)意圖:

  這種形式的小結(jié),激發(fā)了學(xué)生的主動(dòng)參與意識,調(diào)動(dòng)了學(xué)生的學(xué)習(xí)興趣,為每一位學(xué)生都創(chuàng)造了在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn)機(jī)會(huì),并為程度不同的學(xué)生提供了充分展示自己的機(jī)會(huì),尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,從而使小結(jié)不流于形式而具有實(shí)效性.

  師生行為:

  學(xué)生可分小組活動(dòng),在小組內(nèi)交流收獲, 然后由小組代表在全班交流.

  教師組織學(xué)生小結(jié).

  反比例函數(shù)與現(xiàn)實(shí)生活聯(lián)系非常緊密,特別是為討論物理中的一些量之間的關(guān)系打下了良好的基礎(chǔ).用數(shù)學(xué)模型的解釋物理量之間的關(guān)系淺顯易懂,同時(shí)不僅要注意跨學(xué)科間的綜合,而本學(xué)科知識間的整合也尤為重要,例如方程、不等式、函數(shù)之間的不可分割的關(guān)系.

  板書設(shè)計(jì)

  17.2 實(shí)際問題與反比例函數(shù)(三)

  1.

  2.用反比例函數(shù)的知識解釋:在我們使 用撬棍時(shí),為什么動(dòng) 力臂越長越省力?

  設(shè)阻力為F1,阻力臂長為l1,所以F1×l1=k(k為常數(shù)且k>0).動(dòng)力和動(dòng)力臂分別為F,l.則根據(jù)杠桿定理,

  Fl=k 即F=kl (k>0且k為常數(shù)).

  由此可知F是l的反比例函數(shù),并且當(dāng)k>0時(shí),F(xiàn)隨l的增大而減。

  活動(dòng)與探究

  學(xué)校準(zhǔn)備在校園內(nèi)修建一個(gè)矩形的綠化帶,矩形的面積為定值,它的一邊y與另一邊x之間的函數(shù)關(guān)系式如下圖所示.

  (1)綠化帶面積是多少?你能寫出這一函數(shù)表達(dá)式嗎?

  (2)完成下表,并回答問題:如果該綠化帶的長不得超過40m,那么它的寬應(yīng)控制在什么范圍內(nèi)?

  x(m) 10 20 30 40

  y(m)

  過程:點(diǎn)A(40,10)在反比例函數(shù)圖象上說明點(diǎn)A的橫縱坐標(biāo)滿足反比例函數(shù)表達(dá)式,代入可求得反比例函數(shù)k的值.

  結(jié)果:(1)綠化帶面積為10×40=400(m2)

  設(shè)該反比例函數(shù)的表達(dá)式為y=kx ,

  ∵圖象經(jīng)過點(diǎn)A(40,10)把x=40,y=10代入,得10=k40 ,解得,k=400.

  ∴函數(shù)表達(dá)式為y=400x .

  (2)把x=10,20,30,40代入表達(dá)式中,求得y分別為40,20,403 ,10.從圖中可以看出。若長不超過40m,則它的寬應(yīng)大于等于10m。

初中數(shù)學(xué)教案2

  一、內(nèi)容特點(diǎn)

  在知識與方法上類似于數(shù)系的第一次擴(kuò)張。也是后繼內(nèi)容學(xué)習(xí)的基礎(chǔ)。

  內(nèi)容定位:了解無理數(shù)、實(shí)數(shù)概念,了解(算術(shù))平方根的概念;會(huì)用根號表示數(shù)的(算術(shù))平方根,會(huì)求平方根、立方根,用有理數(shù)估計(jì)一個(gè)無理數(shù)的大致范圍,實(shí)數(shù)簡單的四則運(yùn)算(不要求分母有理化)。

  二、設(shè)計(jì)思路

  整體設(shè)計(jì)思路:

  無理數(shù)的引入----無理數(shù)的表示----實(shí)數(shù)及其相關(guān)概念(包括實(shí)數(shù)運(yùn)算),實(shí)數(shù)的應(yīng)用貫穿于內(nèi)容的始終。

  學(xué)習(xí)對象----實(shí)數(shù)概念及其運(yùn)算;學(xué)習(xí)過程----通過拼圖活動(dòng)引進(jìn)無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進(jìn)而建立實(shí)數(shù)概念;以類比,歸納探索的方式,尋求實(shí)數(shù)的運(yùn)算法則;學(xué)習(xí)方式----操作、猜測、抽象、驗(yàn)證、類比、推理等。

  具體過程:

  首先通過拼圖活動(dòng)和計(jì)算器探索活動(dòng),給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運(yùn)算。最后教科書總結(jié)實(shí)數(shù)的概念及其分類,并用類比的方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。

  第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動(dòng),讓學(xué)生感受無理數(shù)產(chǎn)生的實(shí)際背景和引入的必要性;借助計(jì)算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會(huì)無限逼近的思想;會(huì)判斷一個(gè)數(shù)是有理數(shù)還是無理數(shù)。

  第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開方運(yùn)算。

  第四節(jié):公園有多寬:在實(shí)際生活和生產(chǎn)實(shí)際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗(yàn)計(jì)算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感。

  第五節(jié):用計(jì)算器開方:會(huì)用計(jì)算器求平方根和立方根。經(jīng)歷運(yùn)用計(jì)算器探求數(shù)學(xué)規(guī)律的活動(dòng),發(fā)展合情推理的能力。

  第六節(jié):實(shí)數(shù)?偨Y(jié)實(shí)數(shù)的概念及其分類,并用類比的'方法引入實(shí)數(shù)的相關(guān)概念、運(yùn)算律和運(yùn)算性質(zhì)等。

  三、一些建議

  1.注重概念的形成過程,讓學(xué)生在概念的形成的過程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對無理數(shù)和實(shí)數(shù)概念的意義理解。

  2.鼓勵(lì)學(xué)生進(jìn)行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。

  3.注意運(yùn)用類比的方法,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系。

  4.淡化二次根式的概念。

初中數(shù)學(xué)教案3

  教學(xué)目標(biāo)

  1.理解二元一次方程及二元一次方程的解的概念;

  2.學(xué)會(huì)求出某二元一次方程的幾個(gè)解和檢驗(yàn)?zāi)硨?shù)值是否為二元一次方程的解;

  3.學(xué)會(huì)把二元一次方程中的一個(gè)未知數(shù)用另一個(gè)未知數(shù)的一次式來表示;

  4.在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。

  教學(xué)重點(diǎn)、難點(diǎn)

  重點(diǎn):二元一次方程的意義及二元一次方程的解的概念.

  難點(diǎn):把一個(gè)二元一次方程變形成用關(guān)于一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式,其實(shí)質(zhì)是解一個(gè)含有字母系數(shù)的方程.

  教學(xué)過程

  1.情景導(dǎo)入:

  新聞鏈接:桐鄉(xiāng)70歲以上老人可領(lǐng)取生活補(bǔ)助,得到方程:80a+150b=902880.2.

  2.新課教學(xué):

  引導(dǎo)學(xué)生觀察方程80a+150b=902880與一元一次方程有異同?

  得出二元一次方程的概念:含有兩個(gè)未知數(shù),并且所含未知數(shù)的'項(xiàng)的次數(shù)都是1次的方程叫做二元一次方程.

  3.合作學(xué)習(xí):

  給定方程x+2y=8,男同學(xué)給出y(x取絕對值小于10的整數(shù))的值,女同學(xué)馬上給出對應(yīng)的x的值;接下來男女同學(xué)互換.(比一比哪位同學(xué)反應(yīng)快)請算的最快最準(zhǔn)確的同學(xué)講他的計(jì)算方法.提問:給出x的值,計(jì)算y的值時(shí),y的系數(shù)為多少時(shí),計(jì)算y最為簡便?

  4.課堂練習(xí):

  1)已知:5xm-2yn=4是二元一次方程,則m+n=;

  2)二元一次方程2x-y=3中,方程可變形為y=當(dāng)x=2時(shí),y=_

  5.課堂總結(jié):

  (1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);

  (2)二元一次方程解的不定性和相關(guān)性;

  (3)會(huì)把二元一次方程化為用一個(gè)未知數(shù)的代數(shù)式表示另一個(gè)未知數(shù)的形式.

  作業(yè)布置

  本章的課后的方程式鞏固提高練習(xí)。

初中數(shù)學(xué)教案4

  生活中的立體圖形:(常見的有)圓柱、圓錐、正方體、長方體、棱柱、球。棱:相鄰兩個(gè)面的交線。

  側(cè)棱:相鄰兩個(gè)側(cè)面的交線。棱柱的所有側(cè)棱長都相等。

  底面:棱柱有上、下兩個(gè)底面,形狀相同。

  側(cè)面:棱柱的'側(cè)面都是平行四邊形。

  立體圖形的分類:錐體、柱體、球體。也可分為有曲面、無曲面。還可以分為有頂點(diǎn)、無頂點(diǎn)。

  棱柱:分為直棱柱、斜棱柱。直棱柱的側(cè)面是長方形。

  特殊的四棱柱:長方體、正方體。正方體的每個(gè)面都是正方形。

  圓柱:上、下兩個(gè)面都是圓形,側(cè)面展開圖是長方形。

  圓錐:底面是圓形,側(cè)面展開圖是扇形。

  截面:用一個(gè)平面去截一個(gè)幾何體,截出的面。

  球:用一個(gè)平面去截,截面圖形是圓形。

  正方體的截面:可以是正方形、長方形、梯形、三角形。

  圓柱體的截面:可以是長方形、圓形、橢圓形、三角形。

  展開與折疊:兩個(gè)面出現(xiàn)在同一位置的展開圖形,是不可折疊的。

  從三個(gè)方向看物體的形狀:正面看(主視圖)、左面看(側(cè)視圖)、上面看(俯視圖)

初中數(shù)學(xué)教案5

  平行線的判定(1)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學(xué)習(xí)目標(biāo)

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展推理能力和有條理表達(dá)能力.

  2.掌握直線平行的條件,領(lǐng)悟歸納和轉(zhuǎn)化的數(shù)學(xué)思想

  學(xué)習(xí)重難點(diǎn):探索并掌握直線平行的條件是本課的重點(diǎn)也是難點(diǎn).

  一、探索直線平行的條件

  平行線的判定方法1:

  二、練一練1、判斷題

  1.兩條直線被第三條直線所截,如果同位角相等,那么內(nèi)錯(cuò)角也相等.( )

  2.兩條直線被第三條直線所截,如果內(nèi)錯(cuò)角互補(bǔ),那么同旁內(nèi)角相等.( )

  2、填空1.如圖1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或筆________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_(dá)______,那么a∥b,理由是__________.

  (2)

  (3)

  2.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  三、選擇題

  1.如圖3所示,下列條件中,不能判定AB∥CD的是( )

  A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3

  2.右圖,由圖和已知條件,下列判斷中正確的是( )

  A.由∠1=∠6,得AB∥FG;

  B.由∠1+∠2=∠6+∠7,得CE∥EI

  C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;

  D.由∠5=∠4,得AB∥FG

  四、已知直線a、b被直線c所截,且∠1+∠2=180°,試判斷直線a、b的位置關(guān)系,并說明理由.

  五、作業(yè)課本15頁-16頁練習(xí)的1、2、3、

  5.2.2平行線的判定(2)

  課型:新課: 備課人:韓賀敏 審核人:霍紅超

  學(xué)習(xí)目標(biāo)

  1.經(jīng)歷觀察、操作、想像、推理、交流等活動(dòng),進(jìn)一步發(fā)展空

  間觀念,推理能力和有條理表達(dá)能力.

  毛2.分析題意說理過程,能靈活地選用直線平行的方法進(jìn)行說理.

  學(xué)習(xí)重點(diǎn):直線平行的條件的應(yīng)用.

  學(xué)習(xí)難點(diǎn):選取適當(dāng)判定直線平行的'方法進(jìn)行說理是重點(diǎn)也是難點(diǎn).

  一、學(xué)習(xí)過程

  平行線的判定方法有幾種?分別是什么?

  二.鞏固練習(xí):

  1.如圖2,若∠2=∠6,則______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.

  (第1題) (第2題)

  2.如圖,一個(gè)合格的變形管道ABCD需要AB邊與CD邊平行,若一個(gè)拐角∠ABC=72°,則另一個(gè)拐角∠BCD=_______時(shí),這個(gè)管道符合要求.

  二、選擇題.

  1.如圖,下列判斷不正確的是( )

  A.因?yàn)椤?=∠4,所以DE∥AB

  B.因?yàn)椤?=∠3,所以AB∥EC

  C.因?yàn)椤?=∠A,所以AB∥DE

  D.因?yàn)椤螦DE+∠BED=180°,所以AD∥BE

  2.如圖,直線AB、CD被直線EF所截,使∠1=∠2≠90°,則( )

  A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4

  三、解答題.

  1.你能用一張不規(guī)則的紙(比如,如圖1所示的四邊形的紙)折出兩條平行的直線嗎?與同伴說說你的折法.

  2.已知,如圖2,點(diǎn)B在AC上,BD⊥BE,∠1+∠C=90°,問射線CF與BD平行嗎?試用兩種方法說明理由.

初中數(shù)學(xué)教案6

  教學(xué)內(nèi)容:在學(xué)生初步了解,年月日、季度的概念后,尋找歷法與撲克之間的關(guān)系。

  教學(xué)目標(biāo):1、通過對"撲克"有趣的研究,培養(yǎng)起學(xué)生對生活中平常小事的.關(guān)注。

  2、調(diào)動(dòng)學(xué)生豐富的聯(lián)想,養(yǎng)成一種思考的習(xí)慣。

  教學(xué)重難點(diǎn):"撲克"與年月日、季度的聯(lián)系。

  教學(xué)過程:

  一、談話引入

  師:同學(xué)們,這個(gè)你們一定見過吧!這是我們生活中比較常見的"撲克"。誰愿意告訴我們,你對撲克的了解呢?

  生:......

 。ń處熝a(bǔ)充,引發(fā)學(xué)生的好奇心。)

  師: "撲克"還有一種作用,而且與數(shù)學(xué)有關(guān)!

  生:......

  二、新課

  1、桃、心、梅、方4種花色可以代表一年四季春、夏、秋、冬

  2、大王=太陽 小王=月亮 紅=白天 黑=夜晚

  3、A=1 2=2 3=3 4=4 5=5 6=6 7=7 8=8 9=9 10=10 J=11 Q=12 K=13 大王=1 小王=1

  4、所有牌的和+小王=平年的天數(shù)

  所有牌的和+小王+大王=閏年的天數(shù)

  5、撲克中的K、Q、J共有12張,3×4=12,表示一年有12個(gè)月

  6、365÷7≈52一年有52個(gè)星期。54張牌中除去大王、小王有52張是正牌,表示一年有52個(gè)星期。

  7、一種花色的和=一個(gè)季度的天數(shù)

  一種花色有13張牌=一個(gè)季度有13個(gè)星期

  三、小結(jié)

  生活中有很多的數(shù)學(xué),他每時(shí)每刻都在我們的身邊出現(xiàn),只是我們大家沒有注意到。請大家都要學(xué)會(huì)留心觀察,做生活的有心人。

初中數(shù)學(xué)教案7

  教學(xué)目的

  1、使學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,掌握實(shí)數(shù)的分類,會(huì)準(zhǔn)確判斷一個(gè)數(shù)是有理數(shù)還是無理數(shù)。

  2、使學(xué)生能了解實(shí)數(shù)絕對值的意義。

  3、使學(xué)生能了解數(shù)軸上的點(diǎn)具有一一對應(yīng)關(guān)系。

  4、由實(shí)數(shù)的分類,滲透數(shù)學(xué)分類的思想。

  5、由實(shí)數(shù)與數(shù)軸的一一對應(yīng),滲透數(shù)形結(jié)合的思想。

  教學(xué)分析

  重點(diǎn):無理數(shù)及實(shí)數(shù)的概念。

  難點(diǎn):有理數(shù)與無理數(shù)的區(qū)別,點(diǎn)與數(shù)的一一對應(yīng)。

  教學(xué)過程

  一、復(fù)習(xí)

  1、什么叫有理數(shù)?

  2、有理數(shù)可以如何分類?

 。ò炊x分與按大小分。)

  二、新授

  1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。

  判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。

  2、實(shí)數(shù)的.定義:有理數(shù)與無理數(shù)統(tǒng)稱為實(shí)數(shù)。

  3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。

  除了按定義還能按大小寫出列表。

  4、實(shí)數(shù)的相反數(shù):

  5、實(shí)數(shù)的絕對值:

  6、實(shí)數(shù)的運(yùn)算

  講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

  例2,判斷題:

 。1)任何實(shí)數(shù)的偶次冪是正實(shí)數(shù)。( )

 。2)在實(shí)數(shù)范圍內(nèi),若| x|=|y|則x=y。( )

 。3)0是最小的實(shí)數(shù)。( )

 。4)0是絕對值最小的實(shí)數(shù)。( )

  解:略

  三、練習(xí)

  P148 練習(xí):3、4、5、6。

  四、小結(jié)

  1、今天我們學(xué)習(xí)了實(shí)數(shù),請同學(xué)們首先要清楚,實(shí)數(shù)是如何定義的,它與有理數(shù)是怎樣的關(guān)系,二是對實(shí)數(shù)兩種不同的分類要清楚。

  2、要對應(yīng)有理數(shù)的相反數(shù)與絕對值定義及運(yùn)算律和運(yùn)算性質(zhì),來理解在實(shí)數(shù)中的運(yùn)用。

  五、作業(yè)

  1、P150 習(xí)題A:3。

  2、基礎(chǔ)訓(xùn)練:同步練習(xí)1。

初中數(shù)學(xué)教案8

  一、檢查反饋

  本次檢查大多數(shù)教師都比較重視,檢查內(nèi)容完整、全面,F(xiàn)將檢查情況總結(jié)如下教案方面的特點(diǎn)與不足。

  特點(diǎn):

  1、絕大多數(shù)教案設(shè)計(jì)完整,教學(xué)重點(diǎn)、難點(diǎn)突出,設(shè)置得當(dāng),緊緊圍繞新課標(biāo),例如:劉興華、孫菊、江文李雅芳等能突出對學(xué)科素養(yǎng)的高度關(guān)注。教師撰寫的課后反思能體現(xiàn)教師對教材處理的新方法,能側(cè)重對自己教法和學(xué)生學(xué)法的指導(dǎo),并且還能對自己不得法的教學(xué)手段、方式、方法進(jìn)行深刻地解剖,能很好地體現(xiàn)課堂教學(xué)的`反思意識,反思深刻、務(wù)實(shí)、有針對性。

  2、注重選擇恰當(dāng)?shù)慕虒W(xué)方法,注重在靈活多樣的教學(xué)方法中培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。

  3、教案能體現(xiàn)多媒體教學(xué)手段,注重培養(yǎng)學(xué)生的探究精神和創(chuàng)新能力。

  不足:

  1、教案后的教學(xué)反思不夠認(rèn)真、不夠詳細(xì),沒能對本堂課的得與失作出記錄與小結(jié),從中也可以看出我們對課后反思還不夠重視。

  2、個(gè)別教師教案過于簡單。

  作業(yè)方面的特點(diǎn)與不足

  特點(diǎn):

  1、能按進(jìn)度布置作業(yè),作業(yè)設(shè)置量度適中,難易適中,上交率較高,且都能做到全批全改。

  2、作業(yè)批改公平、公正,有一定的等級評定。教師批改要求嚴(yán)格、細(xì)致,能夠反映學(xué)生作業(yè)中的錯(cuò)誤做法及糾正措施。

  3、學(xué)生在書寫方面有很大進(jìn)步。從檢查可以發(fā)現(xiàn)教師對學(xué)生作業(yè)的書寫格式有明確的要求。

  不足:

  1、對于學(xué)生書寫的工整性,還需加強(qiáng)教育。

  2、教師在批閱作業(yè)時(shí),要稍細(xì)心些,發(fā)現(xiàn)問題就讓學(xué)生當(dāng)時(shí)改正,學(xué)生也就會(huì)逐漸養(yǎng)成做事認(rèn)真的習(xí)慣。

初中數(shù)學(xué)教案9

  教學(xué)目標(biāo)

  1.經(jīng)歷不同的拼圖方法驗(yàn)證公式的過程,在此過程中加深對因式分解、整式運(yùn)算、面積等的認(rèn)識。

  2.通過驗(yàn)證過程中數(shù)與形的結(jié)合,體會(huì)數(shù)形結(jié)合的思想以及數(shù)學(xué)知識之間內(nèi)在聯(lián)系,每一部分知識并不是孤立的。

  3.通過豐富有趣的拼圖活動(dòng),經(jīng)歷觀察、比較、拼圖、計(jì)算、推理交流等過程,發(fā)展空間觀念和有條理地思考和表達(dá)的能力,獲得一些研究問題與合作交流方法與經(jīng)驗(yàn)。

  4.通過獲得成功的體驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。通過豐富有趣拼的圖活動(dòng)增強(qiáng)對數(shù)學(xué)學(xué)習(xí)的興趣。

  重點(diǎn)1.通過綜合運(yùn)用已有知識解決問題的過程,加深對因式分解、整式運(yùn)算、面積等的認(rèn)識。

  2.通過拼圖驗(yàn)證公式的過程,使學(xué)習(xí)獲得一些研究問題與合作交流的方法與經(jīng)驗(yàn)。

  難點(diǎn)利用數(shù)形結(jié)合的方法驗(yàn)證公式

  教學(xué)方法動(dòng)手操作,合作探究課型新授課教具投影儀

  教師活動(dòng)學(xué)生活動(dòng)

  情景設(shè)置:

  你已知道的關(guān)于驗(yàn)證公式的拼圖方法有哪些?(教師在此給予學(xué)生獨(dú)立思考和討論的時(shí)間,讓學(xué)生回想前面拼圖。)

  新課講解:

  把幾個(gè)圖形拼成一個(gè)新的圖形,再通過圖形面積的計(jì)算,常常可以得到一些有用的式子。美國第二十任總統(tǒng)伽菲爾德就由這個(gè)圖(由兩個(gè)邊長分別為a、b、c的直角三角形和一個(gè)兩條直角邊都是c的直角三角形拼成一個(gè)新的圖形)得出:c2=a2+b2他的證法在數(shù)學(xué)史上被傳為佳話。他是這樣分析的,如圖所示:

  教師接著在介紹教材第94頁例題的拼法及相關(guān)公式

  提問:還能通過怎樣拼圖來解決以下問題

 。1)任意選取若干塊這樣的硬紙片,嘗試拼成一個(gè)長方形,計(jì)算它的面積,并寫出相應(yīng)的`等式;

 。2)任意寫出一個(gè)關(guān)于a、b的二次三項(xiàng)式,如a2+4ab+3b2

  試用拼一個(gè)長方形的方法,把這個(gè)二次三項(xiàng)式因式分解。

  這個(gè)問題要給予學(xué)生充足的時(shí)間和空間進(jìn)行討論和拼圖,教師在這要引導(dǎo)適度,不要限制學(xué)生思維,同時(shí)鼓勵(lì)學(xué)生在拼圖過程中進(jìn)行交流合作

  了解學(xué)生拼圖的情況及利用自己的拼圖驗(yàn)證的情況。教師在巡視過程中,及時(shí)指導(dǎo),并讓學(xué)生展示自己的拼圖及讓學(xué)生講解驗(yàn)證公式的方法,并根據(jù)不同學(xué)生的不同狀況給予適當(dāng)?shù)囊龑?dǎo),引導(dǎo)學(xué)生整理結(jié)論。

  小結(jié):

  從這節(jié)課中你有哪些收獲?

  (教師應(yīng)給予學(xué)生充分的時(shí)間鼓勵(lì)學(xué)生暢所欲言,只要是學(xué)生的感受和想法,教師要多鼓勵(lì)、多肯定。最后,教師要對學(xué)生所說的進(jìn)行全面的總結(jié)。)

  學(xué)生回答

  a(b+c+d)=ab+ac+ad

  (a+b)(c+d)=ac+ad+bc+bd

 。╝+b)2=a2+2ab+b2

  學(xué)生拿出準(zhǔn)備好的硬紙板制作

  給學(xué)生充分的時(shí)間進(jìn)行拼圖、思考、交流經(jīng)驗(yàn),對于有困難的學(xué)生教師要給予適當(dāng)引導(dǎo)。

  作業(yè)第95頁第3題

  板書設(shè)計(jì)

  復(fù)習(xí)例1板演

  ………………

  ………………

  ……例2……

  ………………

  ………………

  教學(xué)后記

初中數(shù)學(xué)教案10

  教學(xué)目標(biāo):

 。1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

 。2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

  重點(diǎn)難點(diǎn):

  能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

  教學(xué)過程:

  一、試一試

  1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的.一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定, y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,

  對于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思考、交流、發(fā)表意見,達(dá)成共識:當(dāng)AB的長為5cm,BC的長為10m時(shí),圍成的矩形面積最大;最大面積為50m2。 對于2,可讓學(xué)生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0 <x <10。 對于3,教師可提出問題,(1)當(dāng)AB=xm時(shí),BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0 <x <10)就是所求的函數(shù)關(guān)系式.

  二、提出問題

  某商店將每件進(jìn)價(jià)為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價(jià)、增加銷售量的辦法來提高利潤,經(jīng)過市場調(diào)查,發(fā)現(xiàn)這種商品單價(jià)每降低0.1元,其銷售量可增加10件。將這種商品的售價(jià)降低多少時(shí),能使銷售利潤最大? 在這個(gè)問題中,可提出如下問題供學(xué)生思考并回答:

  1.商品的利潤與售價(jià)、進(jìn)價(jià)以及銷售量之間有什么關(guān)系?

  [利潤=(售價(jià)-進(jìn)價(jià))×銷售量]

  2.如果不降低售價(jià),該商品每件利潤是多少元?一天總的利潤是多少元?

  [10-8=2(元),(10-8)×100=200(元)]

  3.若每件商品降價(jià)x元,則每件商品的利潤是多少元?一天可銷

  售約多少件商品?

  [(10-8-x);(100+100x)]

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  [x的值不能任意取,其范圍是0≤x≤2]

  5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。

  [y=(10-8-x) (100+100x)(0≤x≤2)]

  將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:

  y=-2x2+20x(0<x<10)……………………………(1) 將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為: y=-100x2+100x+20D (0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出以下問題讓學(xué)生思考回答;

  (1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)?

  (各有1個(gè))

  (2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式? (分別是二次多項(xiàng)式)

  (3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)?

  (都是用自變量的二次多項(xiàng)式來表示的)

  (4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點(diǎn)? 讓學(xué)生討論、交流,發(fā)表意見,歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

  四、課堂練習(xí)

  1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y=5x+1 (2)y=4x2-1

  (3)y=2x3-3x2 (4)y=5x4-3x+1

  2.P3練習(xí)第1,2題。

  五、小結(jié)

  1.請敘述二次函數(shù)的定義.

  2,許多實(shí)際問題可以轉(zhuǎn)化為二次函數(shù)來解決,請你聯(lián)系生活實(shí)際,編一道二次函數(shù)應(yīng)用題,并寫出函數(shù)關(guān)系式。

  六、作業(yè):略

初中數(shù)學(xué)教案11

  學(xué)習(xí)目標(biāo)

  1.理解平行線的意義兩條直線的兩種位置關(guān)系;

  2.理解并掌握平行公理及其推論的內(nèi)容;

  3.會(huì)根據(jù)幾何語句畫圖,會(huì)用直尺和三角板畫平行線;

  學(xué)習(xí)重點(diǎn)

  探索和掌握平行公理及其推論.

  學(xué)習(xí)難點(diǎn)

  對平行線本質(zhì)屬性的理解,用幾何語言描述圖形的性質(zhì)

  一、學(xué)習(xí)過程:預(yù)習(xí)提問

  兩條直線相交有幾個(gè)交點(diǎn)?

  平面內(nèi)兩條直線的位置關(guān)系除相交外,還有哪些呢?

 。ㄒ唬┊嬈叫芯

  1、 工具:直尺、三角板

  2、 方法:一"落";二"靠";三"移";四"畫"。

  3、請你根據(jù)此方法練習(xí)畫平行線:

  已知:直線a,點(diǎn)B,點(diǎn)C.

  (1)過點(diǎn)B畫直線a的平行線,能畫幾條?

  (2)過點(diǎn)C畫直線a的`平行線,它與過點(diǎn)B的平行線平行嗎?

 。ǘ┢叫泄砑巴普

  1、思考:上圖中,①過點(diǎn)B畫直線a的平行線,能畫 條;

  ②過點(diǎn)C畫直線a的平行線,能畫 條;

 、勰惝嫷闹本有什么位置關(guān)系? 。

 、谔剿鳎喝鐖D,P是直線AB外一點(diǎn),CD與EF相交于P.若CD與AB平行,則EF與AB平行嗎?為什么?

  二、自我檢測:

 。ㄒ唬┻x擇題:

  1、下列推理正確的是 ( )

  A、因?yàn)閍//d, b//c,所以c//d B、因?yàn)閍//c, b//d,所以c//d

  C、因?yàn)閍//b, a//c,所以b//c D、因?yàn)閍//b, d//c,所以a//c

  2.在同一平面內(nèi)有三條直線,若其中有兩條且只有兩條直線平行,則它們交點(diǎn)的個(gè)數(shù)為( )

  A.0個(gè) B.1個(gè) C.2個(gè) D.3個(gè)

 。ǘ┨羁疹}:

  1、在同一平面內(nèi),與已知直線L平行的直線有 條,而經(jīng)過L外一點(diǎn),與已知直線L平行的直線有且只有 條。

  2、在同一平面內(nèi),直線L1與L2滿足下列條件,寫出其對應(yīng)的位置關(guān)系:

 。1)L1與L2 沒有公共點(diǎn),則 L1與L2 ;

  (2)L1與L2有且只有一個(gè)公共點(diǎn),則L1與L2 ;

 。3)L1與L2有兩個(gè)公共點(diǎn),則L1與L2 。

  3、在同一平面內(nèi),一個(gè)角的兩邊與另一個(gè)角的兩邊分別平行,那么這兩個(gè)角的大小關(guān)系是 。

  4、平面內(nèi)有a 、b、c三條直線,則它們的交點(diǎn)個(gè)數(shù)可能是 個(gè)。

  三、CD⊥AB于D,E是BC上一點(diǎn),EF⊥AB于F,∠1=∠2.試說明∠BDG+∠B=180°.

初中數(shù)學(xué)教案12

  一、教學(xué)目標(biāo)

  1、了解二次根式的意義;

  2、掌握用簡單的一元一次不等式解決二次根式中字母的取值問題;

  3、掌握二次根式的性質(zhì)和,并能靈活應(yīng)用;

  4、通過二次根式的計(jì)算培養(yǎng)學(xué)生的邏輯思維能力;

  5、通過二次根式性質(zhì)和的.介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):

  (1)二次根的意義;

  (2)二次根式中字母的取值范圍。

  難點(diǎn):確定二次根式中字母的取值范圍。

  三、教學(xué)方法

  啟發(fā)式、講練結(jié)合。

  四、教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)提問

  1、什么叫平方根、算術(shù)平方根?

  2、說出下列各式的意義,并計(jì)算

 。ǘ┮胄抡n

  新課:二次根式

  定義:式子叫做二次根式。

  對于請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):

 。1)式子只有在條件a≥0時(shí)才叫二次根式,是二次根式嗎?呢?

  若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。

 。2)是二次根式,而,提問學(xué)生:2是二次根式嗎?顯然不是,因此二次

  根式指的是某種式子的“外在形態(tài)”。請學(xué)生舉出幾個(gè)二次根式的例子,并說明為什么是二次根式。下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。

  例1當(dāng)a為實(shí)數(shù)時(shí),下列各式中哪些是二次根式?

  例2 x是怎樣的實(shí)數(shù)時(shí),式子在實(shí)數(shù)范圍有意義?

  解:略。

  說明:這個(gè)問題實(shí)質(zhì)上是在x是什么數(shù)時(shí),x—3是非負(fù)數(shù),式子有意義。

  例3當(dāng)字母取何值時(shí),下列各式為二次根式:

  分析:由二次根式的定義,被開方數(shù)必須是非負(fù)數(shù),把問題轉(zhuǎn)化為解不等式。

  解:(1)∵a、b為任意實(shí)數(shù)時(shí),都有a2+b2≥0,∴當(dāng)a、b為任意實(shí)數(shù)時(shí),是二次根式。

  (2)—3x≥0,x≤0,即x≤0時(shí),是二次根式。

 。3),且x≠0,∴x>0,當(dāng)x>0時(shí),是二次根式。

  (4),即,故x—2≥0且x—2≠0,∴x>2。當(dāng)x>2時(shí),是二次根式。

  例4下列各式是二次根式,求式子中的字母所滿足的條件:

  分析:這個(gè)例題根據(jù)二次根式定義,讓學(xué)生分析式子中字母應(yīng)滿足的條件,進(jìn)一步鞏固二次根式的定義,。即:只有在條件a≥0時(shí)才叫二次根式,本題已知各式都為二次根式,故要求各式中的被開方數(shù)都大于等于零。

  解:(1)由2a+3≥0,得。

 。2)由,得3a—1>0,解得。

  (3)由于x取任何實(shí)數(shù)時(shí)都有|x|≥0,因此,|x|+0。1>0,于是,式子是二次根式。所以所求字母x的取值范圍是全體實(shí)數(shù)。

  (4)由—b2≥0得b2≤0,只有當(dāng)b=0時(shí),才有b2=0,因此,字母b所滿足的條件是:b=0。

初中數(shù)學(xué)教案13

  教學(xué)目標(biāo)

  1、理解并掌握等腰三角形的判定定理及推論

  2、能利用其性質(zhì)與判定證明線段或角的相等關(guān)系·

  教學(xué)重點(diǎn):等腰三角形的判定定理及推論的運(yùn)用

  教學(xué)難點(diǎn):正確區(qū)分等腰三角形的判定與性質(zhì),能夠利用等腰三角形的判定定理證明線段的相等關(guān)系·

  教學(xué)過程:

  一、復(fù)習(xí)等腰三角形的性質(zhì)

  二、新授:

  I提出問題,創(chuàng)設(shè)情境

  出示投影片·某地質(zhì)專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點(diǎn))為B標(biāo),然后在這棵樹的正南方(南岸A點(diǎn)抽一小旗作標(biāo)志)沿南偏東60°方向走一段距離到C處時(shí),測得∠ACB為30°,這時(shí),地質(zhì)專家測得AC的長度就可知河流寬度·

  學(xué)生們很想知道,這樣估測河流寬度的根據(jù)是什么?帶著這個(gè)問題,引導(dǎo)學(xué)生學(xué)習(xí)“等腰三角形的判定”·

  II引入新課

  1·由性質(zhì)定理的題設(shè)和結(jié)論的變化,引出研究的.內(nèi)容——在△ABC中,苦∠B=∠C,則AB= AC嗎?

  作一個(gè)兩個(gè)角相等的三角形,然后觀察兩等角所對的邊有什么關(guān)系?

  2·引導(dǎo)學(xué)生根據(jù)圖形,寫出已知、求證·

  2、小結(jié),通過論證,這個(gè)命題是真命題,即“等腰三角形的判定定理”(板書定理名稱)·

  強(qiáng)調(diào)此定理是在一個(gè)三角形中把角的相等關(guān)系轉(zhuǎn)化成邊的相等關(guān)系的重要依據(jù),類似于性質(zhì)定理可簡稱“等角對等邊”·

  4·引導(dǎo)學(xué)生說出引例中地質(zhì)專家的測量方法的根據(jù)·

  III例題與練習(xí)

  1·如圖2

  其中△ABC是等腰三角形的是[ ]

  2·①如圖3,已知△ABC中,AB=AC·∠A=36°,則∠C______(根據(jù)什么?)·

 、谌鐖D4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根據(jù)什么?)·

  ③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判斷圖5中等腰三角形有______·

  ④若已知AD=4cm,則BC______cm·

  3·以問題形式引出推論l______·

  4·以問題形式引出推論2______·

  例:如果三角形一個(gè)外角的平分線平行于三角形的一邊,求證這個(gè)三角形是等腰三角形·

  分析:引導(dǎo)學(xué)生根據(jù)題意作出圖形,寫出已知、求證,并分析證明·

  練習(xí):5·(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交于點(diǎn)F,過F作DE//BC,交AB于點(diǎn)D,交AC于E·問圖中哪些三角形是等腰三角形?

 。2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

  練習(xí):P53練習(xí)1、2、3。

  IV課堂小結(jié)

  1·判定一個(gè)三角形是等腰三角形有幾種方法?

  2·判定一個(gè)三角形是等邊三角形有幾種方法?

  3·等腰三角形的性質(zhì)定理與判定定理有何關(guān)系?

  4·現(xiàn)在證明線段相等問題,一般應(yīng)從幾方面考慮?

  V布置作業(yè):P56頁習(xí)題12·3第5、6題

初中數(shù)學(xué)教案14

  一元一次不等式組

  教學(xué)目標(biāo)

  1、熟練掌握一元一次不等式組的解法,會(huì)用一元一次不等式組解決有關(guān)的實(shí)際問題;

  2、理解一元一次不等式組應(yīng)用題的一般解題步驟,逐步形成分析問題和解決問題的能力;

  3、體驗(yàn)數(shù)學(xué)學(xué)習(xí)的樂趣,感受一元一次不等式組在解決實(shí)際問題中的'價(jià)值。

  教學(xué)難點(diǎn)

  正確分析實(shí)際問題中的不等關(guān)系,列出不等式組。

  知識重點(diǎn)

  建立不等式組解實(shí)際問題的數(shù)學(xué)模型。

  探究實(shí)際問題

  出示教科書第145頁例2(略)

  問:(1)你是怎樣理解“不能完成任務(wù)”的數(shù)量含義的?

  (2)你是怎樣理解“提前完成任務(wù)”的數(shù)量含義的?

  (3)解決這個(gè)問題,你打算怎樣設(shè)未知數(shù)?列出怎樣的不等式?

  師生一起討論解決例2.

  歸納小結(jié)

  1、教科書146頁“歸納”(略).

  2、你覺得列一元一次不等式組解應(yīng)用題與列二元一次方程組解應(yīng)用題的步驟一樣嗎?

  在討論或議論的基礎(chǔ)上老師揭示:

  步法一致(設(shè)、列、解、答);本質(zhì)有區(qū)別.(見下表)一元一次不等式組應(yīng)用題與二元一次方程組應(yīng)用題解題步驟異同表。

初中數(shù)學(xué)教案15

  一、學(xué)生起點(diǎn)分析

  學(xué)生已經(jīng)了勾股定理,并在先前其他內(nèi)容學(xué)習(xí)中已經(jīng)積累了一定百度一下的逆向思維、逆向研究的經(jīng)驗(yàn),如:已知兩直線平行,有什么樣的結(jié)論?

  反之,滿足什么條件的兩直線是平行?因而,本課時(shí)由勾股定理出發(fā)逆向思考獲得逆命題,學(xué)生應(yīng)該已經(jīng)具備這樣的意識,但具體研究中

  可能要用到反證等思路,對現(xiàn)階段學(xué)生而言可能還具有一定困難,需要教師適時(shí)的引導(dǎo)。

  二、學(xué)習(xí)任務(wù)分析

  本節(jié)課是北師大版數(shù)學(xué)八年級(上)第一章《勾股定理》第2節(jié)。教學(xué)任務(wù)有:探索勾股定理的逆定理

  并利用該定理根據(jù)邊長判斷一個(gè)三角形是否是直角三角形,利用該定理解決一些簡單的實(shí)際問題;通過具體的數(shù),增加對勾股數(shù)的直觀體驗(yàn)。為此確定教學(xué)目標(biāo):

  ● 知識與技能目標(biāo)

  1.理解勾股定理逆定理的具體內(nèi)容及勾股數(shù)的概念;

  2.能根據(jù)所給三角形三邊的條件判斷三角形是否是直角三角形。

  ● 過程與方法目標(biāo)

  1.經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力;

  2.經(jīng)歷從實(shí)驗(yàn)到驗(yàn)證的過程,發(fā)展學(xué)生的數(shù)學(xué)歸納能力。

  ● 情感與態(tài)度目標(biāo)

  1.體驗(yàn)生活中的數(shù)學(xué)的應(yīng)用價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣;

  2.在探索過程中體驗(yàn)成功的喜悅,樹立學(xué)習(xí)的自信心。

  教學(xué)重點(diǎn)

  理解勾股定理逆定理的具體內(nèi)容。

  三、教法學(xué)法

  1.教學(xué)方法:實(shí)驗(yàn)猜想歸納論證

  本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識較強(qiáng),思維活躍,對通過實(shí)驗(yàn)獲得數(shù)學(xué)結(jié)論已有一定的體驗(yàn)

  但數(shù)學(xué)思維嚴(yán)謹(jǐn)?shù)耐瑢W(xué)總是心存疑慮,利用邏輯推理的方式,讓同學(xué)心服口服顯得非常迫切,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求從以下三個(gè)方面對學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;

  (2)從學(xué)生活動(dòng)出發(fā),通過以舊引新,順勢教學(xué)過程;

  (3)利用探索,研究手段,通過思維深入,領(lǐng)悟教學(xué)過程。

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件。

  學(xué)具:教材、筆記本、課堂練習(xí)本、文具。

  四、教學(xué)過程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié)。第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):小試牛刀;第四環(huán)節(jié):

  登高望遠(yuǎn);第五環(huán)節(jié):鞏固提高;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè)。

  第一環(huán)節(jié):情境引入

  內(nèi)容:

  情境:1.直角三角形中,三邊長度之間滿足什么樣的關(guān)系?

  2.如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?

  意圖:

  通過情境的'創(chuàng)設(shè)引入新課,激發(fā)學(xué)生探究熱情。

  效果:

  從勾股定理逆向思維這一情景引入,提出問題,激發(fā)了學(xué)生的求知欲,為下一環(huán)節(jié)奠定了良好的基礎(chǔ)。

  第二環(huán)節(jié):合作探究

  內(nèi)容1:探究

  下面有三組數(shù),分別是一個(gè)三角形的三邊長 ,①5,12,13;②7,24,25;③8,15,17;并回答這樣兩個(gè)問題:

  1.這三組數(shù)都滿足 嗎?

  2.分別以每組數(shù)為三邊作出三角形,用量角器量一量,它們都是直角三角形嗎?學(xué)生分為4人活動(dòng)小組,每個(gè)小組可以任選其中的一組數(shù)。

  意圖:

  通過學(xué)生的合作探究,得出若一個(gè)三角形的三邊長 ,滿足 ,則這個(gè)三角形是直角三角形這一結(jié)論;在活動(dòng)中體驗(yàn)出數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  效果:

  經(jīng)過學(xué)生充分討論后,匯總各小組實(shí)驗(yàn)結(jié)果發(fā)現(xiàn):①5,12,13滿足 ,可以構(gòu)成直角三角形;②7,24,25滿足 ,可以構(gòu)成直角三角形;③8,15,17滿足 ,可以構(gòu)成直角三角形。

  從上面的分組實(shí)驗(yàn)很容易得出如下結(jié)論:

  如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形

  內(nèi)容2:說理

  提問:有同學(xué)認(rèn)為測量結(jié)果可能有誤差,不同意這個(gè)發(fā)現(xiàn)。你認(rèn)為這個(gè)發(fā)現(xiàn)正確嗎?你能給出一個(gè)更有說服力的理由嗎?

  意圖:讓學(xué)生明確,僅僅基于測量結(jié)果得到的結(jié)論未必可靠,需要進(jìn)一步通過說理等方式使學(xué)生確信結(jié)論的可靠性,同時(shí)明晰結(jié)論:

  如果一個(gè)三角形的三邊長 ,滿足 ,那么這個(gè)三角形是直角三角形

  滿足 的三個(gè)正整數(shù),稱為勾股數(shù)。

  注意事項(xiàng):為了讓學(xué)生確認(rèn)該結(jié)論,需要進(jìn)行說理,有條件的班級,還可利用幾何畫板動(dòng)畫演示,讓同學(xué)有一個(gè)直觀的認(rèn)識。

  活動(dòng)3:反思總結(jié)

  提問:

  1.同學(xué)們還能找出哪些勾股數(shù)呢?

  2.今天的結(jié)論與前面學(xué)習(xí)勾股定理有哪些異同呢?

  3.到今天為止,你能用哪些方法判斷一個(gè)三角形是直角三角形呢?

  4.通過今天同學(xué)們合作探究,你能體驗(yàn)出一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)要經(jīng)歷哪些過程呢?

  意圖:進(jìn)一步讓學(xué)生認(rèn)識該定理與勾股定理之間的關(guān)系

  第三環(huán)節(jié):小試牛刀

  內(nèi)容:

  1.下列哪幾組數(shù)據(jù)能作為直角三角形的三邊長?請說明理由。

 、9,12,15; ②15,36,39; ③12,35,36; ④12,18,22

  解答:①②

  2.一個(gè)三角形的三邊長分別是 ,則這個(gè)三角形的面積是( )

  A 250 B 150 C 200 D 不能確定

  解答:B

  3.如圖1:在 中, 于 , ,則 是( )

  A 等腰三角形 B 銳角三角形

  C 直角三角形 D 鈍角三角形

  解答:C

  4.將直角三角形的三邊擴(kuò)大相同的倍數(shù)后, (圖1)

  得到的三角形是( )

  A 直角三角形 B 銳角三角形

  C 鈍角三角形 D 不能確定

  解答:A

  意圖:

  通過練習(xí),加強(qiáng)對勾股定理及勾股定理逆定理認(rèn)識及應(yīng)用

  效果

  每題都要求學(xué)生獨(dú)立完成(5分鐘),并指出各題分別用了哪些知識。

  第四環(huán)節(jié):登高望遠(yuǎn)

  內(nèi)容:

  1.一個(gè)零件的形狀如圖2所示,按規(guī)定這個(gè)零件中 都應(yīng)是直角。工人師傅量得這個(gè)零件各邊尺寸如圖3所示,這個(gè)零件符合要求嗎?

  解答:符合要求 , 又 ,

  2.一艘在海上朝正北方向航行的輪船,航行240海里時(shí)方位儀壞了,憑經(jīng)驗(yàn),船長指揮船左傳90,繼續(xù)航行70海里,則距出發(fā)地250海里,你能判斷船轉(zhuǎn)彎后,是否沿正西方向航行?

  解答:由題意畫出相應(yīng)的圖形

  AB=240海里,BC=70海里,,AC=250海里;在△ABC中

  =(250+240)(250-240)

  =4900= = 即 △ABC是Rt△

  答:船轉(zhuǎn)彎后,是沿正西方向航行的。

  意圖:

  利用勾股定理逆定理解決實(shí)際問題,進(jìn)一步鞏固該定理。

  效果:

  學(xué)生能用自己的語言表達(dá)清楚解決問題的過程即可;利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形( ),以便于計(jì)算。

  第五環(huán)節(jié):鞏固提高

  內(nèi)容:

  1.如圖4,在正方形ABCD中,AB=4,AE=2,DF=1, 圖中有幾個(gè)直角三角形,你是如何判斷的?與你的同伴交流。

  解答:4個(gè)直角三角形,它們分別是△ABE、△DEF、△BCF、△BEF

  2.如圖5,哪些是直角三角形,哪些不是,說說你的理由?

  圖4 圖5

  解答:④⑤是直角三角形,①②③⑥不是直角三角形

  意圖:

  第一題考查學(xué)生充分利用所學(xué)知識解決問題時(shí),考慮問題要全面,不要漏解;第二題在于考查學(xué)生如何利用網(wǎng)格進(jìn)行計(jì)算,從而解決問題。

  效果:

  學(xué)生在對所學(xué)知識有一定的熟悉度后,能夠快速做答并能簡要說明理由即可。注意防漏解及網(wǎng)格的應(yīng)用。

  第六環(huán)節(jié):交流小結(jié)

  內(nèi)容:

  師生相互交流總結(jié)出:

  1.今天所學(xué)內(nèi)容①會(huì)利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形;②滿足 的三個(gè)正整數(shù),稱為勾股數(shù);

  2.從今天所學(xué)內(nèi)容及所作練習(xí)中總結(jié)出的經(jīng)驗(yàn)與方法:①數(shù)學(xué)是源于生活又服務(wù)于生活的;②數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律;③利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形時(shí),當(dāng)遇見數(shù)據(jù)較大時(shí),要懂得將 作適當(dāng)變形, 便于計(jì)算。

  意圖:

  鼓勵(lì)學(xué)生結(jié)合本節(jié)課的學(xué)習(xí)談自己的收獲和感想,體會(huì)到勾股定理及其逆定理的廣泛應(yīng)用及它們的悠久歷史;敢于面對數(shù)學(xué)學(xué)習(xí)中的困難,并有獨(dú)立克服困難和運(yùn)用知識解決問題的成功經(jīng)驗(yàn),進(jìn)一步體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展運(yùn)用數(shù)學(xué)的信心和能力,初步形成積極參與數(shù)學(xué)活動(dòng)的意識。

  效果:

  學(xué)生暢所欲言自己的切身感受與實(shí)際收獲,總結(jié)出利用三角形三邊數(shù)量關(guān)系 判斷一個(gè)三角形是直角三角形從古至今在實(shí)際生活中的廣泛應(yīng)用。

  第七環(huán)節(jié):布置作業(yè)

  課本習(xí)題1.4第1,2,4題。

  五、教學(xué)反思:

  1.充分尊重教材,以勾股定理的逆向思維模式引入如果一個(gè)三角形的三邊長 ,滿足 ,是否能得到這個(gè)三角形是直角三角形的問題;充分引用教材中出現(xiàn)的例題和練習(xí)。

  2.注重引導(dǎo)學(xué)生積極參與實(shí)驗(yàn)活動(dòng),從中體驗(yàn)任何一個(gè)數(shù)學(xué)結(jié)論的發(fā)現(xiàn)總是要經(jīng)歷觀察、歸納、猜想和驗(yàn)證的過程,同時(shí)遵循由特殊一般特殊的發(fā)展規(guī)律。

  3.在利用今天所學(xué)知識解決實(shí)際問題時(shí),引導(dǎo)學(xué)生善于對公式變形,便于簡便計(jì)算。

  4.注重對學(xué)習(xí)新知理解應(yīng)用偏困難的學(xué)生的進(jìn)一步關(guān)注。

  5.對于勾股定理的逆定理的論證可根據(jù)學(xué)生的實(shí)際情況做適當(dāng)調(diào)整,不做要求。

  由于本班學(xué)生整體水平較高,因而本設(shè)計(jì)教學(xué)容量相對較大,教學(xué)中,應(yīng)注意根據(jù)自己班級學(xué)生的狀況進(jìn)行適當(dāng)?shù)膭h減或調(diào)整。

  附:板書設(shè)計(jì)

  能得到直角三角形嗎

  情景引入 小試牛刀: 登高望遠(yuǎn)

【初中數(shù)學(xué)教案】相關(guān)文章:

初中數(shù)學(xué)教案08-12

初中數(shù)學(xué)教案:公式12-29

人教版初中數(shù)學(xué)教案12-30

【熱】初中數(shù)學(xué)教案01-12

初中數(shù)學(xué)教案【熱門】01-12

【熱門】初中數(shù)學(xué)教案01-12

初中數(shù)學(xué)教案【推薦】01-12

【薦】初中數(shù)學(xué)教案01-12

初中數(shù)學(xué)教案【薦】01-12

【精】初中數(shù)學(xué)教案01-12