四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>七年級數(shù)學教案>初一數(shù)學上冊教案

初一數(shù)學上冊教案

時間:2022-12-29 17:15:44 七年級數(shù)學教案 我要投稿

初一數(shù)學上冊教案(匯編15篇)

  作為一名人民教師,總歸要編寫教案,借助教案可以恰當?shù)剡x擇和運用教學方法,調動學生學習的積極性。如何把教案做到重點突出呢?下面是小編為大家整理的初一數(shù)學上冊教案,歡迎閱讀與收藏。

初一數(shù)學上冊教案(匯編15篇)

初一數(shù)學上冊教案1

  《1.1正數(shù)和負數(shù)》教學設計

  教學目標

  1. 通過對“零”的意義的探討,進一步理解正數(shù)和負數(shù)的概念,能利用正負數(shù)正確表示相反意義的量(規(guī)定了向指定方向變化的量);

  2. 進一步體驗正負數(shù)在生產(chǎn)生活中的廣泛應用,提高解決實際問題的能力;

  3. 激發(fā)學生學習數(shù)學的興趣.

  [教學重點與難點]

  重點:深化對正負數(shù)概念的理解.

  難點:正確理解和表示向指定方向變化的量

  《1.1正數(shù)和負數(shù)》同步練習

  1、下列說法正確的是( )

  A、零 是正數(shù)不是負數(shù) B、零既不是正數(shù)也不是負數(shù)

  C、零既是正數(shù)也是負數(shù) D、不是正數(shù)的數(shù)一定是負數(shù),不是負數(shù)的數(shù)一定是正數(shù)

  2、向東行進-30米表示的'意義是( )

  A、向東行進30米 B、向東行進-30米

  C、向西行進30米 D、向西行進-30米

  3、零上13℃記作 +13℃,零下2℃可記作( )

  A、2 B、-2 C、2℃ D、-2℃

  4、某市20 15年元旦的最高氣溫為2℃,最低氣溫為-8℃,那么這天的最高 氣溫比 最低氣溫高( )

  A、-10℃ B、-6℃ C、6℃ D、10℃

  5、 中,正數(shù)有 ,負數(shù)有 .

  6、如 果水位升高5m時水位變化記作+5m,那么水位下降3m時水位變化記作 m,

  水位不升不降時水位變化記作 m.

  7、在同一個問題中,分別用正數(shù)與負數(shù)表示的量具有 的意義.

  8、甲、乙兩人同時從A地出發(fā), 如果向南走48m,記作+48m,則乙向北走32m,記為 ,

  這時甲乙 兩人相距 m. .

  9、某種藥品的說明書上標明保存溫度是(20±2)℃,由此可知在 ℃~ ℃范圍內保存才合適.

  10、20xx年我國全年平均降水量比 上年減少24㎜,20xx年比上年增長8㎜,20xx年比上年減少20㎜。用正數(shù)和負數(shù)表示這三年我國全年平均降水量比上年的增長量.

  11、如果把一個物體向右移動5m記作移動-5m,那么這個物體又移動+5m是什么 意思?這時物體離它兩次移動前的位置多 遠?

  12、某老師把某一小組五名同學的成績簡記為:+10,-5,0,+8,-3,又知道記為0的成績表 示90分,正數(shù)表示超過90分,則五名 同學的平均成績?yōu)槎嗌俜?

  13、某地一天中午12時的氣溫是7℃,過5小時氣溫下降了4℃ ,又過7小時氣溫又下降了4℃,第二天0時的氣溫是多少?

  《1.1正數(shù)和負數(shù)》同步練習含答案

  19.體育課上,對初三(1)班的學生進行了仰臥起坐的測試,以能做28個為標準,超過的次數(shù)用正數(shù)來表示,不足的次數(shù)用負數(shù)來表示,其中10名 女學生成績如下:1、4、0、8、6、8、0、6、-5、-1.

  (1)這10名女生的達標率為多少?

  (2)沒達標的同學做了幾個仰臥起坐?

  解:(1)這10名女生的達標率為8÷10 ×100%=80%.

  (2)沒達標的同學做仰臥起坐的個數(shù)分別是23個和27個.

初一數(shù)學上冊教案2

  教學目標

  1、知道有理數(shù)混合運算的運算順序,能正確進行有理數(shù)的混合運算;

  2、會用計算器進行較繁雜的有理數(shù)混合運算。

  教學重點

  1、有理數(shù)的混合運算;

  2、運用運算律進行有理數(shù)的混合運算的簡便計算。

  教學難點

  運用運算律進行有理數(shù)的.混合運算的簡便計算。

  有理數(shù)的混合運算的運算順序

  也就是說,在進行含有加、減、乘、除的混合運算時,應按照運算級別從高到低進行,因為乘方是比乘除高一級的運算,所以像這樣的有理數(shù)的混合運算,有以下運算順序:

  先乘方,再乘除,最后加減。如果有括號,先進行括號內的運算。

  你會根據(jù)有理數(shù)的運算順序計算上面的算式嗎?

  2、8有理數(shù)的混合運算:同步練習

  1、有依次排列的3個數(shù):2,9,7,對任意相鄰的兩個數(shù),都用右邊的數(shù)減去左邊的數(shù),所得之差寫在這兩個數(shù)之間,可產(chǎn)生一個新數(shù)串:2,7,9,—2,7,這稱為第一次操作。做第二次同樣的操作后也可產(chǎn)生一個新數(shù)串:2,5,7,2,9,—11,—2,9,7,繼續(xù)依次操作下去,問:從數(shù)串2,9,7開始操作第一百次以后所產(chǎn)生的那個新數(shù)串的所有數(shù)之和是。

  《2、8有理數(shù)的混合運算》課后訓練

  1、興旺肉聯(lián)廠的冷藏庫能使冷藏食品每小時降溫3 ℃,每開庫一次,庫內溫度上升4 ℃,現(xiàn)有12 ℃的肉放入冷藏庫,2小時后開了一次庫,再過3小時后又開了一次庫,再關上庫門4小時后,肉的溫度是多少攝氏度?

初一數(shù)學上冊教案3

  教學目標

  1。使學生理解正數(shù)與負數(shù)的概念,并會判斷一個給定的數(shù)是正數(shù)還是負數(shù);

  2。會初步應用正負數(shù)表示具有相反意義的量;

  3。使學生初步了解有理數(shù)的意義,并能將給出的有理數(shù)進行分類;

  4。培養(yǎng)學生逐步樹立分類討論的思想;

  5。通過本節(jié)課的教學,滲透對立統(tǒng)一的辯證思想。

  教學建議

  一、重點、難點分析

  本課的重點是了解正數(shù)與負數(shù)是由實際需要產(chǎn)生的以及有理數(shù)包括哪些數(shù)。難點是學習負數(shù)的必要性及有理數(shù)的分類。關鍵是要能準確地舉出具有相反意義的量的典型例子以及要明確有理數(shù)分類的標準。

  正、負數(shù)的引入,有各種不同的方法。教材是由學生熟知的兩個實例:溫度與海拔高度引入的。比0℃高5攝氏度記作5℃,比0℃低5攝氏度,記作—5℃;比海平面高8848米,記作8848米,比海平面低155米記作—155米。由這兩個實例很自然地,把大于0的數(shù)叫做正數(shù),把加“—”號的數(shù)叫做負數(shù);0既不是正數(shù)也不是負數(shù),是一個中性數(shù),表示度量的“基準”。這樣引入正、負數(shù),不僅有利于學生正確使用正、負數(shù)表示具有相反意義的量,而且還將幫助學生理解有理數(shù)的大小性質。把負數(shù)理解為小于0的數(shù)。教材中,沒有出現(xiàn)“具有相反意義的量”的概念。這是有意回避或淡化這個概念。目的是,從正、負數(shù)引入一開始就能較深刻的揭示正、負數(shù)和零的性質,幫助學生正確理解正、負數(shù)的概念。

  關于有理數(shù)的分類要明確的是:分類標準不同,分類結果也不同,分類結果應是不重不漏,即每一個數(shù)必須屬于某一類,又不能同時屬于不同的兩類。

  二、教法建議

  這節(jié)課是在小學里學過的數(shù)的基礎上,從表示具有相反意義的量引進負數(shù)的。從內容上講,負數(shù)比非負數(shù)要抽象、難理解。因此在教學方法和教學語言的選擇上,盡可能注意中小學的銜接,既不違反科學性,又符合可接受性原則。例如,在講解有理數(shù)的`概念時,讓學生清楚地認識有理數(shù)與算術數(shù)的根本區(qū)別,有理數(shù)是由兩部分組成:符號部分和數(shù)字部分(即算術數(shù))。這樣,在理解算術數(shù)和負數(shù)的基礎上,對有理數(shù)的概念的理解就簡便多了。

  為了使學生掌握必要的數(shù)學思想和方法,在明確有理數(shù)的分類時,可以有意識地滲透分類討論的思想方法,理解分類的標準、分類的結果,以及它們的相互聯(lián)系。通過正數(shù)、負數(shù)都統(tǒng)一于有理數(shù),可以將對立統(tǒng)一的辯證思想的逐步樹立滲透到日常教學中。

  三、正數(shù)與負數(shù)概念的理解

  1﹒對于正數(shù)和負數(shù)的概念,不能簡單的理解為:帶“+”號的數(shù)是正數(shù),帶“—”號的數(shù)是負數(shù)。

  2﹒引入負數(shù)后,數(shù)的范圍擴大為有理數(shù),奇數(shù)和偶數(shù)的外延也由自然數(shù)擴大為整數(shù),整數(shù)也可以分為奇數(shù)和偶數(shù)兩類,能被2整除的數(shù)是偶數(shù),如…—6,—4,—2,0,2,4,6…,不能被2整除的數(shù)是奇數(shù),如…—5,—4,—2,1,3,5…

  3﹒到現(xiàn)在為止,我們學過的數(shù)細分有五類:正整數(shù)、正分數(shù)、0、負整數(shù)、負分數(shù),但研究問題時,通常把有理數(shù)分為三類:正數(shù)、0、負數(shù),進行討論。

  4﹒通常把正數(shù)和0統(tǒng)稱為非負數(shù),負數(shù)和0統(tǒng)稱為非正數(shù),正整數(shù)和0稱為非負整數(shù);負整數(shù)和0統(tǒng)稱為非正整數(shù)。

  四、有理數(shù)的分類

  整數(shù)和分數(shù)統(tǒng)稱為有理數(shù)。1)正整數(shù)、零、負整數(shù)統(tǒng)稱為整數(shù);正分數(shù)、負分數(shù)統(tǒng)稱為分數(shù)。

  2)整數(shù)也可以看作分母為1的分數(shù),但為了研究方便,本章中分數(shù)是指不包括整數(shù)的分數(shù)。

  3)注意概念中所用“統(tǒng)稱”二字,它與說“整數(shù)和分數(shù)是有理數(shù)”的意思不大一樣。前者回避了分數(shù)是否包括整數(shù)的問題,即使把整數(shù)包括在分數(shù)范圍內,說“統(tǒng)稱”還是不錯,而用后一種說法就欠妥了。

  4)分數(shù)和小數(shù)的區(qū)別:

  分數(shù)(既約分數(shù))都可表示成小數(shù),但不是所有的小數(shù)都能表示成分數(shù)的。

  5)到目前為止,所學過的數(shù)(除π外)都是有理數(shù)。

初一數(shù)學上冊教案4

  教學目標

  教學知識點:能運用勾股定理及直角三角形的判別條件(即勾股定理的逆定理)解決簡單的實際問題.

  能力訓練要求:1.學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念.

  2.在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學建模的思想.

  情感與價值觀要求:1.通過有趣的問題提高學習數(shù)學的興趣.

  2.在解決實際問題的過程中,體驗數(shù)學學習的實用性,體現(xiàn)人人都學有用的數(shù)學.

  教學重點難點:

  重點:探索、發(fā)現(xiàn)給定事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題.

  難點:利用數(shù)學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題.

  教學過程

  1、創(chuàng)設問題情境,引入新課:

  前幾節(jié)課我們學習了勾股定理,你還記得它有什么作用嗎?

  例如:欲登12米高的建筑物,為安全需要,需使梯子底端離建筑物5米,至少需多長的梯子?

  根據(jù)題意,(如圖)AC是建筑物,則AC=12米,BC=5米,AB是梯子的長度.所以在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.

  所以至少需13米長的梯子.

  2、講授新課:①、螞蟻怎么走最近

  出示問題:有一個圓柱,它的高等于12厘米,底面半徑等于3厘米.在圓行柱的底面A點有一只螞蟻,它想吃到上底面上與A點相對的B點處的食物,需要爬行的的最短路程是多少?(π的值取3).

  (1)同學們可自己做一個圓柱,嘗試從A點到B點沿圓柱的側面畫出幾條路線,你覺得哪條路線最短呢?(小組討論)

  (2)如圖,將圓柱側面剪開展開成一個長方形,從A點到B點的最短路線是什么?你畫對了嗎?

  (3)螞蟻從A點出發(fā),想吃到B點上的食物,它沿圓柱側面爬行的最短路程是多少?(學生分組討論,公布結果)

  我們知道,圓柱的側面展開圖是一長方形.好了,現(xiàn)在咱們就用剪刀沿母線AA′將圓柱的側面展開(如下圖).

  我們不難發(fā)現(xiàn),剛才幾位同學的走法:

  (1)A→A′→B;(2)A→B′→B;

  (3)A→D→B;(4)A—→B.

  哪條路線是最短呢?你畫對了嗎?

  第(4)條路線最短.因為“兩點之間的連線中線段最短”.

 、、做一做:教材14頁。李叔叔隨身只帶卷尺檢測AD,BC是否與底邊AB垂直,也就是要檢測∠DAB=90°,∠CBA=90°.連結BD或AC,也就是要檢測△DAB和△CBA是否為直角三角形.很顯然,這是一個需用勾股定理的逆定理來解決的實際問題.

  ③、隨堂練習

  出示投影片

  1.甲、乙兩位探險者,到沙漠進行探險.某日早晨8∶00甲先出發(fā),他以6千米/時的速度向東行走.1時后乙出發(fā),他以5千米/時的速度向北行進.上午10∶00,甲、乙兩人相距多遠?

  2.如圖,有一個高1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分是0.5米,問這根鐵棒應有多長?

  1.分析:首先我們需要根據(jù)題意將實際問題轉化成數(shù)學模型.

  解:(如圖)根據(jù)題意,可知A是甲、乙的出發(fā)點,10∶00時甲到達B點,則AB=2×6=12(千米);乙到達C點,則AC=1×5=5(千米).

  在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙兩人相距13千米.

  2.分析:從題意可知,沒有告訴鐵棒是如何插入油桶中,因而鐵棒的長是一個取值范圍而不是固定的.長度,所以鐵棒最長時,是插入至底部的A點處,鐵棒最短時是垂直于底面時.

  解:設伸入油桶中的長度為x米,則應求最長時和最短時的值.

  (1)x2=1.52+22,x2=6.25,x=2.5

  所以最長是2.5+0.5=3(米).

  (2)x=1.5,最短是1.5+0.5=2(米).

  答:這根鐵棒的長應在2~3米之間(包含2米、3米).

  3.試一試(課本P15)

  在我國古代數(shù)學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形.在水池正中央有一根新生的蘆葦,它高出水面1尺.如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面.請問這個水池的深度和這根蘆葦?shù)拈L度各為多少?

  我們可以將這個實際問題轉化成數(shù)學模型.

  解:如圖,設水深為x尺,則蘆葦長為(x+1)尺,由勾股定理可求得

  (x+1)2=x2+52,x2+2x+1=x2+25

  解得x=12

  則水池的深度為12尺,蘆葦長13尺.

  ④、課時小結

  這節(jié)課我們利用勾股定理和它的逆定理解決了生活中的幾個實際問題.我們從中可以發(fā)現(xiàn)用數(shù)學知識解決這些實際問題,更為重要的是將它們轉化成數(shù)學模型.

 、、課后作業(yè)

  課本P25、習題1.52

初一數(shù)學上冊教案5

  (一)知識點目標:

  1.了解正數(shù)和負數(shù)是怎樣產(chǎn)生的。 2.知道什么是正數(shù)和負數(shù)。 3.理解數(shù)0表示的量的意義。

  (二)能力訓練目標:

  1.體會數(shù)學符號與對應的思想,用正、負數(shù)表示具有相反意義的量的符號化方法。

  2.會用正、負數(shù)表示具有相反意義的`量。

  (三)情感與價值觀要求: 通過師生合作,聯(lián)系實際,激發(fā)學生學好數(shù)學的熱情。

  教學重點:

  知道什么是正數(shù)和負數(shù),理解數(shù)0表示的量的意義。

  教學難點:

  理解負數(shù),數(shù)0表示的量的意義。

  教學方法:

  師生互動與教師講解相結合。

  教具準備:

  地圖冊(中國地形圖)。

  教學過程

  引入新課:

  1.活動:由兩組各派兩名同學進行如下活動:一名按老師的指令表演,另一名在黑板上速記,看哪一組記得最快、最好? 內容:老師說出指令: 向前兩步,向后兩步;

  向前一步,向后三步; 向前兩步,向后一步; 向前四步,向后兩步。 如果學生不能引入符號表示,教師可和一個小組合作,用符號表示出+2、-2、+1、-3、+2、-1、+4、-2等。

  [師]其實,在我們的生活中,運用這樣的符號的地方很多,這節(jié)課,我們就來學習這種帶有特殊符號、表示具有實際意義的數(shù)-----正數(shù)和負數(shù)。

  講授新課:

  1.自然數(shù)的產(chǎn)生、分數(shù)的產(chǎn)生。 2.章頭圖。問題見教材。讓學生思考-3~3℃、凈勝球數(shù)與排名順序、±、-9的意義。

  3、正數(shù)、負數(shù)的定義:我們把以前學過的0以外的數(shù)叫做正數(shù),在這些數(shù)的前面帶有“一”時叫做負數(shù)。根據(jù)需要有時在正數(shù)前面也加上“十”(正號)表示正數(shù)。

  舉例說明:3、2、

  3 1 等是正數(shù)(也可加上“十”) -3、-2、

  -3 1等是負數(shù)。 4、數(shù)0既不是正,也不是負數(shù),0是正數(shù)和負數(shù)的分界。 0℃是一個確定的溫度,海拔為0的高度是海平面的平均高度,0的意義已不僅表示“沒有”。 5、讓學生舉例說明正、負數(shù)在實際中的應用。展示圖片(又見教材P5圖)讓學生觀察地形圖上的標注和記錄支出、存入信息的

  鞏固提高:練習:課本P5練習 課時小結:這節(jié)課我們學習了哪些知識?你能說一說嗎?

  課后作業(yè):課本P7習題的第1、2、4、5題。 活動與探究:在一次數(shù)學測驗中,某班的平均分為85分,把高于平均分的高出部分記為正數(shù)。

  (1)美美得95分,應記為多少?

  (2)多多被記作一12分,他實際得分是多少?

  課后反思:

初一數(shù)學上冊教案6

  一、知識要點

  本章的主要內容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎知識:

  1、大于0的數(shù)叫做正數(shù)。

  2、在正數(shù)前面加上負號“-”的數(shù)叫做負數(shù)。

  3、0既不是正數(shù)也不是負數(shù)。

  4、有理數(shù)(rationalnumber):正整數(shù)、負整數(shù)、0、正分數(shù)、負分數(shù)都可以寫成分數(shù)的形式,這樣的數(shù)稱為有理數(shù)。

  5、數(shù)軸(numberaxis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

  數(shù)軸滿足以下要求:

  (1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);

  (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負方向;

  (3)選取適當?shù)拈L度為單位長度。

  6、相反數(shù)(oppositenumber):絕對值相等,只有負號不同的兩個數(shù)叫做互為相反數(shù)。

  7、絕對值(absolutevalue)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。

  由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。

  一個正數(shù)的絕對值是它本身;一個負數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

  正數(shù)大于0,0大于負數(shù),正數(shù)大于負數(shù);兩個負數(shù),絕對值大的反而小。

  8、有理數(shù)加法法則

  (1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0.

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。表達式:a+b=b+a。

  加法結合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。

  表達式:(a+b)+c=a+(b+c)

  9、有理數(shù)減法法則

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達式:a-b=a+(-b)

  10、有理數(shù)乘法法則

  兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘。

  任何數(shù)同0相乘,都得0.

  乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達式:ab=ba

  乘法結合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達式:(ab)c=a(bc)

  乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  表達式:a(b+c)=ab+ac

  11、倒數(shù)

  1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。

  12、有理數(shù)除法法則:兩數(shù)相除,同號得負,異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.

  13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結果叫做冪(power)。an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponent)。

  根據(jù)有理數(shù)的乘法法則可以得出:負數(shù)的奇次冪是負數(shù),負數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  14、有理數(shù)的混合運算順序

  (1)“先乘方,再乘除,最后加減”的順序進行;

  (2)同級運算,從左到右進行;

  (3)如有括號,先做括號內的運算,按小括號、中括號、大括號依次進行。

  15、科學技術法:把一個大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0

  16、近似數(shù)(approximatenumber):

  17、有理數(shù)可以寫成m/n(m、n是整數(shù),n≠0)的形式。另一方面,形如m/n(m、n是整數(shù),n≠0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n≠0)表示。

  拓展知識:

  1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。

  一、(1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;

  二、(2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。

  2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結合的數(shù)學思想。

  3、根據(jù)絕對值的幾何意義知道:|a|≥0,即對任何有理數(shù)a,它的絕對值是非負數(shù)。

  4、比較兩個有理數(shù)大小的方法有:

  (1)根據(jù)有理數(shù)在數(shù)軸上對應的點的位置直接比較;

  (2)根據(jù)規(guī)定進行比較:兩個正數(shù);正數(shù)與零;負數(shù)與零;正數(shù)與負數(shù);兩個負數(shù),體現(xiàn)了分類討論的數(shù)學思想;

  (3)做差法:a-b>0a>b;

  (4)做商法:a/b>1,b>0a>b.

  二、基礎訓練

  選擇題

  1、下列運算中正確的是().

  A.a2a3=a6 B.=2 C.|(3-π)|=-π-3 D.32=-9

  2、下列各判斷句中錯誤的是()

  A.數(shù)軸上原點的位置可以任意選定

  B.數(shù)軸上與原點的距離等于個單位的點有兩個

  C.與原點距離等于-2的點應當用原點左邊第2個單位的.點來表示

  D.數(shù)軸上無論怎樣靠近的兩個表示有理數(shù)的點之間,一定還存在著表示有理數(shù)的點。

  3、、是有理數(shù),若>且,下列說法正確的是()

  A.一定是正數(shù)B.一定是負數(shù)C.一定是正數(shù)D.一定是負數(shù)

  4、兩數(shù)相加,如果比每個加數(shù)都小,那么這兩個數(shù)是()

  A.同為正數(shù)B.同為負數(shù)C.一個正數(shù),一個負數(shù)D.0和一個負數(shù)

  5、兩個非零有理數(shù)的和為零,則它們的商是()

  A.0B.-1C.+1D.不能確定

  6、一個數(shù)和它的倒數(shù)相等,則這個數(shù)是()

  A.1B.-1C.±1D.±1和0

  7、如果|a|=-a,下列成立的是()

  A.a>0B.a<0c.a>0或a=0D.a<0或a=0

  8、(-2)11+(-2)10的值是()

  A.-2B.(-2)21C.0D.-210

  9、已知4個礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水()

  A.3瓶B.4瓶C.5瓶D.6瓶

  10、在下列說法中,正確的個數(shù)是()

  ⑴任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示

 、茢(shù)軸上的每一個點都表示一個有理數(shù)

 、侨魏斡欣頂(shù)的絕對值都不可能是負數(shù)

 、让總有理數(shù)都有相反數(shù)

  A、1B、2C、3D、4

  11、如果一個數(shù)的相反數(shù)比它本身大,那么這個數(shù)為()

  A、正數(shù)B、負數(shù)

  C、整數(shù)D、不等于零的有理數(shù)

  12、下列說法正確的是()

  A、幾個有理數(shù)相乘,當因數(shù)有奇數(shù)個時,積為負;

  B、幾個有理數(shù)相乘,當正因數(shù)有奇數(shù)個時,積為負;

  C、幾個有理數(shù)相乘,當負因數(shù)有奇數(shù)個時,積為負;

  D、幾個有理數(shù)相乘,當積為負數(shù)時,負因數(shù)有奇數(shù)個;

  填空題

  1、在有理數(shù)-7,,-(-1.43),,0,,-1.7321中,是整數(shù)的有_____________是負分數(shù)的有_______________。

  2、一般地,設a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的距離是____個單位長度。

  3、如果一個數(shù)是6位整數(shù),用科學記數(shù)法表示它時,10的指數(shù)是_____;用科學記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是___________.

  4、實數(shù)a、b、c在數(shù)軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|.

  5、絕對值大于1而小于4的整數(shù)有_____________________________________,其和為___________.

  6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6+……+20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是_____________.

  10、用四舍五入法把3.1415926精確到千分位是,用科學記數(shù)法表示302400,應記為,近似數(shù)3.0×精確到位。

  11、正數(shù)–a的絕對值為__________;負數(shù)–b的絕對值為________

  12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大

  13、在數(shù)軸上表示兩個數(shù),的數(shù)總比的大。(用“左邊”“右邊”填空)

  14、數(shù)軸上原點右邊4.8厘米處的點表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點表示的有理數(shù)是____________。

  三、強化訓練

  1、計算:1+2+3+…+20xx+2003=__________.

  2、已知:若(a,b均為整數(shù))則a+b=

  3、觀察下列等式,你會發(fā)現(xiàn)什么規(guī)律:,,,。。。請將你發(fā)現(xiàn)的規(guī)律用只含一個字母n(n為正整數(shù))的等式表示出來

  4、已知,則___________

  5、已知是整數(shù),是一個偶數(shù),則a是(奇,偶)

  6、已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。

  7、在數(shù)1,2,3,…,50前添“+”或“-”,并求它們的和,所得結果的最小非負數(shù)是多少?請列出算式解答。

  8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求+…+的值。

  9、如果規(guī)定符號“*”的意義是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投資股票是一種很重要的投資方式,但股市的風云變化又牽動了股民的心。

  例:某股民在上星期五買進某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):

  星期一二三四五

  每股漲跌+4+4.5-1-2.5-6

  第1章(1)星期三收盤時,每股是多少元?

  第2章(2)本周內最高價是每股多少元?最低價是多少元?

  第3章(3)已知買進股票是付了1.5‰的手續(xù)費,賣出時需付成交額1.5‰的手續(xù)費和1‰的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?

  第4章(4)以買進的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。

  四、競賽訓練:

  1、最小的非負有理數(shù)與最大的非正有理數(shù)的和是

  2、乘積=

  3、比較大。篈=,B=,則A B

  4、滿足不等式104≤A≤105的整數(shù)A的個數(shù)是x×104+1,則x的值是( )

  A、9 B、8 C、7 D、6

  5、最小的一位數(shù)的質數(shù)與最小的兩位數(shù)的質數(shù)的積是( )

  A、11 B、22 C、26 D、33

  6、比較

  7、計算:

  8、計算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).xkb1.com

  9、計算:

  10、計算

  11、計算1+3+5+7+…+1997+1999的值

  12、計算1+5+52+53+…+599+5100的值.

  13、有理數(shù)均不為0,且設試求代數(shù)式20xx之值。

  14、已知a、b、c為實數(shù),且,求的值。

  15、已知:。

  16、解方程組。

  17、若a、b、c為整數(shù),且,求的值。

  1.2.1有理數(shù)

  七年級上(1.1正數(shù)和負數(shù),1.2有理數(shù))

  1.2有理數(shù)

初一數(shù)學上冊教案7

  初一上冊數(shù)學教案,歡迎各位老師和學生參考!

  學習目標:1、理解有理數(shù)的絕對值和相反數(shù)的意義。

  2、會求已知數(shù)的相反數(shù)和絕對值。

  3、會用絕對值比較兩個負數(shù)的大小。

  4、經(jīng)歷將實際問題數(shù)學化的過程,感受數(shù)學與生活的聯(lián)系。

  學習重點:1.會用絕對值比較兩個負數(shù)的大小。

  2.會求已知數(shù)的相反數(shù)和絕對值。

  學習難點:理解有理數(shù)的絕對值和相反數(shù)的意義。

  學習過程:

  一、創(chuàng)設情境

  根據(jù)絕對值與相反數(shù)的意義填空:

  1、

  2、

  -5的相反數(shù)是______,-10.5的相反數(shù)是______, 的相反數(shù)是______;

  3、|0|=______,0的相反數(shù)是______。

  二、探索感悟

  1、議一議

  (1)任意說出一個數(shù),說出它的絕對值、它的相反數(shù)。

  (2)一個數(shù)的絕對值與這個數(shù)本身或它的相反數(shù)有什么關系?

  2、想一想

  (1)2與3哪個大?這兩個數(shù)的絕對值哪個大?

  (2)-1與-4哪個大?這兩個數(shù)的絕對值哪個大?

  (3)任意寫出兩個負數(shù),并說出這兩個負數(shù)哪個大?他們的絕對值哪個大?

  (4)兩個有理數(shù)的`大小與這兩個數(shù)的絕對值的大小有什么關系?

  三.例題精講

  例1. 求下列各數(shù)的絕對值:

  +9,-16,-0.2,0.

  求一個數(shù)的絕對值,首先要分清這個數(shù)是正數(shù)、負數(shù)還是0,然后才能正確地寫出它的絕對值。

  議一議:(1)兩個數(shù)比較大小,絕對值大的那個數(shù)一定大嗎?

  (2)數(shù)軸上的點的大小是如何排列的?

  例2比較-10.12與-5.2的大小。

  例3.求6、-6、14 、-14 的絕對值。

  小節(jié)與思考:

  這節(jié)課你有何收獲?

  四.練習

  1. 填空:

 、 的符號是 ,絕對值是 ;

 、10.5的符號是 ,絕對值是

 、欠柺+號,絕對值是 的數(shù)是

 、确柺-號,絕對值是9的數(shù)是 ;

 、煞柺-號,絕對值是0.37的數(shù)是 .

  2. 正式足球比賽時所用足球的質量有嚴格的規(guī)定,下表是6個足球的質量檢測結果(用正數(shù)記超過規(guī)定質量的克數(shù),用負數(shù)記不足規(guī)定質量的克數(shù)).

  請指出哪個足球質量最好,為什么?

  第1個第2個第3個第4個第5個第6個

  -25-10+20+30+15-40

  3.比較下面有理數(shù)的大小

  (1)-0.7與-1.7 (2) (3) (4)-5與0

  五、布置作業(yè):

  P25 習題2.3 5

  家庭作業(yè):《評價手冊》 《補充習題》

  六、學后記/教后記

  這篇初一上冊數(shù)學教案就為大家分享到這里了。希望對大家有所幫助!

初一數(shù)學上冊教案8

  【教學目標】

  知識與技能

  了解并掌握數(shù)據(jù)收集的基本方法。

  過程與方法

  在調查的過程中,要有認真的態(tài)度,積極參與。

  情感、態(tài)度與價值觀

  體會統(tǒng)計調查在解決實際問題中的作用,逐步養(yǎng)成用數(shù)據(jù)說話的良好習慣。

  【教學重難點】

  重點:掌握統(tǒng)計調查的基本方法。

  難點:能根據(jù)實際情況合理地選擇調查方法。

  【教學過程】

  一、講授新課

  像前面提到的收集數(shù)據(jù)的活動中,全班同學是我們要考察的對象,我們采用問卷對全體同學作了逐一調查,像這樣對全體對象進行的調查叫做全面調查。

  調查、試驗如采用普查可以收集到較全面、準確的數(shù)據(jù),但普查的工作量比較大,有時受客觀條件(人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常常采用抽樣調查(samplingsurvey),即從被考察的全體對象中抽出一部分對象進行考察的調查方式。

  在一個統(tǒng)計問題中,我們把所要考察對象的全體叫做總體(population),其中的每一個考察對象叫做個體(individual),從總體中所抽取的一部分個體叫做總體的一個樣本(sample),樣本中個體的數(shù)目叫做樣本容量(samplesize)。

  例如,在通過試驗考察500只新工藝生產(chǎn)的燈泡的使用壽命時,從中抽取50只進行試驗。這500只燈泡的使用壽命的全體是總體,其中每只燈泡的使用壽命是個體,抽取的50只燈泡的使用壽命是一個樣本,50是這個樣本的樣本容量。

  為了使抽取的50只燈泡能很好地反映500只燈泡的情況,抽取時要使每只燈泡逐一進行編號,再把編號寫在小紙片上,將小紙片揉成團,放在一個不透明的容器內,充分攪拌后,從中一個個地抽取50個號簽。

  上面抽取樣本的過程中,總體中的各個個體都有相等的機會被抽到,像這樣的抽樣方法是一種簡單隨機抽樣(simplerandomsampling)。

  師:以“你知道父母的生日嗎?”為題在班級進行調查,請設計一張問卷調查表。

  學生小組合作、討論,學生代表展示結果。

  教師指導、評論。

  師:除了問卷調查外,我們還有哪些方法收集到數(shù)據(jù)呢?

  學生小組討論、交流,學生代表回答。

  師:收集數(shù)據(jù)的直接方法有訪問、調查、觀察、測量、試驗等,間接方法有查閱資料、上網(wǎng)查詢等。就以下統(tǒng)計的數(shù)據(jù),你認為選擇何種方法去收集比較合適?

  (1)你班中的同學是如何安排周末時間的?

  (2)我國瀕臨滅絕的植物數(shù)量;

  (3)某種玉米種子的發(fā)芽率;

  (4)學校門口十字路口每天7:00~7:10時的車流量。

  學生討論,并舉手回答。

  師:采用何種方法一定要結合實際問題來定。在解決問題(1)的過程中,不但要同學們動手調查,并且對全班所有學生都要調查,像這樣對全體對象進行的調查叫做全面調查(普查)。同學們還知道哪些數(shù)據(jù)的收集需要全面調查嗎?

  學生討論,并回答。

  生:如人口普查、本班同學的出生年月、某班學生50米跑成績等。

  師:很好!下列問題也適合采用普查方式來收集數(shù)據(jù)嗎?

  (1)了解某批次炮彈的殺傷半徑;

  (2)某一天全國牛肉的平均價格;

  (3)一批罐頭產(chǎn)品的質量檢查;

  (4)對某條河的河水的'污染情況的調查。

  學生討論、分析,并舉手回答。

  師:普查可以收集到較全面、準確的數(shù)據(jù),但普查的工作量比較大,有時受到客觀條件(如人力、財力等)的限制難以進行,有時由于調查具有破壞性,不允許采用。在這些情況下,常采用抽樣調查,即從被考察的全體對象中抽出一部分對象進行考察的調查方式。

  二、例題講解

  【例】(1)電視臺準備在某市調查一電視節(jié)目的收視率,需要對所有看電視的人進行全面調查嗎?對一所中學學生的調查結果能否作為該節(jié)目的收視率?

  (2)對本年級同學是否喜歡某電視節(jié)目調查的結果,能代表學校全體同學的意見嗎?如果不適用,應如何改進調查方法?

  解:(1)電視臺不可能對每個看電視的人進行全面調查。對這?所中學學生的調查結果不能作為該節(jié)目的收視率,因為調查對象只有中學生,缺乏代表性;

  (2)對本年級同學是否喜歡某電視節(jié)目的調查結果不能代表

  《6。2普查與抽樣調查》課時練習

  2。下列事件中最適合使用普查方式收集數(shù)據(jù)的是()

  A。為制作校服,了解某班同學的身高情況

  B。了解全市初三學生的視力情況

  C。了解一種節(jié)能燈的使用壽命

  D。了解我省農民的年人均收入情況

  答案:A

  解析:解答:A。人數(shù)不多,適合使用普查方式,所以A正確;

  B。人數(shù)較多,結果的實際意義不大,因而不適用普查方式,所以B錯誤;

  C。是具有破壞性的調查,因而不適用普查方式,所以C錯誤;

  D。人數(shù)較多,結果的實際意義不大,因而不適用普查方式,所以D錯誤。

  故選:A。

  分析:由普查得到的調查結果比較準確,但所費人力、物力和時間較多,而抽樣調查得到的調查結果比較近似。此題考查了抽樣調查和全面調查,一般來說,對于具有破壞性的調查、無法進行普查、普查的意義或價值不大時,應選擇抽樣調查,對于精確度要求高的調查,事關重大的調查選用普查。

  《6。2普查與抽樣調查》基礎鞏固

  1、(知識點1)要調查某校九年級550名學生周日的睡眠時間,下列調查對象選取最合適的是()

  A、選取該校一個班級的學生

  B、選取該校50名男生

  C、選取該校50名女生

  D、隨機選取該校50名九年級學生

  2、(題型二)下列調查適合用抽樣調查的是()

  A、了解義烏電視臺“同年哥講新聞”欄目的收視率

  B、了解禽流感H7N9確診病人同機乘客的健康狀況

  C、了解某班每個學生家庭電腦的數(shù)量

  D、“神七”載人飛船發(fā)射前對重要零部件的檢查

  3、(題型三)為了了解某市八年級男生的身高,有關部門準備對200名八年級男生的身高做調查,以下調查方案中比較合理的是()

  A、查閱外地200名八年級男生的身高統(tǒng)計資料

  B、測量該市一所中學200名八年級男生的身高

  C、測量該市兩所農村中學各100名八年級男生的身高

  D、在該市市區(qū)任選兩所中學,農村任選兩所中學,每所中學用抽簽的方法分別選出50名八年級男生,然后測量他們的身高

初一數(shù)學上冊教案9

  教學目標:

  知識與技能:

  1.進一步熟練掌握有理數(shù)加法的法則。

  2.掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。

  過程與方法:

  啟發(fā)引導式教學,能夠由特殊到一般、由一般到特殊,體會研究數(shù)學的一些基本方法。

  情感、態(tài)度與價值觀:

  1.培養(yǎng)學生的分類與歸納能力。

  2.強化學生的數(shù)形結合思想。

  3.提高學生的自學以及理解能力,激發(fā)學生學習數(shù)學的興趣。

  教學重點:

加法運算律的靈活運用,解決實際問題。

  教學難點:

能運用加法運算律簡化運算,加法在實際中的應用。

  教學方法:

采取啟發(fā)式教學法及情感教學,引導學生主動思考,主動探索。用大量的實例讓學生得出規(guī)律。

  教學準備:

  1.復習有理數(shù)的加法法則:

  (1)同號兩數(shù)相加,取相同的`符號,并把絕對值相加。

  (2)異號兩數(shù)相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。

  (3)一個數(shù)同0相加,仍得這個數(shù)。

  2.口算:7+(-5) (-5)+(-4) (-10)+0 (-8)+8

  教學過程:

  (一)情境引入,提出問題:

  鼓勵學生通過自己的探索,交流、歸納,自主得出有理數(shù)加法的運算律。

  1.敘述有理數(shù)的加法法則.

  2.小學學過的加法的運算律是不是也可以擴充到有理數(shù)范圍?

  3.計算下列各組數(shù)的值,并觀察尋找規(guī)律。

  (1) (-7)+(-5) (-5)+(-7)

  (2) [8+(-5)]+(-4) 8+[(-5)+(-4)]

  (3) [(-7)+(-10)]+(-11); (-7)+[(-10)+(-11)]

  結論:在有理數(shù)運算中,加法交換律、結合律仍然成立。

  (二)活動探究,猜想結論:

  交換律——兩個有理數(shù)相加,交換加數(shù)的位置,和不變.

  用代數(shù)式表示:a+b=b+a

  運算律式子中的字母a、b表示任意的一個有理數(shù),可以是正數(shù),也可以是負數(shù)或者零.

  在同一個式子中,同一個字母表示同一個數(shù).

  結合律——三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變.

  用代數(shù)式表示:(a+b)+c=a+(b+c)

  這里a、b、c表示任意三個有理數(shù).

  (三)驗證結論:

  例1計算16+(-25)+24+(-32)

  (引導學生發(fā)現(xiàn),在本例中,把正數(shù)與負數(shù)分別結合在一起再相加,計算就比較簡便)

  解:16+(-25)+24+(-32)

  =[16+24]+[(-25)+(-32)] (加法結合律)

  =40+(-57) (同號相加法則)

  =-17 (異號相加法則)

  例2計算:31+(-28)+28+69

  (引導學生發(fā)現(xiàn),在本例中,把互為相反數(shù)的兩個數(shù)相加得0,計算比較簡便)

  解:31+(-28)+28+69

  =31+69+[(-28)+28]

  =100+0

  =100

  《2.4.1有理數(shù)的加法法則》同步練習

  3.若兩個有理數(shù)的和為負數(shù),那么這兩個有理數(shù)(  )

  A.一定都是負數(shù)B.一正一負,且負數(shù)的絕對值大

  C.一個為零,另一個為負數(shù)D.至少有一個是負數(shù)

  4.兩個有理數(shù)的和(  )

  A.一定大于其中的一個加數(shù)

  B.一定小于其中的一個加數(shù)

  C.和的大小由兩個加數(shù)的符號而定

  D.和的大小由兩個加數(shù)的符號與絕對值而定

  5.如果a,b是有理數(shù),那么下列各式中成立的是(  )

  A.如果a<0,b<0,那么a+b>0

  B.如果a>0,b<0,那么a+b>0

  C.如果a>0,b<0,那么a+b<0

  D.如果a>0,b<0,且|a|>|b|,那么a+b>0

  《2.4.2有理數(shù)的加法運算律》測試

  7.張大伯共有7塊麥田,今年的收成與去年相比(增產(chǎn)為正,減產(chǎn)為負)情況如下(單位:kg):+320,-170,-320,+130,+150,+40,-150.則今年小麥的總產(chǎn)量與去年相比(  )

  A.增產(chǎn)20 kg B.減產(chǎn)20 kg C.增長120 kg D.持平

  8.一口井水面比井口低3米,一只蝸牛從水面沿著井壁往井口爬,第一次往上爬了0.5米,往下滑了0.1米;第二次往上爬了0.42米,卻又下滑了0.15米;第三次往上爬了0.7米,卻又下滑了0.15米;第四次往上爬了0.75米,卻又下滑了0.2米;第五次往上爬了0.55米,沒有下滑;第六次往上爬了0.48米,此時蝸牛有沒有爬出井口?請通過列式計算加以說明

初一數(shù)學上冊教案10

  教學目的:

  1.了解計算器的性能,并會操作和使用;

  2.會用計算器求數(shù)的平方根;

  重點:用計算器進行數(shù)的加、減、乘、除、乘方和開方的.計算;

  難點:乘方和開方運算;

  教學過程:

  1.計算器的使用介紹(科學計算器)

  2.用計算器進行加、減、乘、除、乘方、開方運算

  例1用計算器求下列各式的值.

  (1)(-3.75)+(-22.5) (2)51.7(-7.2)

  解(1)

  (-3.75)+(-22.5)=-26.25

  (2)

  51.7(-7.2)=-372.24

  說明輸入數(shù)據(jù)時,按鍵順序與寫這個數(shù)據(jù)的順序完全相同,但輸入負數(shù)時,符號轉換鍵要放在數(shù)據(jù)之后鍵入.

  隨堂練習

  用計算器求值

  1.9.23+10.2 2.(-2.35)×(-0.46)

  答案1.37.8 2.1.081

初一數(shù)學上冊教案11

  (1)常見的幾何體;

  (2)構成圖形的基本元素——點、線、面及點、線與平面

  圖形的一些簡單性質;點動成線,線動成面,面動成體

  (3)棱柱的特征;并注意棱柱和圓柱的聯(lián)系與區(qū)別

  (4)長方體、正方體的表面沿某些棱展開的平面圖形及圓

  柱、圓錐的側面展開圖;

  (5)用一個平面去截一個幾何體,截面的形狀;

  (6)物體的三視圖,立方體及其簡單組合的三視圖;

  (7)生活中的平面圖形.

  一.填空:

  1.這個幾何體的名稱是______;它有_____個面組成;它有____個頂點;經(jīng)過每個頂點有____條邊。

  2.正方體或長方體是一個立體圖形,它是由______個面,______條棱,_____個頂點組成的.

  3.在①長方體、②球、③圓錐、④圓柱、⑤三棱柱這五種幾何體中,其主視圖、左視圖、俯視圖都完全相同的是(填上序號即可)

  4.一個棱柱有十個頂點,且所有側棱的和為30cm,則每條側棱長為cm.

  5.將下面4個圖用紙復制下來,然后沿所畫線折起來,把折成的立體圖形名稱寫在圖的下邊橫線上:

  6.如圖是一些相同的正方塊構成的立體圖形的三視圖,則構成這個立體圖形的小方塊數(shù)為.

  7.如圖所示,木工師傅把一個長為1.6米的`長方體木料鋸成3段后,表面積比原來增加了

  80,那么這根木料本來的體積是

  8.要把一個長方體的表面剪開展成平面圖形,至少需要剪開________條棱.

  9.如圖,截去正方體一角變成一個多面體,這個多面體有____個面,____條棱.

  10.若要使圖中平面展開圖按虛線折疊成正方體后,相對面上兩個數(shù)之和為6,x=____,y=____.

  11.四棱柱按如圖粗線剪開一些棱,展成平面圖形,請畫出平面圖來:

  12.薄薄的硬幣在桌面上轉動時,看上去象球,這說明了_____________.

  13.右圖中,三角形共有個。

  14.如圖是用邊長為1的小正方體擺放成的一個幾何體的三視圖,這個幾何體的表面積為。

  第13題主視圖俯視圖左視圖

  二:選擇題(每題4分,共24分).

  15.桌上擺滿了朋友們送來的禮物,小狗貝貝好奇地想看個究竟.

  Pqmn

 、傩」废仁钦驹诘孛嫔峡矗谌缓筇鹆饲巴瓤,③唉,還是站到凳子上看吧,④最后,

  它終于爬上了桌子………按小狗四次看禮物的順序,四個畫面的順序為()

  A.mnpqB.qnmpC.pqmnD.mnqp

  16.以下四個平面圖形中,不是正方體的展開圖的是()

  ABCD

  17.只有蓋的盒子長、寬、高分別為5、5、3cm,如圖所示,有一只螞蟻從A點出

  發(fā),沿棱爬行,爬行的路徑不許重復,則螞蟻回到A點時,最多爬行()

  A.24cmB.32cmC.34cmD.48cm

  18.一個幾何體是由若干個相同的正方體組成的,其主視圖和左視圖

  如圖所示,則這個幾何體最多可由多少個這樣的正方體組成()

  A.12個B.13個C.14個D.18個

  19.把一個正方體截去一個角,剩下的幾何體最多有幾個面()

  A.5個面B.6個面C.7個面D.8個面

  20.從多邊形一條邊上的一點(不是頂點)發(fā)出發(fā),連接各個頂點得

  到20xx個三角形,則這個多邊形的邊數(shù)為().

  A.20xxB.20xxC.20xxD.20xx

  21.下列四個圖形折疊后與所得的正方體的各個面上所標數(shù)字一致的是()

  22.如圖(1)是正方體表面積展開圖,如果將其折回原來的

  正方體圖(2)時,與點P重合的兩點應該是()

  A.S和ZB.T和Y

  C.U和YD.T和V

  23.用一個平面去截①圓錐;②圓柱;③球;④五棱柱,能得到截面是圓的圖形是()

  A.①②④ B.①②③ C.②③④ D.①③④

  24.如圖是正方體的表面展開圖,折疊成正方體后,其中哪兩個完全相同()

  A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)

  25.從多邊形一個頂點處出發(fā),連接各個頂點得到20xx個三角形,

  則這個多邊形的邊數(shù)為()

  A.20xxB.20xxC.20xxD.20xx

初一數(shù)學上冊教案12

  教學目標:

  知識能力:理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能夠按要求對給定的有理數(shù)進行分類。

  過程與方法:通過本節(jié)的學習,培養(yǎng)學生正確的分類討論觀點和分類能力。

  情感、態(tài)度、價值觀:通過本節(jié)課的學習,體驗成功的喜悅,保持學好數(shù)學的信心。

  教學重點:掌握有理數(shù)的兩種分類方法

  教學難點:給定的數(shù)字將被填入它所屬的集合中

  教學方法:問題導向法

  學習方法:自主探究法

  一、形勢歸納

  小學我們學了整數(shù)和分數(shù),上節(jié)課我們學了正數(shù)和負數(shù)。誰能快速提出以下問題?

  1.有以下數(shù)字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

  (1)將以上數(shù)字填入以下兩組:正整數(shù)集{}和負整數(shù)集{}。你填完了嗎?

  (2)將以上數(shù)字填入以下兩個集合:整數(shù)集合{}和分數(shù)集合{}。你填完了嗎?

  稱整數(shù)和分數(shù)為有理數(shù)。(指點題,板書)

  二、自學指導

  學生自學課本,根據(jù)課本尋找自學的機會

  提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。

  附:自學提綱:

  1.___________、____、_______統(tǒng)稱為整數(shù),

  2._______和_________統(tǒng)稱為分數(shù)

  3.____ ______統(tǒng)稱為有理數(shù),

  4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù): 、分數(shù):;正整數(shù):、負整數(shù): 、正分數(shù): 、負分數(shù):.

  三、展示歸納

  1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;

  2、發(fā)動學生進行評價、補充、完善,教師根據(jù)每個題目的'展示情況進行必要的講解和強調;

  3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關鍵點予以強調。

  四、變式練習

  逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據(jù)需要進行重點強調。

  1.整數(shù)可分為:_____、______和_______,分數(shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.

  2.判斷下列說法是否正確,并說明理由。

  (1)有理數(shù)包括有整數(shù)和分數(shù).

  (2)0.3不是有理數(shù).

  (3)0不是有理數(shù).

  (4)一個有理數(shù)不是正數(shù)就是負數(shù).

  (5)一個有理數(shù)不是整數(shù)就是分數(shù)

  3.所有的正整數(shù)組成正整數(shù)集合,所有負整數(shù)組成負整數(shù)集合,依次類推有正數(shù)集合、負數(shù)集合、整數(shù)集合、分數(shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內,將各數(shù)用逗號分開):

  楊桂花:1.2.1有理數(shù)教學設計

  正數(shù)集合:{ …}負數(shù)集合:{ …}

  正整數(shù)集合:{ …}負分數(shù)集合:{ …}

  4.下列說法正確的是( )

  A.0是最小的正整數(shù)

  B.0是最小的有理數(shù)

  C.0既不是整數(shù)也不是分數(shù)

  D. 0既不是正數(shù)也不是負數(shù)

  5、下列說法正確的有( )

  (1)整數(shù)就是正整數(shù)和負整數(shù)(2)零是整數(shù),但不是自然數(shù)(3)分數(shù)包括正分數(shù)和負分數(shù)(4)正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)(5)一個有理數(shù),它不是整數(shù)就是分數(shù)

  五、總結與反思:通過本節(jié)課的學習,你有什么收獲?

  六、作業(yè):必做題:課本14頁:1、9題

初一數(shù)學上冊教案13

  教學目標:

  知識能力:

  理解有理數(shù)的概念,掌握有理數(shù)的兩種分類方法,能把給出的有理數(shù)按要求分類。

  過程與方法:

  經(jīng)歷本節(jié)的學習,培養(yǎng)學生分類討論的觀點和正確進行分類的能力。

  情感態(tài)度與價值觀:

  通過本課的學習,體驗成功的喜悅,保持學好數(shù)學的信心。

  教學重點:

  掌握有理數(shù)的兩種分類方法

  教學難點:

  會把所給的各數(shù)填入它所屬于的集合里

  教學方法:

  問題引導法

  學習方法:

  自主探究法

  一、情境誘導

  在小學我們學習了整數(shù)、分數(shù),上一節(jié)課我們又學習了正數(shù)、負數(shù),誰能很快的做出下面的題目。

  1.有下面這些數(shù):15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33

  (1)將上面的數(shù)填入下面兩個集合:正整數(shù)集合{ },負整數(shù)集合{ },填完了嗎?

  (2)將上面的數(shù)填入下面兩個集合:整數(shù)集合{ },分數(shù)集合{ },填完了嗎?

  把整數(shù)和分數(shù)起個名字叫有理數(shù)。(點題并板書課題)

  二、自學指導

  學生自學課本,對照課本找自學提綱中問題的答案;老師先做必要的板書準備,再到學生中巡視指導,并了解掌握學生自學情況,為展示歸納作準備。

  附:自學提綱:

  1.___________、____、_______統(tǒng)稱為整數(shù)

  2._______和_________統(tǒng)稱為分數(shù)

  3.__________統(tǒng)稱為有理數(shù)

  4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整數(shù):、分數(shù):__________;正整數(shù):__________、負整數(shù):__________、正分數(shù):__________、負分數(shù):__________.

  三、展示歸納

  1、找有問題的學生逐題展示自學提綱中的問題答案,學生說,老師板書;

  2、發(fā)動學生進行評價、補充、完善,教師根據(jù)每個題目的'展示情況進行必要的講解和強調;

  3、全部展示完畢后,老師對本段知識做系統(tǒng)梳理,關鍵點予以強調。

  四、變式練習

  逐題出示,先讓學生獨立完成,再請有問題的學生匯報結果,老師板書,并發(fā)動其他學生評價、補充并完善,最后老師根據(jù)需要進行重點強調。

  1.整數(shù)可分為:_____、______和_______,分數(shù)可分為:_______和_________.有理數(shù)按符號不同可分為正有理數(shù),_______和________.b

  2.判斷下列說法是否正確,并說明理由。

  (1)有理數(shù)包括有整數(shù)和分數(shù).

  (2)0.3不是有理數(shù).

  (3)0不是有理數(shù).

  (4)一個有理數(shù)不是正數(shù)就是負數(shù).

  (5)一個有理數(shù)不是整數(shù)就是分數(shù)

  3.所有的正整數(shù)組成正整集合,所有負整數(shù)組成負整數(shù)集合,依次類推有正數(shù)集合、負數(shù)集合、整數(shù)集合、分數(shù)集合等,把下面的有理數(shù)填入它屬于的集合中(大括號內,將各數(shù)用逗號分開):

  教學設計

  正數(shù)集合:{ …}負數(shù)集合:{ …}

  正整數(shù)集合:{ …}負分數(shù)集合:{ …}

  4.下列說法正確的是()

  A.0是最小的正整數(shù)

  B.0是最小的有理數(shù)

  C.0既不是整數(shù)也不是分數(shù)

  D.0既不是正數(shù)也不是負數(shù)

  5、下列說法正確的有()

  (1)整數(shù)就是正整數(shù)和負整數(shù)

  (2)零是整數(shù),但不是自然數(shù)

  (3)分數(shù)包括正分數(shù)和負分數(shù)

  (4)正數(shù)和負數(shù)統(tǒng)稱為有理數(shù)

  (5)一個有理數(shù),它不是整數(shù)就是分數(shù)

  五、總結與反思:

  通過本節(jié)課的學習,你有什么收獲?

  六、作業(yè):

  必做題:課本14頁:1、9題

初一數(shù)學上冊教案14

  一:教材分析:

  1:教材所處的地位和作用:

  本課是在接一元一次方程的基礎上,講述一元一次方程的應用,讓學生通過審題,根據(jù)應用題的實際意義,找出相等關系,列出有關一元一次方程,是本節(jié)的重點和難點,同時也是本章節(jié)的重難點。本課講述一元一次方程的應用題,為學生初中階段學好必備的代數(shù),幾何的基礎知識與基本技能,解決實際問題起到啟蒙作用,以及對其他學科的學習的應用。在提高學生的能力,培養(yǎng)他們對數(shù)學的興趣

  以及對他們進行思想教育方面有獨特的意義,同時,對后續(xù)教學內容起到奠基作用。

  2:教育教學目標:

 。1)知識目標:

 。ˋ)通過教學使學生了解應用題的一個重要步驟是根據(jù)題意找出相等關系,然后列出方程,關鍵在于分析已知未知量之間關系及尋找相等關系。

 。˙)通過和;差;倍;分的量與量之間的分析以及公式中有一個字母表示未知數(shù),其余字母表示已知數(shù)的情況下,列出一元一次方程解簡單的應用題。

  (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,綜合歸納整理的能力,以及理論聯(lián)系實際的能力。

 。3)思想目標:

  通過對一元一次方程應用題的教學,讓學生初步認識體會到代數(shù)方法的優(yōu)越性,同時滲透把未知轉化為已知的辯證思想,介紹我國古代數(shù)學家對一元一次方程的研究成果,激發(fā)學生熱愛中國共產(chǎn)黨,熱愛社會主義,決心為實現(xiàn)社會主義四個現(xiàn)代化而學好數(shù)學的思想;同時,通過理論聯(lián)系實際的方式,通過知識的應用,培養(yǎng)學生唯物主義的思想觀點。

  3:重點,難點以及確定的依據(jù):

  根據(jù)題意尋找和;差;倍;分問題的相等關系是本課的重點,根據(jù)題意列出一元一次方程是本課的難點,其理論依據(jù)是關鍵讓學生找出相等關系克服列出一元一次方程解應用題這一難點,但由于學生年齡小,解決實際問題能力弱,對理論聯(lián)系實際的問題的理解難度大。

  二:學情分析:(說學法)

  1:學生初學列方程解應用題時,往往弄不清解題步驟,不設未知數(shù)就直接進行列方程或在設未知數(shù)時,有單位卻忘記寫單位等。

  2:學生在列方程解應用題時,可能存在三個方面的困難:

 。1)抓不準相等關系;

 。2)找出相等關系后不會列方程;

 。3)習慣于用小學算術解法,得用代數(shù)方法分析應用題不適應,不知道要抓怎樣的相等關系。

  3:學生在列方程解應用題時可能還會存在分析問題時思路不同,列出方程也可能不同,這樣一來部分學生可能認為存在錯誤,實際不是,作為教師應鼓勵學生開拓思路,只要思路正確,所列方程合理,都是正確的,讓學生選擇合理的思路,使得方程盡可能簡單明了。

  4:學生在學習中可能習慣于用算術方法分析已知數(shù)與未知數(shù),未知數(shù)與已知數(shù)之間的關系,對于較為復雜的應用題無法找出等量關系,隨便行事,亂列式子。

  5:學生在學習過程中可能不重視分析等量關系,而習慣于套題型,找解題模式。

  三:教學策略:(說教法)

  如何突出重點,突破難點,從而實現(xiàn)教學目標。我在教學過程中擬計劃進行如下操作:

  1:“讀(看)——議——講”結合法

  2:圖表分析法

  3:教學過程中堅持啟發(fā)式教學的原則

  教學的理論依據(jù)是:

  1:必須先明確根據(jù)應用題題意列方程是重點,同時也是難點的觀點,在教學過程中幫助學生抓住關鍵,克服難點,正確列方程弄清楚題意,找出能夠表示應用題全部含義的一個相等關系,并列出代數(shù)式表示這相等關系的左邊和右邊。為此,在教學過程中要讓學生明確知曉解題步驟,通過例1可以讓學生大致了解列出一元一次方程解應用題的方法。

  2:在教學過程中要求學生仔細審題,認真閱讀例題的.內容提要,弄清題意,找出能夠表示應用題全部含義的一個相等關系,分析的過程可以讓學生只寫在草稿上,在寫解的過程中,要求學生先設未知數(shù),再根據(jù)相等關系列出需要的代數(shù)式,再把相等關系表示成方程形式,然后解這個方程,并寫出答案,在設未知數(shù)時,如有單位,必須讓學生寫在字母后,如例1中,不能把“設原來有X千克面粉”寫成“設原來有X”。另外,在列方程中,各代數(shù)式的單位應該是相同的,如例1中,代數(shù)式“X 字串7 ”“—15%X”“42500”的單位都是千克。在本例教學中,關鍵在于找出這個相等關系,將其中涉及待求的某個數(shù)設為未知數(shù),其余的數(shù)用已知數(shù)或含有已知數(shù)與未知數(shù)的代數(shù)式表示,從而列出方程。在例1中的相等關系比較簡單明顯,可通過啟發(fā)式讓學生自己找出來。在例1教學中同時讓學生鞏固解一元一次方程應用題的五個步驟,特別是第2步是關鍵步驟。

  3:針對學生在列方程解應用題中可能存在的三個方面的困難,在教學過程中有意識加以解決,特別是學生抓不準相等關系這方面,可以讓學生通過表格,圖表等形式幫助學生找出相等關系表示成方程。如例1在分析過程中通過表格讓學生明了清楚直觀解決列方程的難點。

  4:通過圖表對比使學生更直觀,理解更深刻,同時,降低了理論教學的難度和分量,提高課堂教學效益(教學手段)。

  5:在課后習題的安排上適當讓學生通過模仿例題的思想方法,加深學生解應用題的能力,這主要由于學生剛剛入門,多進行模仿,習慣以后,再做與例題不一樣的習題,可以提高運用知識能力,同時讓學生進行一題多解,找出共同點,區(qū)別或最佳列法,以開闊學生的思路。

  四:教學程序:

  (一):課堂結構:復習提問,導入講授新課,課堂練習,鞏固新課,布置作業(yè)五個部分。

  (二):教學簡要過程:

  1:復習提問:

 。1):什么叫做等式?

 。2):等式與方程之間有哪些關系?

 。3):求X的15%的代數(shù)式。

 。4):敘述代數(shù)式與方程的區(qū)別。

 。ɡ碛墒牵和ㄟ^復習加深學生對等式,方程,代數(shù)式之間關系的理解,有利于學生熟練正確根據(jù)題意列出一元一次方程,從而有利降低本節(jié)的難度。)

  2:導入講授新課:

  (1):教具:

  一塊小黑板,抄212例1題目及相對應的空表格。

  左邊右邊

 。2):新課引述:

 。3):講述課文212例1:

 。康氖牵阂髮W生認真讀懂題目,尋找反映題目的全部含義的相等關系,必須根據(jù)題目關系,切勿盲目性)通過理解啟發(fā)學生尋找出以下關系:原來重量—運出重量=剩余重量(A)(在指導學生分析尋找題意相等關系時,可能存在學生分析問題思路不同,會找出如下關系:原來重量=運出重量+剩余重量,原來重量—剩余重量=運出重量的相等關系來,這主要由于學生思路不同,得出的關系表面不同,但思路是正確的,應加以鼓勵培養(yǎng)學生這種發(fā)散思維能力。)

  指導學生設原來重量為X千克。這里分析等式左邊:原來重量為X千克,運出重量為15%X千克,把以上填入表格左邊。 字串7 分析等式右邊:剩余重量為42500千克,填入表格右邊。

 。康氖牵和ㄟ^分析使學生易看出,先弄懂題意,找出相等關系,再按照相等關系來設未知數(shù)和列代數(shù)式,有利于降低列方程解應用題的難度)

  把以上左邊和右邊的代數(shù)式分別代入(A)中,同時要求學生注意方程的左邊和右邊的單位要一致,就可以列出方程。

  同時要求學生在解答過程中勿漏寫“答”和“設”,且都不要漏寫單位。

  結合解題過程向學生介紹一元一次應用題解法的一般步驟:

  課本215黑體字

  3:課堂練習:

  課文216練習1,2題

 。康氖牵鹤寣W生通過適當?shù)哪7吕}的解題思想方法從而加深對本課的內容的理解掌握。)

  4:新課鞏固:

  學生對本節(jié)內容進行要小結:

  列方程解應用題著重于分析,抓住尋找相等關系。解一元一次應用題的一般步驟及注意事項。

  (目的:讓學生加深對應用題的解法的認識和該注意事項的重視。)

  5:作業(yè)布置:

  課文221習題4-4(1)A組1,2,3題

 。康模涸谟跈z驗學生對本節(jié)內容的理解和運用程度,以及實際接受情況,并促使學生進一步鞏固和掌握所學的內容。)

  五:板書設計:

  4*4一元一次方程的應用:

  例題:小黑板出示例1題目解:設原來有X千克面粉,那么運

  相等關系:原來重量—運出重量=剩余重量出了15%X千克,依題意,得

  等式左邊:等式右邊:X—15%X=42500

  原來重量為X千克,剩余重量為42500千克。解這個方程:

  運出重量為15%X千克。85/100*X=42500

  解一元一次方程的一般步驟:X=50000(千克)

  小黑板出示課文215黑體字內容提要答:原來有50000千克面粉。

初一數(shù)學上冊教案15

  一、教材分析

  分析本節(jié)課在教材中的地位和作用,以及在分析數(shù)學大綱的基礎上確定本節(jié)課的教學目標、重點和難點。首先來看一下本節(jié)課在教材中的地位和作用。

  1、有理數(shù)的加法在整個知識系統(tǒng)中的地位和作用是很重要的。初中階段要培養(yǎng)學生的運算能力、邏輯思維能力和空間想象能力以及讓學生根據(jù)一些現(xiàn)實模型,把它轉化成數(shù)學問題,從而培養(yǎng)學生的數(shù)學意識,增強學生對數(shù)學的理解和解決實際問題的能力。運算能力的培養(yǎng)主要是在初一階段完成。有理數(shù)的加法作為有理數(shù)的運算的一種,它是有理數(shù)運算的重要基礎之一,它是整個初中代數(shù)的一個基礎,它直接關系到有理數(shù)運算、實數(shù)運算、代數(shù)式運算、解方程、研究函數(shù)等內容的學習。

  本節(jié)課學生主要采用“探究學習法”,學生通過多媒體的演示;主動探索,發(fā)現(xiàn)規(guī)律;并及時進行歸納總結,使學生的主體地位得以體現(xiàn)又讓學生充分感受探究有理數(shù)加法法則的過程,符合學生的認知過程。并且將單調的練習轉換成學生互相提問,互相比賽的方式,使學生的學習熱情得以調動。

  采用這種學習方法的優(yōu)點是:學生主動參與知識的發(fā)生、發(fā)展過程,在解決問題的過程中學習,在探究的過程中,激發(fā)學生學習興趣和創(chuàng)作新熱情。掌握這種學習方法后,對學生的.終生學習、終生發(fā)展有積極的意義。

  教學過程

  《數(shù)學課程標準》明確指出:“數(shù)學教學是數(shù)學活動的教學,學生是數(shù)學學習的主人。”為能更多地向學生提供從事數(shù)學活動的機會,我將本節(jié)課的教學過程設為以下五個環(huán)節(jié):發(fā)現(xiàn)新知—再探新知—應用新知—深化拓展—小結鞏固。

  (二)探索規(guī)律,得出法則:

  課件演示:(設置六個探究活動,以原點為起點,一只小狗在數(shù)軸上左右走動來表示情況,規(guī)定向左為正,向右為負)讓學生體會兩個數(shù)相加的規(guī)律。

  (1)同向情況:

  1.情景

  探究1:一條狗先向右運動5米,再向右運動3米,那么兩次運動后的總結果是什么?

  探究2:一條狗先向左運動5米,再向左運動3米,那么兩次運動后的總結果是什么?

  2.探究問題:有理數(shù)兩個負數(shù)相加的和該怎么確定符號?怎么確定絕對值?(學生主動思考,展開討論)

  3.猜一猜,說一說(分組概括兩個負數(shù)的加法法則):

  ①兩數(shù)相加,取相同的符號,并把絕對值相加;

 、谪摂(shù)加負數(shù),取負號,并把絕對值相加。

  4.例:(-4)+(-5)

  (2)異向情況:

  1.情景:

  探究3:一條狗先向右運動5米,再向左運動3米,那么兩次運動后的總結果是什么?

【初一數(shù)學上冊教案】相關文章:

初一的數(shù)學上冊教案11-09

初一數(shù)學上冊教案12-13

初一數(shù)學上冊教案12-18

初一上冊的數(shù)學教案11-13

初一數(shù)學上冊的教案12-23

初一上冊數(shù)學教案01-04

初一的數(shù)學上冊教案15篇11-10

初一的數(shù)學上冊教案(15篇)11-11

初一的數(shù)學上冊教案精選15篇11-11

初一數(shù)學上冊教案15篇12-13