高三數學數列教案精選7篇
作為一名為他人授業(yè)解惑的教育工作者,通常需要用到教案來輔助教學,教案是教材及大綱與課堂教學的紐帶和橋梁。那么應當如何寫教案呢?下面是小編整理的高三數學數列教案,希望對大家有所幫助。
高三數學數列教案1
如果一個數列從第2項起,每一項與它的前一項的比等于同一個常數,這個數列就叫做等比數列。這個常數叫做等比數列的公比,公比通常用字母q表示。
(1)等比數列的通項公式是:An=A1×q^(n-1)
若通項公式變形為an=a1/q-q^n(n∈N-),當q>0時,則可把an看作自變量n的函數,點(n,an)是曲線y=a1/q-q^x上的一群孤立的點。
(2)任意兩項am,an的關系為an=am·q^(n-m)
(3)從等比數列的'定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:aq·ap=ar^2,ar則為ap,aq等比中項。
(5)等比求和:Sn=a1+a2+a3+.......+an
、佼攓≠1時,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
、诋攓=1時,Sn=n×a1(q=1)
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數的等比數列各項取同底數數后構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。
高三數學數列教案2
一、教材分析
1、教材的地位和作用:
數列是高中數學重要內容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面,數列作為一種特殊的函數與函數思想密不可分;另一方面,學習數列也為進一步學習數列的極限等內容做好準備。而等差數列是在學生學習了數列的有關概念和給出數列的兩種方法——通項公式和遞推公式的基礎上,對數列的知識進一步深入和拓廣。同時等差數列也為今后學習等比數列提供了學習對比的依據。
2、教學目標
根據教學大綱的要求和學生的實際水平,確定了本次課的教學目標
a在知識上:理解并掌握等差數列的概念;了解等差數列的通項公式的推導過程及思想;初步引入“數學建模”的思想方法并能運用。
b在能力上:培養(yǎng)學生觀察、分析、歸納、推理的能力;在領會函數與數列關系的前提下,把研究函數的方法遷移來研究數列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。
c在情感上:通過對等差數列的研究,培養(yǎng)學生主動探索、勇于發(fā)現的求知精神;養(yǎng)成細心觀察、認真分析、善于總結的良好思維習慣。
3、教學重點和難點
根據教學大綱的要求我確定本節(jié)課的教學重點為:
、俚炔顢盗械母拍。
、诘炔顢盗械耐椆降耐茖н^程及應用。
由于學生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導等差數列的同項公式是這節(jié)課的一個難點。同時,學生對“數學建模”的思想方法較為陌生,因此用數學思想解決實際問題是本節(jié)課的另一個難點。
二、學情教法分析:
對于三中的高一學生,知識經驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導、啟發(fā)、研究和探討以符合這類學生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現、分析和解決問題。
三、學法指導:
在引導分析時,留出學生的思考空間,讓學生去聯想、探索,同時鼓勵學生大膽質疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學程序
本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用舉例(四)反饋練習(五)歸納小結(六)布置作業(yè),六個教學環(huán)節(jié)構成。
(一)復習引入:
1.從函數觀點看,數列可看作是定義域為__________對應的一列函數值,從而數列的通項公式也就是相應函數的______。(N﹡;解析式)
通過練習1復習上節(jié)內容,為本節(jié)課用函數思想研究數列問題作準備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結果不知不覺地每天忘掉2個單詞,那么在今后的五天內他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3.小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習2和3引出兩個具體的等差數列,初步認識等差數列的特征,為后面的概念學習建立基礎,為學習新知識創(chuàng)設問題情站境,激發(fā)學生的求知欲。由學生觀察兩個數列特點,引出等差數列的概念,對問題的總結又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。
(二)新課探究
1、由引入自然的給出等差數列的概念:
如果一個數列,從第二項開始它的每一項與前一項之差都等于同一常數,這個數列就叫等差數列,
這個常數叫做等差數列的公差,通常用字母d來表示。強調:
、 “從第二項起”滿足條件;
②公差d一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(強調“同一個常數” );
在理解概念的基礎上,由學生將等差數列的文字語言轉化為數學語言,歸納出數學表達式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數列,由學生判斷是否為等差數列,是等差數列的找出公差。
1. 9,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一個數列公差<0,>0,第三個數列公差=0
由此強調:公差可以是正數、負數,也可以是0
2、第二個重點部分為等差數列的通項公式
在歸納等差數列通項公式中,我采用討論式的教學方法,
資料共享平臺
《高中數學說課稿:等差數列》(https://www.unjs.com)。給出等差數列的首項,公差d,由學生研究分組討論a4的通項公式。通過總結a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。
若一等差數列{an }的首項是a1,公差是d,則據其定義可得:
a2 - a1 =d即:a2 =a1 +d
a3 – a2 =d即:a3 =a2 +d = a1 +2d
a4 – a3 =d即:a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d,進而歸納出等差數列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹的學習態(tài)度,在這里向學生介紹另外一種求數列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d (1)
當n=1時,(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數列{an}的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學方法。
利用等差數列概念啟發(fā)學生寫出n-1個等式。
對照已歸納出的通項公式啟發(fā)學生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數學思想,逐步達到“注重方法,凸現思想”的教學要求
接著舉例說明:若一個等差數列{an}的首項是1,公差是2,得出這個數列的通項公式是:an=1+(n-1)×2,
即an=2n-1以此來鞏固等差數列通項公式運用
同時要求畫出該數列圖象,由此說明等差數列是關于正整數n一次函數,其圖像是均勻排開的無窮多個孤立點。用函數的思想來研究數列,使數列的性質顯現得更加清楚。
(三)應用舉例
這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向學生表明:要用運動變化的觀點看等差數列通項公式中的a1、d、n、an這4個量之間的關系。當其中的部分量已知時,可根據該公式求出另一部分量。
例1 (1)求等差數列8,5,2,…的第20項;第30項;第40項
(2)-401是不是等差數列-5,-9,-13,…的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數列通項公式;第二問實際上是求正整數解的問題,而關鍵是求出數列的通項公式an.
例2在等差數列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的'基礎上將例2當作練習作為對通項公式的鞏固
例3是一個實際建模問題
建造房屋時要設計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構成等差數列,引導學生將該實際問題轉化為數學模型------等差數列:(學生討論分析,分別演板,教師評析問題。問題可能出現在:項數學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設置此題的目的:1.加強同學們對應用題的綜合分析能力,2.通過數學實際問題引出等差數列問題,激發(fā)了學生的興趣;3.再者通過數學實例展示了“從實際問題出發(fā)經抽象概括建立數學模型,最后還原說明實際問題的“數學建!钡臄祵W思想方法
(四)反饋練習
1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。
2、書上例3)梯子的最高一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數列。計算中間各級的寬度。
目的:對學生加強建模思想訓練。
3、若數例{an}是等差數列,若bn = k an,(k為常數)試證明:數列{bn}是等差數列
此題是對學生進行數列問題提高訓練,學習如何用定義證明數列問題同時強化了等差數列的概念。
(五)歸納小結(由學生總結這節(jié)課的收獲)
1.等差數列的概念及數學表達式.
強調關鍵字:從第二項開始它的每一項與前一項之差都等于同一常數
2.等差數列的通項公式an= a1+(n-1) d會知三求一
3.用“數學建模”思想方法解決實際問題
(六)布置作業(yè)
必做題:課本P114習題3.2第2,6題
選做題:已知等差數列{an}的首項a1=-24,從第10項開始為正數,求公差d的取值范圍。
(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)
五、板書設計
在板書中突出本節(jié)重點,將強調的地方如定義中,“從第二項起”及“同一常數”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現了精講多練的教學方法。
高三數學數列教案3
2。2。1等差數列學案
一、預習問題:
1、等差數列的定義:一般地,如果一個數列從 起,每一項與它的前一項的差等于同一個 ,那么這個數列就叫等差數列,這個常數叫做等差數列的 , 通常用字母 表示。
2、等差中項:若三個數 組成等差數列,那么A叫做 與 的 ,
即 或 。
3、等差數列的單調性:等差數列的公差 時,數列為遞增數列; 時,數列為遞減數列; 時,數列為常數列;等差數列不可能是 。
4、等差數列的通項公式: 。
5、判斷正誤:
、1,2,3,4,5是等差數列; ( )
②1,1,2,3,4,5是等差數列; ( )
③數列6,4,2,0是公差為2的等差數列; ( )
、軘盗 是公差為 的`等差數列; ( )
⑤數列 是等差數列; ( )
、奕 ,則 成等差數列; ( )
、呷 ,則數列 成等差數列; ( )
、嗟炔顢盗惺窍噜弮身椫泻箜椗c前項之差等于非零常數的數列; ( )
、岬炔顢盗械墓钍窃摂盗兄腥魏蜗噜弮身椀牟睢 ( )
6、思考:如何證明一個數列是等差數列。
二、實戰(zhàn)操作:
例1、(1)求等差數列8,5,2,的第20項。
(2) 是不是等差數列 中的項?如果是,是第幾項?
(3)已知數列 的公差 則
例2、已知數列 的通項公式為 ,其中 為常數,那么這個數列一定是等差數列嗎?
例3、已知5個數成等差數列,它們的和為5,平方和為 求這5個數。
高三數學數列教案4
證明數列是等比數列
an=(2a-6b)n+6b
當此數列為等比數列時,顯然是常數列,即2a-6b=0
這個是顯然的東西,但是我不懂怎么證明
常數列嗎.所以任何一個K和M都應該有ak=amak=(2a-6b)k+6b am=(2a-6b)m+6bak-am=(2a-6b)(k-m)因為ak-am恒為0k m任意所以一定有2a-6b=0即a=3b
補充回答:題目條件看錯,再證明當此數列為等比數列時
2a-6b=0
因為等比a3:a2=a2:a1
即(6a-12b)-2a=(4a-6b)^2
a^2-6ab+9b^2=0
即(a-3b)^2=0
所以肯定有a=3b成立
2
數列an前n項和為Sn已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)證明
(1)(Sn/n)是等比數列
(2) S(n+1)=4an
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S[(n+1)/(n+1)]/[Sn/n]=2
S1/1=A1=1
所以Sn/n是以2為公比1為首項的等比數列
2、由1有Sn/n是以2為公比1為首項的等比數列
所以Sn/n的通項公式是Sn/n=1-2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
=n2^(n-1)-(n-1)2^(n-2)
=n-2-2^(n-2)-(n-1)2^(n-2)
=[2n-(n-1)]-2^(n-2)
=(n+1)2^(n-2)
=(n+1)-2^n/2^2
=(n+1)2^n/4
=S(n+1)/4
所以有S(n+1)=4An
a(n)-a(n-1)=2(n-1)
上n-1個式子相加得到:
an-a1=2+4+6+8+.....2(n-1)
右邊是等差數列,且和=[2+2(n-1)](n-1)/2=n(n-1)
所以:
an-2=n^2-n
an=n^2-n+2
4、
已知數列{3-2的'N此方},求證是等比數列
根據題意,數列是3-2^n(^n表示肩膀上的方次),n=1,2,3,...
為了驗證它是等比數列只需要比較任何一項和它相鄰項的比值是一個不依賴項次的固定比值就可以了.
所以第n項和第n+1項分別是3-2^n和3-2^(n+1),相比之后有:
[3-2^(n+1)]/(3-2^n)=2
因為比值是2,不依賴n的選擇,所以得到結論.
5
數列an前n項和為Sn已知a1=1 a(n+1)=(n+2)/n乘以Sn(n=1,2,3......)證明
(1)(Sn/n)是等比數列
(2) S(n+1)=4an
1、A(n+1)=(n+2)sn/n=S(n+1)-Sn
即nS(n+1)-nSn=(n+2)Sn
nS(n+1)=(n+2)Sn+nSn
nS(n+1)=(2n+2)Sn
S(n+1)/(n+1)=2Sn/n
即S[(n+1)/(n+1)]/[Sn/n]=2
S1/1=A1=1
所以Sn/n是以2為公比1為首項的等比數列
2、由1有Sn/n是以2為公比1為首項的等比數列
所以Sn/n的通項公式是Sn/n=1-2^(n-1)
即Sn=n2^(n-1)
那么S(n+1)=(n+1)2^n,S(n-1)=(n-1)2^(n-2)
An=Sn-S(n-1)
高三數學數列教案5
一、課前檢測
1.在數列{an}中,an=1n+1+2n+1++nn+1,又bn=2anan+1,求數列{bn}的前n項的和.
解:由已知得:an=1n+1(1+2+3++n)=n2,
bn=2n2n+12=8(1n-1n+1) 數列{bn}的前n項和為
Sn=8[(1-12)+(12-13)+(13-14)++(1n-1n+1)]=8(1-1n+1)=8nn+1.
2.已知在各項不為零的數列 中, 。
(1)求數列 的通項;
(2)若數列 滿足 ,數列 的前 項的和為 ,求
解:(1)依題意, ,故可將 整理得:
所以 即
,上式也成立,所以
(2)
二、知識梳理
(一)前n項和公式Sn的定義:Sn=a1+a2+an。
(二)數列求和的方法(共8種)
5.錯位相減法:適用于差比數列(如果 等差, 等比,那么 叫做差比數列)即把每一項都乘以 的公比 ,向后錯一項,再對應同次項相減,轉化為等比數列求和。
如:等比數列的前n項和就是用此法推導的.
解讀:
6.累加(乘)法
解讀:
7.并項求和法:一個數列的'前n項和中,可兩兩結合求解,則稱之為并項求和.
形如an=(-1)nf(n)類型,可采用兩項合并求。
解讀:
8.其它方法:歸納、猜想、證明;周期數列的求和等等。
解讀:
三、典型例題分析
題型1 錯位相減法
例1 求數列 前n項的和.
解:由題可知{ }的通項是等差數列{2n}的通項與等比數列{ }的通項之積
設 ①
、 (設制錯位)
、-②得 (錯位相減)
變式訓練1 (20xx昌平模擬)設數列{an}滿足a1+3a2+32a3++3n-1an=n3,nN*.
(1)求數列{an}的通項公式;
(2)設bn=nan,求數列{bn}的前n項和Sn.
解:(1)∵a1+3a2+32a3++3n-1an=n3, ①
當n2時,a1+3a2+32a3++3n-2an-1=n-13. ②
、-②得3n-1an=13,an=13n.
在①中,令n=1,得a1=13,適合an=13n, an=13n.
(2)∵bn=nan,bn=n3n.
Sn=3+232+333++n 3n, ③
3Sn=32+233+334++n 3n+1. ④
④-③得2Sn=n 3n+1-(3+32+33++3n),
即2Sn=n 3n+1-3(1-3n)1-3, Sn=(2n-1)3n+14+34.
小結與拓展:
題型2 并項求和法
例2 求 =1002-992+982-972++22-12
解: =1002-992+982-972++22-12=(100+ 99)+(98+97)++(2+1)=5050.
變式訓練2 數列{(-1)nn}的前20xx項的和S2 010為( D )
A.-20xx B.-1005 C.20xx D.1005
解:S2 010=-1+2-3+4-5++2 008-2 009+2 010
=(2-1)+(4-3)+(6-5)++(2 010-2 009)=1 005.
小結與拓展:
題型3 累加(乘)法及其它方法:歸納、猜想、證明;周期數列的求和等等
例3 (1)求 之和.
(2)已知各項均為正數的數列{an}的前n項的乘積等于Tn= (nN*),
,則數列{bn}的前n項和Sn中最大的一項是( D )
A.S6 B.S5 C.S4 D.S3
解:(1)由于 (找通項及特征)
= (分組求和)= =
=
(2)D.
變式訓練3 (1)(20xx福州八中)已知數列 則 , 。答案:100. 5000。
(2)數列 中, ,且 ,則前20xx項的和等于( A )
A.1005 B.20xx C.1 D.0
小結與拓展:
四、歸納與總結(以學生為主,師生共同完成)
以上一個8種方法雖然各有其特點,但總的原則是要善于改變原數列的形式結構,使
其能進行消項處理或能使用等差數列或等比數列的求和公式以及其它已知的基本求和公式來解決,只要很好地把握這一規(guī)律,就能使數列求和化難為易,迎刃而解。
高三數學數列教案6
教學目標:明確等差數列的定義,掌握等差數列的通項公式,會解決知道an,a1,d,n中的三個,求另外一個的問題;培養(yǎng)學生觀察能力,進一步提高學生推理、歸納能力,培養(yǎng)學生的'應用意識.
教學重點:1.等差數列的概念的理解與掌握. 2.等差數列的通項公式的推導及應用.教學難點:等差數列“等差”特點的理解、把握和應用.教學過程:
、.復習回顧上兩節(jié)課我們共同學習了數列的定義及給出數列的兩種方法——通項公式和遞推公式.這兩個公式從不同的角度反映數列的特點,下面我們看這樣一些例子
Ⅱ.講授新課10,8,6,4,2,…; 21,21,22,22,23,23,24,24,25 2,2,2,2,2,…首先,請同學們仔細觀察這些數列有什么共同的特點?是否可以寫出這些數列的通項公式?(引導學生積極思考,努力尋求各數列通項公式,并找出其共同特點)它們的共同特點是:從第2項起,每一項與它的前一項的“差”都等于同一個常數.也就是說,這些數列均具有相鄰兩項之差“相等”的特點.具有這種特點的數列,我們把它叫做等差數列.
1.定義等差數列:一般地,如果一個數列從第2項起,每一項與它的前一項的差等于同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.
2.等差數列的通項公式等差數列定義是由一數列相鄰兩項之間關系而得.若一等差數列{an}的`首項是a1,公差是d,則據其定義可得:(n-1)個等式若將這n-1個等式左右兩邊分別相加,則可得:an-a1=(n-1)d即:an=a1+(n-1)d當n=1時,等式兩邊均為a1,即上述等式均成立,則對于一切n∈N-時上述公式都成立,所以它可作為數列{an}的通項公式.看來,若已知一數列為等差數列,則只要知其首項a1和公差d,便可求得其通項.由通項公式可類推得:am=a1+(m-1)d,即:a1=am-(m-1)d,則:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d
請同學們來思考這樣一個問題.如果在a與b中間插入一個數A,使a、A、b成等差數列,那么A應滿足什么條件?由等差數列定義及a、A、b成等差數列可得:A-a=b-A,即:a=.反之,若A=,則2A=a+b,A-a=b-A,即a、A、b成等差數列.總之,A= a,A,b成等差數列.如果a、A、b成等差數列,那么a叫做a與b的等差中項.例題講解[
例1]在等差數列{an}中,已知a5=10,a15=25,求a25.
思路一:根據等差數列的已知兩項,可求出a1和d,然后可得出該數列的通項公式,便可求出a25.
思路二:若注意到已知項為a5與a15,所求項為a25,則可直接利用關系式an=am+(n-m)d.這樣可簡化運算.思路三:若注意到在等差數列{an}中,a5,a15,a25也成等差數列,則利用等差中項關系式,便可直接求出a25的值.
[例2](1)求等差數列8,5,2…的第20項.分析:由給出的三項先找到首項a1,求出公差d,寫出通項公式,然后求出所要項
答案:這個數列的第20項為-49. (2)-401是不是等差數列-5,-9,-13…的項?如果是,是第幾項?分析:要想判斷-401是否為這數列的一項,關鍵要求出通項公式,看是否存在正整數n,可使得an=-401. ∴-401是這個數列的第100項.
Ⅲ.課堂練習
1.(1)求等差數列3,7,11,……的'第4項與第10項.
(2)求等差數列10,8,6,……的第20項. (3)100是不是等差數列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由. 2.在等差數列{an}中,
(1)已知a4=10,a7=19,求a1與d;
(2)已知a3=9,a9=3,求a12.
Ⅳ.課時小結通過本節(jié)學習,首先要理解與掌握等差數列的定義及數學表達式:an-an-1=d(n≥2).其次,要會推導等差數列的通項公式:an=a1+(n-1)d(n≥1),并掌握其基本應用.最后,還要注意一重要關系式:an=am+(n-m)d的理解與應用以及等差中項。
、.課后作業(yè)課本P39習題1,2,3,4
高三數學數列教案7
數列
§3.1.1數列、數列的通項公式目的:要求學生理解數列的概念及其幾何表示,理解什么叫數列的通項公式,給出一些數列能夠寫出其通項公式,已知通項公式能夠求數列的項。
重點:1數列的概念。按一定次序排列的一列數叫做數列。數列中的每一個數叫做數列的項,數列的第n項an叫做數列的通項(或一般項)。由數列定義知:數列中的數是有序的,數列中的數可以重復出現,這與數集中的數的無序性、互異性是不同的。
2.數列的通項公式,如果數列{an}的通項an可以用一個關于n的公式來表示,這個公式就叫做數列的通項公式。從映射、函數的觀點看,數列可以看成是定義域為正整數集N-(或寬的有限子集)的函數。當自變量順次從小到大依次取值時對自學成才的一列函數值,而數列的通項公式則是相應的解析式。由于數列的項是函數值,序號是自變量,所以以序號為橫坐標,相應的項為縱坐標畫出的圖像是一些孤立的點。難點:根據數列前幾項的特點,以現規(guī)律后寫出數列的通項公式。給出數列的前若干項求數列的通項公式,一般比較困難,且有的數列不一定有通項公式,如果有通項公式也不一定唯一。給出數列的前若干項要確定其一個通項公式,解決這個問題的關鍵是找出已知的每一項與其序號之間的對應關系,然后抽象成一般形式。過程:一、從實例引入(P110)1.堆放的鋼管4,5,6,7,8,9,102.正整數的倒數
3. 4. -1的正整數次冪:-1,1,-1,1,…
5.無窮多個數排成一列數:1,1,1,1,…
二、提出課題:數列
1.數列的定義:按一定次序排列的一列數(數列的有序性)
2.名稱:項,序號,一般公式,表示法
3.通項公式:與之間的函數關系式如數列1:數列2:數列4:
4.分類:遞增數列、遞減數列;常數列;擺動數列;有窮數列、無窮數列。
5.實質:從映射、函數的觀點看,數列可以看作是一個定義域為正整數集N-(或它的有限子集{1,2,…,n})的函數,當自變量從小到大依次取值時對應的一列函數值,通項公式即相應的函數解析式。
6.用圖象表示:—是一群孤立的點例一(P111例一略)
三、關于數列的通項公式1.不是每一個數列都能寫出其通項公式(如數列3)
2.數列的通項公式不唯一如:數列4可寫成和
3.已知通項公式可寫出數列的任一項,因此通項公式十分重要例二(P111例二)略
四、補充例題:寫出下面數列的一個通項公式,使它的前項分別是下列各數:1.1,0,1,0. 2.,,,,3.7,77,777,7777 4.-1,7,-13,19,-25,31 5.,,,
五、小結:1.數列的有關概念2.觀察法求數列的`通項公式
六、作業(yè):練習P112習題3.1(P114)1、2
七、練習:1.觀察下面數列的特點,用適當的數填空,關寫出每個數列的一個通項公式;(1),,,( ),,…(2),( ),,,…
2.寫出下面數列的一個通項公式,使它的前4項分別是下列各數:(1)1、 、 、 ; (2) 、 、 、 ; (3) 、 、 、 ; (4) 、 、 、 。
3.求數列1,2,2,4,3,8,4,16,5,…的一個通項公式
4.已知數列an的前4項為0,,0,,則下列各式①an= ②an= ③an=其中可作為數列{an}通項公式的是A ① B ①② C ②③ D ①②③
5.已知數列1,,,,3,…,,…,則是這個數列的( ) A.第10項B.第11項C.第12項D.第21項
6.在數列{an}中a1=2,a17=66,通項公式或序號n的一次函數,求通項公式。
7.設函數( ),數列{an}滿足(1)求數列{an}的通項公式;(2)判斷數列{an}的單調性。
8.在數列{an}中,an=(1)求證:數列{an}先遞增后遞減;(2)求數列{an}的最大項。答案:1. (1),an= (2),an= 2.(1)an= (2)an= (3)an= (4)an= 3.an=或an=這里借助了數列1,0,1,0,1,0…的通項公式an=。4.D 5.B 6. an=4n-2
7.(1)an= (2)<1又an<0, ∴是遞增數列
【高三數學數列教案】相關文章:
高三數學數列教案01-17
高三數學數列教案(7篇)01-17
高三數學數列教案7篇01-17
數學等差數列教案02-25
高中數學 數列教案01-03
高中數學數列教案12-30
高一數學教案數列12-29
數學教案:等差數列02-22
數學等差數列教案9篇02-25