初二數學上冊教案15篇
作為一位兢兢業(yè)業(yè)的人民教師,編寫教案是必不可少的,教案有利于教學水平的提高,有助于教研活動的開展。教案應該怎么寫呢?下面是小編為大家收集的初二數學上冊教案,歡迎閱讀,希望大家能夠喜歡。
初二數學上冊教案1
一、教學目標:
1.經歷觀察、發(fā)現、探究中心對稱圖形的有關概念和基本性質的過程,積累一定的審美體驗。
2了解中心對稱圖形及其基本性質,掌握平行四邊形也是中心對稱圖形。
二、教學重、難點:
理解中心對稱圖形的概念及其基本性質。
三、教學過程:
(一)創(chuàng)設問題情境
1.以魔術創(chuàng)設問題情境:教師通過撲克牌魔術的演示引出研究課題,激發(fā)學生探索“中心對稱圖形”的興趣。
【魔術設計】:師取出若干張非中心對稱的撲克牌和一張是中心對稱的牌,按牌面的多數指向整理好(如上圖),然后請一位同學上臺任意抽出一張撲克,把這張牌旋轉180O后再插入,再請這位同學洗幾下,展開撲克牌,馬上確定這位同學抽出的撲克。
(課堂反應:學生非常安靜,目不轉睛地盯著老師做動作。每完成一個動作之后,學生就進入沉思狀態(tài),接著就是小聲議論。)
師重復以上活動
2次后提問:
(1)你們知道這是什么原因嗎?老師手中的撲克牌圖案有什么特點?
(2)你能說明為什么老師要把抽出的這張牌旋轉1800嗎?(小組討論)
(反思:創(chuàng)設問題情境主要在于下面幾點理由:(1)采取從學生最熟悉的實際問題情境入手的方式,貼近學生的生活實際,讓學生認識到數學來源于生活,又服務于生活,進一步感悟到把實際問題抽象成數學問題的訓練,從而激發(fā)學生的求知欲。
(2)所有新知識的學習都以對相關具體問題情境的探索作為開始,它們是學生了解與學習這些新知識的有效方法,同時也活躍了課堂氣氛,激發(fā)學生的學習興趣。(
3)通過撲克魔術創(chuàng)設問題情境,學生獲得的答案將是豐富的。在最后交流歸納時,他們感覺到,自己在活動中“研究”的成果,對最終形成規(guī)范、正確的結論是有貢獻的,從而激發(fā)他們更加注意學習方式和“研究”方式。這也是對他們從事科學研究的情感態(tài)度的培養(yǎng)。學生勤于動手、樂于探究,發(fā)展學生實踐應用能力和創(chuàng)新精神成為可行。)
2.教師揭示謎底。
利用“Z+Z”課件游戲演示牌面,請學生找一找哪張牌旋轉
180O后和原來牌面一樣。
3.學生通過動手分析上述撲克牌牌面、獨立思考、探究、合作交流等活動,得到答案:
(1)只有一張撲克牌圖案顛倒后和原來牌面一樣。
(2)其余撲克牌顛倒后和原來牌面不一樣,因此,老師事先按牌面的多數(少數)指向整理好,把任意抽出的一張撲克牌旋轉180O后,就可以馬上在一堆撲克牌中找出它。
(反思:本環(huán)節(jié)是在撲克魔術揭密問題的具體背景下,通過學生自己的觀察、發(fā)現、總結、歸納,進一步理解中心對稱圖形及其特點,發(fā)展空間觀念,突出了數學課堂教學中的探索性。從而培養(yǎng)了學生觀察、概括能力,讓學生嘗到了成功的喜悅,激發(fā)了學生的發(fā)現思維的火花。)
(二)學生分組討論、思考探究:
1.師問:生活中有哪些圖形是與這張撲克牌一樣,旋轉180O后和原來一樣?
生舉例:線段、平行四邊形、矩形、菱形、正方形、圓、飛機的雙葉螺旋槳等。
2.你能將下列各圖分別繞其上的一點旋轉180O,使旋轉前后的圖形完全重合嗎?(先讓學生思考,允許有困難的學生利用 “
Z+Z”演示其旋轉過程。)3
.有人用“中心對稱圖形”一詞描述上面的這些現象,你認為這個詞是什么含義?
(對于抽象的概念教學,要關注概念的實際背景與形成過程,加強數學與生活的聯系,力求讓學生采取發(fā)現式的學習方式,通過“想一想”、“議一議”、 “動一動”等多種活動形式,幫助學生克服記憶概念的學習方式。)
(三)教師明晰,建立模型
1給出“中心對稱圖形”定義:在平面內,一個圖形繞某個點旋轉180O,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2.對比軸對稱圖形與中心對稱圖形:(列出表格,加深印象)
軸對稱圖形中心對稱圖形有一條對稱軸——直線有一個對稱中心——點沿對稱軸對折繞對稱中心旋轉1880O對折后與原圖形重合
旋轉后與原圖形重合
(四)解釋、應用與拓廣
1.教師用“Z+Z
智能教育平臺”演示旋轉過程,驗證上述圖形的中心對稱性,引導學生討論、探究中心對稱圖形的性質。
(利用計算機《Z+Z智能教育平臺》技術,通過圖形旋轉給出中心對稱圖形的一個幾何解釋,目的是使學生對中心對稱圖形有一個更直觀的認識。)
2.探究中心對稱圖形的性質
板書:中心對稱圖形上的每一對對應點所連成的線段都被對稱中心平分。
3.師問:怎樣找出一個中心對稱圖形的對稱中心?
(兩組對應點連結所成線段的交點)
4平行四邊形是中心對稱圖形嗎?若是,請找出其對稱中心,你怎樣驗證呢?
學生分組討論交流并回答。
討論:根據以上的驗證方法,你能驗證平行四邊形的哪些性質?學生分組討論交流并回答。
討論:根據以上的驗證方法,你能驗證平行四邊形的哪些性質?
5逆向問題:如果一個四邊形是中心對稱圖形,那么這個四邊形一定是平行四邊形嗎?
學生討論回答。
6你還能找出哪些多邊形是中心對稱圖形?
(反思:合作學習是新課程改革中追求的一種學習方法,但合作學習必須建立在學生的獨立探索的基礎上,否則合作學習將會流于形式,不能起到應有的效果,所于我在上課時強調學生先獨立思考,再由當天的'小組長組織進行,并由當天的記錄員記錄小組成員的活動情況(每個小組有一張課堂合作學習參考表,見附錄)。)
(五)拓展與延伸
1中國文字豐富多彩、含義深刻,有許多是中心對稱的,你能找出幾個嗎?
2.正六邊形的對稱中心怎樣確定?
(六)魔術表演:
1.師:把4張撲克牌放在桌上,然后把某一張撲克牌旋轉180o后,得到右圖,你知道哪一張撲克被旋轉過嗎?
2.學生小組活動:
以“引入”為例,在一副撲克牌中,拿出若干張撲克牌設計魔術,相互之間做游戲。
(新教材的編寫,著重突出了用數學活動呈現教學內容,而不是以例題和習題的形式出現。通過多種形式的實踐活動,讓學生親歷探究與現實生活聯系密切的學習過程,使學生在合作中學習,在競爭收獲,共同分享成功的喜悅,同時能調節(jié)課堂的氣氛,培養(yǎng)學生之間的情感。只有這樣,學生的創(chuàng)新意識和動手意識才會充分地發(fā)揮出來。)
四、案例小結
《數學課程標準》提出:“實踐活動是培養(yǎng)學生進行主動探索與合作交流的重要途徑!薄敖處煈摮浞掷脤W生已有的生活經驗,隨時引導學生把所學的數學知識應用到生活中去,解決身邊的數學問題,了解數學在現實生活中的作用,體會學習數學的重要性!边@兩段話,正體現了新教材的重要變化——關注學生的生活世界,學習內容更加貼近實際,同時強調了數學教學讓學生動手實踐的重要意義和作用。
現實性的生活內容,能夠賦予數學足夠的活力和靈性。對許多學生來說,“撲克”和“游戲”是很感興趣的內容,因此,也具有現實性,即回歸生活(玩撲克牌)——讓學生感知學習數學可以讓生活增添許多樂趣,同時也讓學生感知到數學就在我們身邊,學生學習的數學應當是生活中的數學,是學生“自己身邊的數學”。這樣,數學來源于生活,又必須回歸于生活,學生就能在游戲中學得輕松愉快,整個課堂顯得生動活潑。
初二數學上冊教案2
教學目標:
1. 掌握三角形內角和定理及其推論;
2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;
3.通過對三角形分類的學習,使學生了解數學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。
4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹的科學態(tài)
5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯系與轉化的辯證思想。
教學重點:三角形內角和定理及其推論。
教學難點:三角形內角和定理的證明
教學用具:直尺、微機
教學方法:互動式,談話法
教學過程:
1、創(chuàng)設情境,自然引入
把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現新知識創(chuàng)造一個最佳的心理和認知環(huán)境。
問題1 三角形三條邊的關系我們已經明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內角有何關系呢?
問題2 你能用幾何推理來論證得到的關系嗎?
對于問題1絕大多數學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內容(板書課題)
新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內容自然合理。
2、設問質疑,探究嘗試
(1)求證:三角形三個內角的和等于
讓學生剪一個三角形,并把它的三個內角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。
問題1 觀察:三個內角拼成了一個 什么角?
問題2 此實驗給我們一個什么啟示?
(把三角形的三個內角之和轉化為一個平角)
問題3 由圖中AB與CD的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?
其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經過思考會畫出此線的`。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。
(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?
學生回答后,電腦顯示圖表。
(3)三角形中三個內角之和為定值 ,那么對三角形的其它角還有哪些特殊的關系呢?
問題1 直角三角形中,直角與其它兩個銳角有何關系?
問題2 三角形一個外角與它不相鄰的兩個內角有何關系?
問題3 三角形一個外角與其中的一個不相鄰內角有何關系?
其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經過分析討論,得出結論并書寫證明過程。
這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。
3、三角形三個內角關系的定理及推論
通過上面四個例題的分析與討論,有利于學生基礎知識與基本能力的掌握與提高,同時更有利于學生創(chuàng)新意識與創(chuàng)造性思維能力的培養(yǎng),在練習、講評等教學環(huán)節(jié)中,形成師生之間的、學生之間的“雙向反饋”是很重要的。
4、變式訓練,鞏固提高
根據例4 的度數的求法,思考如下問題:
(3)如圖5,過D點畫AB的平行線MN,與AC、BC交于點M、N,則 的度數多少?
(4)當MN繞著點D旋轉過程中, 會有怎樣的變化?
提示:變化1 當直線MN與AC、BC的交點仍在線段AC、BC上時, =
變化2 當直線MN與AC的交點在線段AC上,與BC的交點在BC的延長線上時,
變化3 當直線MN與AC的交點在線段AC的延長線上,與BC的交點在線段BC上時, =
變化4當直線MN與AC、BC的交點在C點時, =
經過這樣的變式、發(fā)展、學習,不僅使學生鞏固了所學的數學知識,也使學生體驗了數學的運動變化觀,使學生的思維得到了培養(yǎng)。
5、小結
通過設置問題:“本節(jié)在知識方面以及在思想方法方面你有怎樣的收獲?”師生以談話交流的形式進行小結。強調學生注意:輔助線的作用及運用定理及推論解決問題時,要善于抓住條件與結論的關系。
6、布置作業(yè)
a、書面作業(yè)P43#3
b、上交作業(yè)P42#16、17
初二數學上冊教案3
教學目標:
知識與技能:會解含有分母的一元一次不等式;能夠用不等式表達數量之間的不等關系;能夠確定不等式的整數解。
過程與方法:經歷解方程和解不等式兩種過程的比較,體會類比思想,發(fā)展學生的數學思考水平。
情感態(tài)度、價值觀:通過一元一次不等式的學習,培養(yǎng)學生認真、堅持等良好學習習慣。.
教材分析:
本節(jié)教材首先讓學生動手做一做解兩個不等式;之后讓大家談談解一元一次不等式與解一元一次方程的異同點;最后是關于通過列不等式表示數量之間不等關系的例題2、3,其中例3涉及到了不等式的正解數解問題。關于解含有分母的一元一次不等式,學生在去分母這一部可能容易出錯,可以采用通過學生深度解決、師生總結交流方法、鞏固應用等方式處理。關于一元一次不等式的整數解問題,學生確實會有一定困難,主要是思考不夠認真,缺少方法等原因,教師要注重借助數軸的學法指導。
教學重點:
1、含有分母的一元一次不等式的`解法
2、用不等式表達數量之間的不等關系
3、確定不等式的整數解
教學難點:
1、解含有分母的一元一次不等式時,去分母這一部的準確性。
2、不等式的整數解的確定
教學流程:
一、直接引入
我們學習了解一元一次方程和解一元一次不等式,它們之間有怎樣的區(qū)別和聯系呢今天我們來探究一下。
二、探究新知
(一)解一元一次方程和解一元一次不等式的異同點
1、出示問題,讓學生板演
找兩名同學,分別解下面兩個問題:
(1)解方程:﹦
(2)解不等式:
2、小組討論解一元一次方程和解一元一次不等式的過程的異同點。
3、師生交流。
相同點:解一元一次方程和解一元一次不等式的步驟相同,依次為:去分母去括號移項,合并同類項化系數為1。
不同點:在解一元一次不等式的化系數為1時,要注意不等式兩邊乘或除以同一個負數時,不等號要改變方向。
4、運用新知。
將下列不等式中的分母化去:
初二數學上冊教案4
教學目標
1.掌握正方形的定義、性質和判定及它們初步應用.
2.理解正方形與平行四邊形、矩形、菱形的內在聯系.
3.通過正方形與平行四邊形、矩形、菱形的聯系的教學來提高學生的邏輯思維能力.
教學重點和難點
重點是正方形的定義及正方形與矩形、菱形的聯系;
難點是正方形與矩形、菱形的關系及正方形的性質、判定的靈活運用.
教學過程設計
一、通過知識結構的教學,學習正方形的知識.
1.復習平行四邊形、矩形、菱形的定義.
學生邊回答,教師邊用活動教具演示平行四邊形演變成矩形、菱形的過程,并畫出它們之間的內在聯系圖.(畫出圖4-50(a)中的四邊形,平行四邊形、矩形、菱形及箭頭)
2.類比聯想,用運動方式得出正方形的定義.
問:既然矩形、菱形都能由平行四邊形運動變化得到,那么正方形呢?
啟發(fā)學生將小學熟悉的正方形與平行四邊形作比較,用教具演示出平行四邊形形成正方形的過程,同時歸納出正方形的定義.教師板書定義并畫出圖4-50中的正方形及箭頭①.
3.完善特殊的`平行四邊形的知識結構.
(1)師生共同分析正方形定義的三個要點:①是平行四邊形;②有一個角是直角;③有一組鄰邊相等.
(2)對比正方形與矩形、菱形的定義,得出它們的聯系:
、儆烧叫味x①,②條件可知正方形是特殊的矩形.(畫出圖中的箭頭②及正方形集合A5和矩形集合A1)
、谟烧叫味x的①,③條件可知正方形是特殊的菱形.(畫出圖4-50中的箭頭③及菱形集合A2)
、塾烧叫蔚亩x的所有條件可知,正方形又是特殊的平行四邊形.(畫出圖4-50中的集合A3)
、芷叫兴倪呅巍⒕匦、菱形、正方形都是特殊的四邊形.(畫出圖4-50(b)中四邊形集合A4)
而且從以上過程可知,正方形既是矩形又是菱形.(集合A2與A1的公共部分)
4.從整體知識結構出發(fā),研究正方形的性質和判定.
(1)正方形的性質.
引導學生由正方形與矩形、菱形的關系得知:正方形具有矩形和菱形的一切性質.讓學生復習矩形和菱形的性質,從而得到正方形的性質.
①邊:四邊都相等.(性質定理1)
、诮牵核膫角都是直角.
③對角線:相等、互相垂直平分,每條對角線平分一組對角.(性質定理2)
(2)正方形的判定.
引導學生根據正方形與平行四邊形、矩形、菱形之間的關系,總結出正方形的三類判定方法:
、傧扰卸ㄋ倪呅问瞧叫兴倪呅危倥卸ㄋ钦叫;(圖4-50(a)中箭頭①)
、谙扰卸ㄋ倪呅问蔷匦危倥卸ㄟ@個矩形又是菱形;(圖4-50(a)中箭頭②)
、巯扰卸ㄋ倪呅问橇庑危倥卸ㄟ@個菱形又是矩形.(圖4-50(a)中箭頭③)
(3)鞏固練習:判斷下列命題是否正確,不是正方形的補充什么條件能讓它成為正方形?
、偎膫角都相等的四邊形是正方形;(×)
②四條邊都相等的四邊形是正方形;(×)
、蹖蔷相等的菱形是正方形;(√)
④對角線互相垂直的矩形是正方形;(√)
、輰
初二數學上冊教案5
一、教學目的:
1.掌握菱形概念,知道菱形與平行四邊形的關系.
2.理解并掌握菱形的定義及性質1、2;會用這些性質進行有關的論證和計算,會計算菱形的面積.
3.通過運用菱形知識解決具體問題,提高分析能力和觀察能力.
4.根據平行四邊形與矩形、菱形的從屬關系,通過畫圖向學生滲透集合思想.
二、重點、難點
1.教學重點:菱形的'性質1、2.
2.教學難點:菱形的性質及菱形知識的綜合應用.
三、課堂引入
1.(復習)什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關系是什么?
2.(引入)我們已經學習了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,請看演示:(可將事先按如圖做成的一組對邊可以活動的教具進行演示)如圖,改變平行四邊形的邊,使之一組鄰邊相等,從而引出菱形概念.
菱形定義:有一組鄰邊相等的平行四邊形叫做菱形.
【強調】 菱形(1)是平行四邊形;(2)一組鄰邊相等.
讓學生舉一些日常生活中所見到過的菱形的例子.
四、例習題分析
例1(補充)已知:如圖,四邊形ABCD是菱形,F是AB上一點,DF交AC于E.
求證:∠AFD=∠CBE.
證明:∵四邊形ABCD是菱形,
∴ CB=CD,CA平分∠BCD.
∴∠BCE=∠DCE.又CE=CE,
∴△BCE≌△COB(SAS).
∴∠CBE=∠CDE.
∵ 在菱形ABCD中,AB∥CD,∴∠AFD=∠FDC
∴ ∠AFD=∠CBE.
例2(教材P108例2)略
五、隨堂練習
1.若菱形的邊長等于一條對角線的長,則它的一組鄰角的度數分別為.
2.已知菱形的兩條對角線分別是6cm和8cm,求菱形的周長和面積.
3.已知菱形ABCD的周長為20cm,且相鄰兩內角之比是1∶2,求菱形的對角線的長和面積.
4.已知:如圖,菱形ABCD中,E、F分別是CB、CD上的點,且BE=DF.求證:∠AEF=∠AFE.
六、課后練習
1.菱形ABCD中,∠D∶∠A=3∶1,菱形的周長為8cm,求菱形的高.
2.如圖,四邊形ABCD是邊長為13cm的菱形,其中對角線BD長10cm,求(1)對角線AC的長度;(2)菱形ABCD的面積.
初二數學上冊教案6
1、教材分析
(1)知識結構:
(2)重點和難點分析:
重點:四邊形的有關概念及內角和定理。因為四邊形的有關概念及內角和定理是本章的基礎知識,對后繼知識的學習起著重要的作用。
難點:四邊形的概念及四邊形不穩(wěn)定性的理解和應用。在前面講解三角形的概念時,因為三角形的三個頂點確定一個平面,所以三個頂點總是共面的,也就是說,三角形肯定是平面圖形,而四邊形就不是這樣,它的四個頂點有不共面的情況,又限于我們現在研究的是平面圖形,所以在四邊形的定義中加上在同一平面內這個條件,這幾個字的意思學生不好理解,所以是難點。
2、教法建議
(1)本節(jié)的引入最好使用我們提供的多媒體課件,通過這個課件,使學生認識到這些四邊形都是常見圖形,研究它們具有實際應用意義,從而激發(fā)學生學習數學的興趣。
(2)本節(jié)的教學,要以三角形為基礎,可以仿照三角形,通過類比的方法建立四邊形的有關概念,如四邊形的邊、頂點、內角、外角、內角和、外角和、周長等都可同三角形類比,要結合三角形、四邊形的圖形,對比著指給學生看,讓學生明確這些概念。
(3)因為在三角形中沒有對角線,所以四邊形的對角線是一個新概念,它是解決四邊形問題時常用的輔助線,通過它可以把四邊形問題轉化為三角形問題來解決。結合圖形,讓學生自己動手作四邊形的一條對角線,并觀察四邊形的一條對角線把它分成幾個三角形?兩條對角線呢?使學生加深對對角線的作用的認識。
(4)本節(jié)用到的數學思想方法是化歸轉化的思想和類比的思想,教師在講解本節(jié)知識時要滲透這兩種思想方法,并且在本節(jié)小結中對這兩種數學思想方法進行總結,使學生明白碰到復雜的、未知的問題要轉化為簡單的、已知的問題。
一、素質教育目標
(一)知識教學點
1、使學生掌握四邊形的有關概念及四邊形的內角和外角和定理。
2、了解四邊形的不穩(wěn)定性及它在實際生產,生活中的應用。
(二)能力訓練點
1、通過引導學生觀察氣象站的實例,培養(yǎng)學生從具體事物中抽象出幾何圖形的能力。
2、通過推導四邊形內角和定理,對學生滲透化歸思想。
3、會根據比較簡單的條件畫出指定的四邊形。
4、講解四邊形外角概念和外角定理時,聯系三角形的有關概念對學生滲透類比思想。
(三)德育滲透點
使學生認識到這些四邊形都是常見的,研究他們都有實際應用意義,從而激發(fā)學生學習新知識的興趣。
(四)美育滲透點
通過四邊形內角和定理數學,滲透統一美,應用美。
二、學法引導
類比、觀察、引導、講解
三、重點難點疑點及解決辦法
1、教學重點:四邊形及其有關概念;熟練推導四邊形外角和這一結論,并用此結論解決與四邊形內外角有關計算問題。
2、教學難點:理解四邊形的有關概念中的一些細節(jié)問題;四邊形不穩(wěn)定性的理解和應用。
3、疑點及解決辦法:四邊形的定義中為什么要有在平面內,而三角形的定義中就沒有呢?根據指定條件畫四邊形,關鍵是要分析好作圖的順序,一般先作一個角。
四、課時安排
2課時
五、教具學具準備
投影儀、膠片、四邊形模型、常用畫圖工具
六、師生互動活動設計
教師引入新課,學生觀察圖形,類比三角形知識導出四邊形有關概念;師生共同推導四邊形內角和的定理,學生鞏固內角和定理和應用;共同分析探索外角和定理,學生閱讀相關材料。
第一課時
七、教學步驟
【復習引入】
在小學里已經對四邊形、長方形、平形四邊形的有關知識有所了解,但還很膚淺,這一
章我們將比較系統地學習各種四邊形的性質和判定分析它們之間的關系,并運用有關四邊形的'知識解決一些新問題。
【引入新課】
用投影儀打出課前畫好的教材中P119的圖。
師問:在上圖中你能把知道的長方形、正方形、平行四邊形、梯形找出來嗎?(啟發(fā)學生找上述圖形,最后教師用彩色筆勾出幾個圖形)。
【講解新課】
1、四邊形的有關概念
結合圖形講解四邊形,四邊形的邊、頂點、角,凸四邊形,四邊形的對角線(同時學生在書上畫出上述概念),講解這些概念時:
(1)要結合圖形。
(2)要與三角形類比。
(3)講清定義中的關鍵詞語。如四邊形定義中要說明為什么加上同一平面內而三角形的定義中為什么不加同一平面內(三角形的三個頂點一定在同一平面內,而四個點有可能不在同一平面內,如圖42中的點。我們現在只研究平面圖形,故在定義中加上在同一平面內的限制)。
(4)強調四邊形對角線的作用,作為四邊形的一種常用的輔助線,通過它可以把四邊形問題轉化為三角形來解(滲透化歸思想),并觀察圖4—3用對角線分成的這些三角形與原四邊形的關系。
(5)強調四邊形的表示方法,一定要按頂點順序書寫四邊形如圖41。
(6)在判斷一個四邊形是不是凸四邊形時,一定要按照定義的要求把每一邊都延長后再下結論如圖4—4,圖4—5。
2、四邊形內角和定理
教師問:
(1)在圖4—3中對角線AC把四邊形ABCD分成幾個三角形?
(2)在圖4—6中兩條對角線AC和BD把四邊形分成幾個三角形?
(3)若在四邊形ABCD如圖4—7內任取一點O,從O向四個頂點作連線,把四邊形分成幾個三角形。
我們知道,三角形內角和等于180,那么四邊形的內角和就等于:
、2180=360如圖4
②4180—360=360如圖4—7。
例1已知:如圖48,直線于B、于C。
求證:(1) (2) 。
本例題是四邊形內角和定理的應用,實際上它證明了兩邊相互垂直的兩個角相等或互補的關系,何時用相等,何時用互補,如果需要應用,作兩三步推理就可以證出。
【總結、擴展】
1、四邊形的有關概念。
2、四邊形對角線的作用。
3、四邊形內角和定理。
八、布置作業(yè)
教材P128中1(1)、2、 3。
九、板書設計
四邊形有關概念
四邊形內角和
例1
十、隨堂練習
教材P122中1、2、3。
初二數學上冊教案7
教學目標
1.等腰三角形的概念. 2.等腰三角形的性質. 3.等腰三角形的概念及性質的應用.
教學重點:
1.等腰三角形的概念及性質.
2.等腰三角形性質的應用.
教學難點:
等腰三角形三線合一的性質的理解及其應用.
教學過程
、.提出問題,創(chuàng)設情境
在前面的學習中,我們認識了軸對稱圖形,探究了軸對稱的性質,并且能夠作出一個簡單平面圖形關于某一直線的軸對稱圖形,還能夠通過軸對稱變換來設計一些美麗的圖案.這節(jié)課我們就是從軸對稱的角度來認識一些我們熟悉的幾何圖形.來研究:①三角形是軸對稱圖形嗎?②什么樣的三角形是軸對稱圖形?
有的三角形是軸對稱圖形,有的三角形不是.
問題:那什么樣的三角形是軸對稱圖形?
滿足軸對稱的條件的三角形就是軸對稱圖形,也就是將三角形沿某一條直線對折后兩部分能夠完全重合的就是軸對稱圖形.
我們這節(jié)課就來認識一種成軸對稱圖形的'三角形──等腰三角形.
、.導入新課: 要求學生通過自己的思考來做一個等腰三角形.
作一條直線L,在L上取點A,在L外取點B,作出點B關于直線L的對稱點C,連結AB、BC、CA,則可得到一個等腰三角形.
等腰三角形的定義:有兩條邊相等的三角形叫做等腰三角形.相等的兩邊叫做腰,另一邊叫做底邊,兩腰所夾的角叫做頂角,底邊與腰的夾角叫底角.同學們在自己作出的等腰三角形中,注明它的腰、底邊、頂角和底角.
思考:
1.等腰三角形是軸對稱圖形嗎?請找出它的對稱軸.
2.等腰三角形的兩底角有什么關系?
3.頂角的平分線所在的直線是等腰三角形的對稱軸嗎?
4.底邊上的中線所在的直線是等腰三角形的對稱軸嗎?底邊上的高所在的直線呢?
結論:等腰三角形是軸對稱圖形.它的對稱軸是頂角的平分線所在的直線.因為等腰三角形的兩腰相等,所以把這兩條腰重合對折三角形便知:等腰三角形是軸對稱圖形,它的對稱軸是頂角的平分線所在的直線.
要求學生把自己做的等腰三角形進行折疊,找出它的對稱軸,并看它的兩個底角有什么關系.
沿等腰三角形的頂角的平分線對折,發(fā)現它兩旁的部分互相重合,由此可知這個等腰三角形的兩個底角相等,而且還可以知道頂角的平分線既是底邊上的中線,也是底邊上的高.
由此可以得到等腰三角形的性質:
1.等腰三角形的兩個底角相等(簡寫成等邊對等角).
2.等腰三角形的頂角平分線,底邊上的中線、底邊上的高互相重合(通常稱作三線合一).
由上面折疊的過程獲得啟發(fā),我們可以通過作出等腰三角形的對稱軸,得到兩個全等的三角形,從而利用三角形的全等來證明這些性質.同學們現在就動手來寫出這些證明過程).
初二數學上冊教案8
一、班級情況分析:
本學期一(1)班有學生40人,新轉學來一名女生。上學期末考試及格人數28人,高分人數3人,優(yōu)秀人數15人,雖然學生成績在年級排名第一,能過鎮(zhèn)中線,但是學生未能發(fā)揮出真實水平。優(yōu)秀臨界生以及及格臨界生的提升潛力較大。
一(7)班有學生38人,上學期末考試及格人數18人,高分人數2人,優(yōu)秀人數5人,全班優(yōu)秀學生不多不夠拔尖,成績中層的學生占據大部分。學生好動,對數學學習的積極性普遍不夠高,學生好動,課堂氣氛較活躍。學生數學基礎不扎實。提升空間較大。
兩班的整體成績均不夠理想。
二、教材分析:
本套教材切合《標準》的課程目標,有以下特點:
1.為學生的數學學習構筑起點,提供大量數學活動的線索,成為供所有學生從事數學學習的出發(fā)點。
2.向學生提供現實、有趣、富有挑戰(zhàn)性的學習素材。所有數學知識的學習,都力求從學生實際出發(fā),以他們熟悉或感興趣的問題情境引入學習主題,并展開數學探究。
3.為學生提供探索、交流的時間和空間。設立了“做一做”、“想一想”、“議一議”等欄目,以使學生通過自主探索與合作交流,形成新的知識。
4.展現數學知識的形成與應用過程,讓學生經歷真正的“做數學”、“用數學”的過程。
5.滿足不同學生發(fā)展的需求。
三、教學目標及要求:
第一章:
1.經歷用字母表示數量關系的過程,在現實情境中進一步理解字母表示數的意義,發(fā)展符號感。
2.經歷探索整式運算法則的過程,理解整式運算的算理,進一步發(fā)展觀察、歸納、類比、概括等能力,發(fā)展有條理的思考及語言表達能力。
3.了解整數指數冪的意義和正整數指數冪的運算性質,會進行簡單的整式加、減、乘、除運算。
4.會推導乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2
第二章:
1.經歷觀察、操作、想象、推理、交流等過程,進一步發(fā)展空間觀念、推理能力和有條理表達的能力。
2.在具體情境中了解補角、余角、對頂角,知道等角的余角相等、等角的補角相等、對頂角相等。會用三角尺過已知直線外一點畫這條直線的平行線;會用尺規(guī)作一條線段等于已知線段、作一個角等于已知角。
3.經歷探索直線平行的條件以及平行線特征的過程,掌握直線平行的條件以及平行線的.特征。
4.進一步激發(fā)學生對數學方面的興趣,體驗從數學的角度認識現實。
第三章:
1.能形象地描述百萬分之一等較小的數據,并用科學記數法表示它們,進一步發(fā)展數感;能借助計算器進行有關科學記數法的計算。
2.了解近似數與有效數字的概念,能按要求取近似數,體會近似數的意義及在生活中的作用。
3.通過實例,體驗收集、整理、描述和分析數據的過程。
4.能讀懂統計圖并從中獲取信息,能形象、有效地運用統計圖描述數據。
第四章:
1.經歷從實際問題和游戲中了解必然事件、不可能事件和不確定事件發(fā)生的可能性。
2.體會等可能性與游戲規(guī)則的公平性,抽象出概率模型,計算概率,解決實際、作出合理決策的過程,體會概率是描述不確定現象的數學模型。
3.能設計符合要求的簡單概率模型。
第五章:
1.通過觀察、操作、想象、推理、交流等活動,發(fā)展空間觀念,積累數學活動經驗。
2.在探索圖形性質的過程中,發(fā)展推理能力和有條理的表達能力。
3.進一步認識三角形的有關概念,了解三邊之間的關系以及三角形的內角和,了解三角形的穩(wěn)定性。
4.了解圖形的全等,經歷探索三角形全等條件的過程,掌握兩個三角形全等的條件,能應用三角形的全等解決一些實際問題。
5.在分別給出兩角一夾邊、兩邊一夾角和三邊的條件下,能夠利用尺規(guī)作出三角形。
第六章:
1.經歷探索具體情境中兩個變量之間的關系的過程,進一步發(fā)展符號感和抽象思維。
2.能發(fā)現實際情境中的變量及其相互關系,并確定其中的自變量或因變量。
3.能從表格、圖象中分析出某些變量之間的關系,并能用自己的語言進行表達,發(fā)展有條理地進行思考和表達的能力。
4.能根據具體問題,選取用表格或關系式來表示某些變量之間的關系,并結合對變量之間關系的分析,嘗試對變化趨勢進行初步的預測。
第七章:
1.在豐富的現實情境中,經歷觀察、折疊、剪紙,圖形欣賞與設計等數學活動過程,進一步發(fā)展空間觀念。
2.通過豐富的生活實例認識軸對稱,探索它的基本性質,理解對應點所連的線段被對稱軸垂直平分的性質。
3.探索并了解基本圖形的軸對稱性及其相關性質。
4.能夠按要求作出簡單平面圖形經過軸對稱后的圖形,探索簡單圖形之間的軸對稱關系,并能指出對稱軸。
5.欣賞現實生活中的軸對稱圖形,能利用軸對稱進行一些圖案設計,體驗軸對稱在現實生活中的廣泛應用和豐富的文化價值。
四、教學改革的設想(教學具體措施)
充分體現培優(yōu)扶困的實施,提高優(yōu)秀人數和及格人數,減少低分人數,切實做到:
1、根據學生的個別差異。因材施教,熱情關懷,循循善誘,加強個別輔導。幫助他們增強學習的信心,逐步達到教學的基本要求,盡量做好培優(yōu)輔差工作。
2、精心設計練習,講究練習方式提高練習效率,對作業(yè)嚴格要求,及時檢查,認真批改,對作業(yè)中的錯誤及時找出原因,要求學生認真改正,培養(yǎng)學生獨立完成作業(yè)的良好習慣。
3、認真?zhèn)湔n,深入鉆研教材,堅持自主學習,充分發(fā)揮學生的主動學習有積極性,了解學生裝學習數學的特點,研究教學規(guī)律,不斷改進教學方法。
4、堅持學習,多聽課,多模仿,虛心向有經驗的老師請教教育教學方法。努力提升自身的教學技能。
5、在教學中,加強學生思維能力的培養(yǎng)和非智力因素的培養(yǎng)。多開展數學活動課,擴大學生的視野,拓寬知識面,培養(yǎng)學習數學的興趣,發(fā)展數學才能,發(fā)揮學生的主動性,獨立性和創(chuàng)造性。
6、開展“一幫一”活動,實行以優(yōu)帶差點的幫助方法,多利用課余時間加強輔導,從基礎知識補起,力求使學生一課一得,力求提高優(yōu)秀率和及格率。
7.課前充分備好課,在課堂教學中特別要體現出培扶,分層次教育。
8.重視學生學習興趣的培養(yǎng),激發(fā)學生學習數學的內驅力。
9.大膽地深度嘗試新的教學方法,要因地制宜,因材施教。
10.重視基礎知識過關和單元測試過關工作,及時進行單元總結,做好平時的查漏補缺工作,不遺漏知識盲點。
11.注重對作業(yè)、練習紙、練習冊、測驗卷的及時批改,并盡量做到全批全改,及時反饋信息。
12.多用多媒體教學,使數學生動化。
13.多用實物教學,使數學形象化。
14.實行課課清,日日清,周周清。
15.加強課堂管理,嚴把課堂質量關,提高課堂效率。
16.抓好學生的作業(yè)上交完成情況。
17.加強與學生的交流,做好學生的思想教育與培優(yōu)輔差工作。
五、擬定本學期教學目標
六、擬定本學期培優(yōu)扶養(yǎng)計劃。
培扶措施
對臨界優(yōu)秀生
在理解題、思維訓練題給予方法指導,并要加強書面的表達能力。做到思路清晰,格式標準;A訓練題的過關檢測,對每次測試的成績給予個別指導,多用激勵教育。
對臨界及格生:
首先加強基礎知識的培訓,尤其要在選擇題、填空題多下功夫。在課堂上、課后對他們多加注意,及時糾正錯誤。抓好每次單元過關測試工作,抓好時機,多表揚,樹立信心。
七、教學內容及課時安排(略)
八、作業(yè)格式及批改要求:
作業(yè)格式:
1.作業(yè)本左邊都畫上豎線,留約0.5CM空白。
2.每次作業(yè)都要在第一行注明日期和作業(yè)的出處,如P42,1即課本42面第1題。
3。每題作業(yè)之間要留一行隔開,每次作業(yè)之間至少留一行空白,再寫下一次作業(yè)。
批改要求:
1.每題作業(yè)都要有批改的痕跡,錯的打“×”,對的打“√”,書寫要清晰,明確看出錯對。
2.每次作業(yè)必須全批全改,要體現出層次。作業(yè)簿要打分數+等級(等級分A、B、C三等,代表學生的書寫成績。)
3、每次的作業(yè)要及時更正,更正時統一在每次的作業(yè)后面用紅筆更正。
初二數學上冊教案9
教學目標
1知識與技能目標
(1)通過拼圖活動,讓學生感受無理數產生的實際背景和引入的必要性.
(2)能判斷給出的數是否為無理數,并能說出理由.
2過程與方法目標
(1)學生親自動手做拼圖活動,感受無理數存在的必要性和合理性,培養(yǎng)學生的動手能力和合作精神.
。2)通過回顧有理數的有關知識,能正確地進行推理和判斷識別某些數是否為有理數、無理數,訓練他們的思維判斷力.
。3)借助計算器進行估算,培養(yǎng)學生的估算能力,發(fā)展學生的抽象概括能力,并在活動中進一步發(fā)展學生獨立思考、合作交流的意識和能力.
3情感與態(tài)度目標
(1)激勵學生積極參與教學活動,提高大家學習數學的熱情.
。2)引導學生充分進行交流,討論與探索等教學活動,培養(yǎng)他們的合作精神與鉆研精神,借助計算器進行估算.
。3)了解有關無理數發(fā)現的知識,鼓勵學生大膽質疑,培養(yǎng)他們?yōu)檎胬矶鴬^半的獻身精神.
教學重點
1讓學生經歷無理數發(fā)現的過程,感知生活中確實存在著不同于有理數的數.
2會判斷一個數是否為有理數,是否不是有理數.
3用計算器進行無理數的估算.
教學難點
1把兩個邊長為1的正方形拼成一個大正方形的動手操作過程.
2無理數概念的建立及估算.
3判斷一個數是否為有理數.
教學準備:多媒體,兩個邊長為1的正方形,剪刀,短繩.
教學過程:
第一環(huán)節(jié):章節(jié)引入(2分鐘,學生閱讀感受)
內容:.小紅是剛升入八年級的新生,一個周末的上午,當工程師的爸爸給小紅出了兩個數學題:
。1)兩個數3.252525……與3.252252225……一樣嗎?它們有什么不同?
。2)一個邊長為6cm的正方形木板,按如圖的痕跡鋸掉四個一樣的直角三角形.請計算剩下的正方形木板的面積是多少?剩下的正方形木板的邊長又是多少厘米呢?你能幫小紅解決這個問題嗎?
b.你能求出面積為2的正方形的邊長嗎?你知道圓周率的精確值嗎?它們能用整數或分數(即有理數)來表示嗎?
第二環(huán)節(jié):復習引入(3分鐘,學生口答)
內容:閱讀下面的資料,在數學中,有理數的定義為:形如的數(p、q為互質的整數,且p≠0)叫做有理數,當p=1,q為任意整數時,有理數就是指所有的整數,如:=-2等,當p≠1時,由p、q互質可知,有理數就是指所有的分數,如,-,-等,綜上所述,有理數就是整數和分數的統稱.
請用上述材料中所涉及的知識證明下面的問題:
a.直角邊長分別為3和1的直角三角形的斜邊長是不是有理數?
b.復習前面學過的數,有理數包括整數和分數,有理數范圍是否滿足實際生活的需要呢?
第三環(huán)節(jié):活動探究(15分鐘,學生動手操作,小組合作探究)
。ㄒ唬┌l(fā)現新數
內容:將課前已準備好的兩個邊長為1的小正方形剪一剪,拼一拼,設法得到一個大正方形.
在學生活動的基礎上,教師利用多媒體展示其中一種剪拼過程,并拋出下面的議一議:
(1)設大正方形的邊長為,應滿足什么條件?
。2)滿足:2=2的數是一個什么樣的數?可能是整數嗎?說明你的理由?
。3)可能是分數嗎?說說你的理由?
引出課題《數怎么又不夠用了》
。ǘ└惺苄聰档膹V泛性
內容:面積為5的`正方形,它的邊長b可能是有理數嗎?說說你的理由。
(三)鞏固驗證,應用拓展
內容:aB,C是一個生活小區(qū)的兩個路口,BC長為2千米,A處是一個花園,從A到B,C兩路口的距離都是2千米,現要從花園到生活小區(qū)修一條最短的路,這條路的長可能是整數嗎?可能是分數嗎?說明理由.
b如圖(1)是由16個邊長為1的小正方形拼成的,試從連接這些
小正方形的兩個頂點所得的線段中,分別找出兩條長度是有理數的線段,兩條長度不是有理數的線段
第四環(huán)節(jié):介紹歷史,開闊視野(3分鐘,學生閱讀)
內容:早在公元前,古希臘數學家畢達哥拉斯認為萬物皆“數”,即“宇宙間的一切現象都能歸結為整數或整數之比”,也就是一切現象都可用有理數去描述.后來,這個學派中的一個叫希伯索斯的成員發(fā)現邊長為1的正方形的對角線的長不能用整數或整數之比來表示,這個發(fā)現動搖了畢達哥拉斯學派的信條,據說,為此希伯斯被投進了大海,他為真理而獻出了寶貴的生命,但真理是不可戰(zhàn)勝的,后來,古希臘人終于正視了希伯索斯的發(fā)現.
第五環(huán)節(jié):課時小結(2分鐘,全班交流)
內容談談本節(jié)課你有什么收獲與體會?有哪些困難需要別人幫你解決?
b感受數不夠用了,會確定一個數是有理數或不是有理數.
c本節(jié)課用到基本方法:動手、操作、觀察、思考,猜想驗證,推理,歸納等過程,獲取數學知識.
第六環(huán)節(jié):布置作業(yè)
初二數學上冊教案10
教學目的:
1、在具體的操作活動中,讓學生認、讀、寫11-20各數,掌握20以內數的順序,初步建立數位的概念。
2、結合學生的實際情況,讓學生填寫算式。
3、在教學中滲透數的順序,并進行社會秩序教育。
4、學會與人合作,體會計算的多樣化,發(fā)展學生思維。
教學重點:掌握20以內數的順序。
教學難點:初步建立數的概念
教學準備:每組一個數位計數器及40-50根小棒等。
教學方法:抓問題,用多種游戲,把抽象的數位具體化。
教學步驟:
一、創(chuàng)設情景,尋找關鍵問題
1、數學課研究數學問題,一些小棒會有什么數學問題。
。繌堊雷影l(fā)40-50根小棒,玩小棒時間為3-5分鐘)
2、你發(fā)現了什么數學問題。
。康模壕毩20以內數的順序,也可以在玩小棒中發(fā)現十根捆一捆)
3、游戲,看誰的手小巧。
老師報數,學生用棒子表示,討論:快的.同學的訣竅。
出示:十根可以捆一捆。
再進行游戲,讓學生習慣中把1捆當作10根用。
4、完成:
()個一()個十
試一試,在計數器拔出10
個位只有幾顆珠子,怎么辦?(10個一是1個10)
在個位拔上一顆珠子,表示1個十,也表示10個一。
二、自主合作,解決數位順序。
在解決了10是1個十也是10個一后,還能過度試一試在計數器上表示。接下來就是讓學生通過自主合作,數位,組成和算式結合,理解11-20各數。
1、11-20各數在計數器上怎么表示呢?
問題提出后,可以組織學生討論交流,并加以解決,并結合p68的圖示表達自己的想法,學生之間互相交流,實現生生互動。
。ㄟ@兒注意11-20的表達多樣,只要求至少一樣,方法選擇,方法應用應由學生通過自主交流來確定。)
2、
1個十,1個一是1110+1=11
10和11,十位上是1,沒有變,個位由0變成1,就是11。
3、15、19、20的數位可重點檢查。
(20的數位可由10-20,也可19-20來描述。)
4、小結,從右邊起,第一位是個位,第二位是十位,數位不一樣,數也不一樣,十位上1表示1個十,個位上1表示1個一。
5、練習:(口算)
10+910+810+710+610+5
10+410+39+108+107+10
6+105+104+103+10
三、實踐應用,實現知識延伸
1、尋找粗心丟失的數。
游戲報數。(報數時丟一些中間數)
2、開火車順數
游戲:數數(順數和倒數)
3、拔珠游戲(師生――生生)
報數13,拔13并寫出13,同時說13的含義,還可畫珠。
4、p691-6自己完成。
四、課外實踐,拓展知識應用。
1、完成10-20各數數位圖及小棒圖。
2、和父母互說10-20各數組成。
課后評析:
初二數學上冊教案11
教學目的
通過分析儲蓄中的數量關系、商品利潤等有關知識,經歷運用方程解決實際問題的過程,進一步體會方程是刻畫現實世界的有效數學模型。
重點、難點
1.重點:探索這些實際問題中的等量關系,由此等量關系列出方程。
2.難點:找出能表示整個題意的等量關系。
教學過程
一、復習
1.儲蓄中的利息、本金、利率、本利和等含義,關系:利息=本金×年利率×年數
本利和=本金×利息×年數+本金
2.商品利潤等有關知識。
利潤=售價—成本; =商品利潤率
二、新授
問題4.小明爸爸前年存了年利率為2.43%的二年期定期儲蓄,今年到期后,扣除利息稅,所得利息正好為小明買了一只價值48.6元的計算器,問小明爸爸前年存了多少元?
利息—利息稅=48.6
可設小明爸爸前年存了x元,那么二年后共得利息為
2.43%×X×2,利息稅為2.43%X×2×20%
根據等量關系,得2.43%x·2—2.43%x×2×20%=48.6
問,扣除利息的20%,那么實際得到的利息是多少?扣除利息的20%,實際得到利息的`80%,因此可得2.43%x·2.80%=48.6
解方程,得x=1250
例1.一家商店將某種服裝按成本價提高40%后標價,又以8折(即按標價的80%)優(yōu)惠賣出,結果每件仍獲利15元,那么這種服裝每件的成本是多少元?
大家想一想這15元的利潤是怎么來的?
標價的80%(即售價)-成本=15
若設這種服裝每件的成本是x元,那么
每件服裝的標價為:(1+40%)x
每件服裝的實際售價為:(1+40%)x·80%
每件服裝的利潤為:(1+40%)x·80%—x
由等量關系,列出方程:
(1+40%)x·80%—x=15
解方程,得x=125
答:每件服裝的成本是125元。
三、鞏固練習
教科書第15頁,練習1、2。
四、小結
當運用方程解決實際問題時,首先要弄清題意,從實際問題中抽象出數學問題,然后分析數學問題中的等量關系,并由此列出方程;求出所列方程的解;檢驗解的合理性。應用一元一次方程解決實際問題的關鍵是:根據題意首先尋找“等量關系”。
五、作業(yè)
教科書第16頁,習題6.3.1,第4、5題。
初二數學上冊教案12
重難點分析
本節(jié)的重點是矩形的性質和判定定理。矩形是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是有一個角是直角,因而就增加了一些特殊的性質和不同于平行四邊形的判定方法。矩形的這些性質和判定定理即是平行四邊形性質與判定的延續(xù),又是以后要學習的正方形的基礎。
本節(jié)的難點是矩形性質的靈活應用。由于矩形是特殊的平行四邊形,所以它不但具有平行四邊形的性質,同時還具有自己獨特的性質。如果得到一個平行四邊形是矩形,就可以得到許多關于邊、角、對角線的條件,在實際解題中,應該應用哪些條件,怎樣應用這些條件,常常讓許多學生手足無措,教師在教學過程中應給予足夠重視。
教法建議
根據本節(jié)內容的特點和與平行四邊形的關系,建議教師在教學過程中注意以下問題:
1.矩形的知識,學生在小學時接觸過一些,可由小學學過的知識作為引入。
2.矩形在現實中的實例較多,在講解矩形的性質和判定時,教師可自行準備或由學生準備一些生活實例來進行判別應用了哪些性質和判定,既增加了學生的參與感又鞏固了所學的知識.
3.如果條件允許,教師在講授這節(jié)內容前,可指導學生按照教材145頁圖4-30所示,制作一個平行四邊形作為教學過程中的道具,既增強了學生的動手能力和參與感,有在教學中有切實的體例,使學生對知識的掌握更輕松些.
4.在對性質的講解中,教師可將學生分成若干組,每個學生分別對事先準備后的圖形進行邊、角、對角線的測量,然后在組內進行整理、歸納.
5.由于矩形的性質定理證明比較簡單,教師可引導學生分析思路,由學生來進行具體的證明.
6.在矩形性質應用講解中,為便于理解掌握,教師要注意題目的層次安排。
矩形教學設計
教學目標
1.知道矩形的定義和矩形與平行四邊形之間的聯系;能說出矩形的四個角都是直角和矩形的的對角線相等的性質;能推出直角三角形斜邊上的中線等于斜邊的一半的性質。
2.能運用以上性質進行簡單的證明和計算。
此外,從矩形與平行四邊形的區(qū)別與聯系中,體會特殊與一般的關系,滲透集合的思想,培養(yǎng)學生辨證唯物主義觀點。
引導性材料
想一想:一般四邊形與平行四邊形之間的相互關系?在圖4.5-1的圓圈中填上四邊形和平行四邊形的字樣來說明這種關系:即平行四邊形是特殊的四邊形,又具有一般四邊形的一切性質;具有一些特殊的性質。
小學里已學過長方形,即矩形。顯然,矩形是平行四邊形,而且矩形還具有四個角都是直角(小學里已學過)等特殊性質,那么,如果在圖4.5-1中再畫一個圈表示矩形,這個圈應畫在哪里?
(讓學生初步感知矩形與平行四邊形的從屬關系。)
演示:用四根木條制作一個平行四邊形教具。利用平行四邊形的不穩(wěn)定性,演示如圖4.5-2,當平行四邊形的`一個內角由銳角變?yōu)殁g角的過程中,會發(fā)生怎樣的特殊情況,這時的圖形是什么圖形(矩形)。
問題1:從上面的演示過程,可以發(fā)現:平行四邊形具備什么條件時,就成了矩形?
說明與建議:教師的演示應充分展現變化過程,從而讓學生深切地感受到短形是無數個平行四邊形中的一個特例,同時,又使學生能正確地給出矩形的定義。
問題2:矩形是特殊的平行四邊形,它除了有一個角是直角以外,還可能具有哪些平行四邊形所沒有的特殊性質呢?
說明與建議:讓學生分組探索,有必要時,教師可引導學生,根據研究平行四邊形獲得的經驗,分別從邊、角、對角線三個方面探索矩形的特性,還可提醒學生,這種探索的基礎是矩形有一個角是直角矩形的四個角都相等(矩形性質定理1),要學生給以證明(即課本例1后練習第1題)。
學生能探索得出矩形的鄰邊互相垂直的特性,教師可作說明:這與矩形的四個角是直角本質上是一致的,所以不必另列為一個性質。
學生探索矩形的四條對角線的大小關系時,如有困難,可引導學生測量并比較矩形兩條對角線的長度,然后加以證明,得出性質定理2。
問題3:矩形的一條對角線把矩形分成兩個直角三角形,矩形的對角線既互相平分又相等,由此,我們可以得到直角三角形的什么重要性質?
說明與建議:(1)讓學生先觀察圖4.5-3,并議論猜想,如學生有困難,教師可引導學生觀察圖中的一個直角三角形(如Rt△ABC),讓學生自己發(fā)現斜邊上的中線BO與斜線AC的大小關系,然后讓學生自己給出如下證明:
證明:在矩形ABCD中,對角線AC、BD相交于點O,AC=BD(矩形的對角線相等)。
AO=CO
在Rt△ABC中,BO是斜邊AC上的中線,且。
直角三角形斜邊上的中線等于斜邊的一半。
例題解析
例1:(即課本例1)
說明:本題難度不大,又有助于學生加深對性質定理的理解,教學中應引導學生探索解法:
如圖4.5-4,欲求對角線BD的長,由于BAD=90,AB=4cm,則只要再找出Rt△ABD中一條直角邊的長,或一個銳角的度數,再從已知條件AOD=120出發(fā),應用矩形的性質可知,ADB=30,另外,還可以引導學生探究△AOB是什么特殊的三角形(等邊三角形),課本用了第一種解法,并給出了解幾何計算題書寫格式的示范;第二種解法如下:
∵四邊形ABCD是矩形,
AC=BD(矩形的對角線相等)。
又。
OA=BO,△AOB是等腰三角形,
∵AOD=120,AOB=180- 120= 60
AOB是等邊三角形。
BO=AB=4cm,
BD=2BO=244cm=8cm。
例2:(補充例題)
已知:如圖4.5-5四邊形ABCD中,ABC=ADC=90,E是AC的中點,EF平分BED交BD于點F。
(1)猜想:EF與BD具有怎樣的關系?
(2)試證明你的猜想。
解:(1)EF垂直平分BD。
(2)證明:∵ABC=90,點E是AC的中點。
(直角三角形的斜邊上的中線等于斜邊的一半)。
同理:。
BE=DE。
又∵EF平分BED。
EFBD,BF=DF。
說明:本例是一道不給出結論,需要學生自己觀察---猜想---討論的幾何命題,有助于發(fā)展學生的推理(包括合情推理和邏輯推理)能力。如果學生不適應,或有困難,教師可根據實際情況加以引導,這種訓練,重要的不是猜對了沒有?證明了沒有?而是讓學生經歷這樣一種自己研究圖形性質的過程,順便指出:求解本題的重要基礎是識圖技能----能從復雜圖形中分解出如圖4.5-6所示的三個基本圖形。
課堂練習
1.課本例1后練習題第2題。
2.課本例1后練習題第4題。
小結
1.矩形的定義:
2.歸納總結矩形的性質:
對邊平行且相等
四個角都是直角
對角線平行且相等
3.直角三角形斜邊上的中線等于斜邊的一半。
4.矩形的一條對角線把矩形分成兩個全等的直角三角形;矩形的兩條對角線把矩形分成四個全等的等腰三角形。因此,有關矩形的問題往往可化為直角三角形或等腰三角形的問題來解決。
作業(yè)
1.課本習題4.3A組第2題。
2.課本復習題四A組第6、7題。
初二數學上冊教案13
一、基本知識和需說明的問題:
。ㄒ唬﹫A的有關性質,本節(jié)中最重要的定理有4個。
1、垂徑定理:
本定理和它的三個推論說明: 在(垂直于弦(不是直徑的弦);(2)平分弦;(3)平分弦所對的弧;(4)過圓心(是半徑或是直徑)這四個語句中,滿足兩個就可得到其它兩個的結論。如垂直于弦(不是直徑的弦)的直徑,平分弦且平分弦所對的兩條弧。條件是垂直于弦(不是直徑的弦)的直徑,結論是平分弦、平分弧。再如弦的垂直平分線,經過圓心且平分弦所對的弧。條件是垂直弦,、分弦,結論是過圓心、平分弦。
應用:在圓中,弦的一半、半徑、弦心距組成一個直角三角形,利用勾股定理解直角三角形的知識,可計算弦長、半徑、弦心距和弓形的高。
2、圓心角、弧、弦、弦心距四者之間的`關系定理:
在同圓和等圓中, 圓心角、弧、弦、弦心距這四組量中有一組量相等,則其它各組量均相等。這個定理證弧相等、弦相等、圓心角相等、弦心距相等是經常用的。
3、圓周角定理:
此定理在證題中不大用,但它的推論,即弧相等所對的圓周角相等;在同圓或等圓中,圓周角相等,弧相等。直徑所對的圓周角是直角,90°的圓周角所對的弦是直徑,都是很重要的。條件中若有直徑,通常添加輔助線形成直角。
4、圓內接四邊形的性質。
。ǘ┲本和圓的位置關系。
1、性質:
圓的切線垂直于經過切點的半徑。(有了切線,將切點與圓心連結,則半徑與切線垂直,所以連結圓心和切點,這條輔助線是常用的。)
2、切線的判定有兩種方法。
、偃糁本與圓有公共點,連圓心和公共點成半徑,證明半徑與直線垂直即可。
、谌糁本和圓公共點不確定,過圓心做直線的垂線,證明它是半徑(利用定義證)。根據不同的條件,選擇不同的添加輔助線的方法是極重要的。
3、三角形的內切圓:
內心是內切圓圓心,具有的性質是:到三角形的三邊距離相等,還要注意說某點是三角形的內心。連結三角形的頂點和內心,即是角平分線。
4、切線長定理:自圓外一點引圓的切線,則切線和半徑、圓心到該點的連線組成直角三角形。
。ㄈ﹫A和圓的位置關系。
1、記住5種位置關系的圓心距d與兩圓半徑之間的相等或不等關系。會利用d與R,r之間的關系確定兩圓的位置關系,會利用d,R,r之間的關系確定兩圓的位置關系。
2、相交兩圓,添加公共弦,通過公共弦將兩圓連結起來。
。ㄋ模┱噙呅魏蛨A。
1、弧長公式。
2、扇形面積公式。
3、圓錐側面積計算公式:S= 2π=π。
二、鞏固練習。
。ㄒ唬┚倪x一選,相信自己的判斷!
1、如圖,把自行車的兩個車輪看成同一平面內的兩個圓,則它們的位置關系是
A、外離 B、外切 C、相交 D、內切
2、已知⊙O的直徑為12cm,圓心到直線L的距離為6cm,則直線L與⊙O的公共點的個數為( )
A、2 B、1 C、0 D、不確定
3、已知⊙O1與⊙O2的半徑分別為3cm和7cm,兩圓的圓心距O1O2 =10cm,則兩圓的位置關系是( )
A、外切 B、內切 C、相交 D、相離
4、已知在⊙O中,弦AB的長為8厘米,圓心O到AB的距離為3厘米,則⊙O的半徑是( )
A、3厘米 B、4厘米 C、5厘米 D、8厘米
5、下列命題錯誤的是( )
A、經過三個點一定可以作圓 B、三角形的外心到三角形各頂點的距離相等
C、同圓或等圓中,相等的圓心角所對的弧相等 D、經過切點且垂直于切線的直線必經過圓心
6、在平面直角坐標系中,以點(2,3)為圓心,2為半徑的圓必定( )
A、與x軸相離、與y軸相切 B、與x軸、y軸都相離
C、與x軸相切、與y軸相離 D、與x軸、y軸都相切
7、在Rt△ABC中,∠C=90°,AC=12,BC=5,將△ABC繞邊AC所在直線旋轉一周得到圓錐,則該圓錐的側面積是( )
A、25π B、65π C、90π D、130π
。ǘ┘毿奶钜惶,試自己的身手!
12、各邊相等的圓內接多邊形_____正多邊形;各角相等的圓內接多邊形_____正多邊形。(填“是”或“不是”)
13、△ABC的內切圓半徑為r,△ABC的周長為l,則△ABC的面積為_______________ 。
14、已知在⊙O中,半徑r=13,弦AB∥CD,且AB=24,CD=10,則AB與CD的距離為__________。
15、同圓的內接正四邊形和內接正方邊形的連長比為____________________。
初二數學上冊教案14
教學目標:
經歷探索兩個圓之間位置關系的過程;了解圓與圓之間的幾種位置關系;了解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系
教學重點和難點
重點:圓與圓之間的幾種位置關系
難點:兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系
教學過程設計
一、從學生原有的認知結構提出問題
1)復習點與圓的位置關系;2)復習直線與圓的位置關系。
二、師生共同研究形成概念
1.書本引例
☆ 想一想 P 125 平移兩個圓
利用平移實驗直觀地探索圓和圓的位置關系。
2.圓與圓的`位置關系
每一種位置關系都可以先讓學生想想應該用什么名稱表達。在講解兩圓外切、內切與兩圓圓心距d、半徑R和r的數量關系的聯系時,可先讓學生探索,老師不要生硬地把答案說出來
☆ 鞏固練習 若兩圓沒有交點,則這兩個圓的位置關系是 相離 ;
若兩圓有一個交點,則這兩個圓的位置關系是 相切 ;
若兩圓有兩個交點,則這兩個圓的位置關系是 相交 ;
☆ 想一想 書本P 126 想一想
通過實際例子讓學生理解圓與圓的位置關系。
3.圓與圓相切的性質
☆ 想一想 書本P 127 想一想
旨在引導學生思考兩圓相切的性質:如果兩圓相切,那么兩圓的連心線經過切點,這一性質是下面議一議的基礎。學生容易看出兩圓相切圖形的軸對稱性及對稱軸,但要說明切點在連心線上則有一定困難。
如果兩圓相切,那么兩圓的連心線經過切點
4.講解例題
例1.已知⊙ 、⊙ 相交于點A、B,∠A B = 120°,∠A B = 60°, = 6cm。求:(1)∠ A 的度數;2)⊙ 的半徑 和⊙ 的半徑 。
5.講解例題
例2.兩個同樣大小的肥皂泡粘在一起,其剖面如圖所示,分隔兩個肥皂泡的肥皂膜PQ成一條直線,TP、NP分別為兩圓的切線,求∠TPN的大小。
三、隨堂練習
1.書本 P 128 隨堂練習
2.《練習冊》 P 59
四、小結
圓與圓的位置關系;圓心距與兩圓半徑和兩圓的關系。
五、作業(yè)
書本 P 130 習題3.9 1
初二數學上冊教案15
一、學生起點分析
八年級學生已在七年級學習了“變量之間的關系”,對利用圖象表示變量之間的關系已有所認識,并能從圖象中獲取相關的信息,對函數與圖象的聯系還比較陌生,需要教師在教學中引導學生重點突破函數與圖象的對應關系.
二、教學任務分析
《一次函數的圖象》是義務教育課程標準北師大實驗教科書八年級(上)第六章《一次函數》的第三節(jié).本節(jié)內容安排了2個課時,第1課時是讓學生了解函數與對象的對應關系和作函數圖象的步驟和方法,明確一次函數的圖象是一條直線,能熟練地作出一次函數的圖象。第2課時是通過對一次函數圖象的比較與歸類,探索一次函數及其圖象的簡單性質.本課時是第一課時,教材注重學生在探索過程的體驗,注重對函數與圖象對應關系的認識.
為此本節(jié)課的教學目標是:
1.了解一次函數的圖象是一條直線,能熟練作出一次函數的圖象.
2.經歷函數圖象的作圖過程,初步了解作函數圖象的一般步驟:列表、描點、連線.
3.已知函數的代數表達式作函數的圖象,培養(yǎng)學生數形結合的意識和能力.
4.理解一次函數的代數表達式與圖象之間的一一對應關系.
教學重點是:
初步了解作函數圖象的一般步驟:列表、描點、連線.
教學難點是:
理解一次函數的代數表達式與圖象之間的一一對應關系.
三、教學過程設計
本節(jié)課設計了七個教學環(huán)節(jié):
第一環(huán)節(jié):創(chuàng)設情境引入課題;
第二環(huán)節(jié):畫一次函數的圖象;
第三環(huán)節(jié):動手操作,深化探索;
第四環(huán)節(jié):鞏固練習,深化理解;
第五環(huán)節(jié):課時小結;
第六環(huán)節(jié):拓展探究;
第七環(huán)節(jié):作業(yè)布置.
第一環(huán)節(jié):創(chuàng)設情境引入課題
內容:
一天,小明以80米/分的速度去上學,請問小明離家的距離S(米)與小明出發(fā)的時間t(分)之間的函數關系式是怎樣的?它是一次函數嗎?它是正比例函數嗎? S=80t(t≥0)下面的圖象能表示上面問題中的S與t的關系嗎?
我們說,上面的圖象是函數S=80t(t≥0)的圖象,這就是我們今天要學習的主要內容:一次函數的圖象的特殊情況正比例函數的圖象。
目的:通過學生比較熟悉的.生活情景,讓學生在寫函數關系式和認識圖象的過程中,初步感受函數與圖象的聯系,激發(fā)其學習的欲望.
效果:學生通過對上述情景的分析,初步感受到函數與圖象的聯系,激發(fā)了學生的學習欲望.
第二環(huán)節(jié):畫正比例函數的圖象
內容:首先我們來學習什么是函數的圖象?
把一個函數的自變量x與對應的因變量y的值分別作為點的橫坐標和縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數的圖象(graph).
例1請作出正比例函數y=2x的圖象.
第三環(huán)節(jié):動手操作,深化探索
內容:做一做
(1)作出正比例函數y= 3x的圖象.
(2)在所作的圖象上取幾個點,找出它們的橫坐標和縱坐標,并驗證它們是否都滿足關系y= 3x.
請同學們以小組為單位,討論下面的問題,把得出的結論寫出來.
(1)滿足關系式y= 3x的x,y所對應的點(x,y)都在正比例函數y= 3x的圖象上嗎?
(2)正比例函數y= 3x的圖象上的點(x,y)都滿足關系式y= 3x嗎?
(3)正比例函數y=kx的圖象有什么特點?
明晰
由上面的討論我們知道:正比例函數的代數表達式與圖象是一一對應的,即滿足正比例函數的代數表達式的x,y所對應的點(x,y)都在正比例函數的圖象上;正比例函數的圖象上的點(x,y)都滿足正比例函數的代數表達式.正比例函數y=kx的圖象是一條直線,以后可以稱正比例函數y=kx的圖象為直線y=kx.
議一議
既然我們得出正比例函數y=kx的圖象是一條直線.那么在畫正比例函數圖象時有沒有什么簡單的方法呢?
因為“兩點確定一條直線”,所以畫正比例函數y=kx的圖象時可以只描出兩個點就可以了.因為正比例函數的圖象是一條過原點(0,0)的直線,所以只需再確定一個點就可以了,通常過(0,0),(1,k)作直線.
4.3一次函數的圖象:同步測試
14若直線經過第一.二.四象限,則k.b的取值范圍是( ).
A.k>0,b>0 B.k>0,b<0
C.k<0,b>0 D. k<0,b<0
2.已知一次函數y=3-2x
(1)求圖像與兩條坐標軸的交點坐標,并在下面的直角坐標系中畫出它的圖像;
(2)從圖像看,y隨著x的增大而增大,還是隨x的增大而減小?
(3)x取何值時,y>0?
3.已知一次函數y=-2x+4
(1)畫出函數的圖象.
(2)求圖象與x軸、y軸的交點A、B的坐標.
(3)求A、B兩點間的距離.
(4)求△AOB的面積.
(5)利用圖象求當x為何值時,y≥0.
《函數的圖象》課后練習
1.一根彈簧原長12cm,它所掛物體的質量不超過10kg,并且每掛重物1kg就伸長1.5cm,掛重物后彈簧長度y(cm)與掛重物x(kg)之間的函數關系式是()
A.y=1.5(x+12)(0≤x≤10)
B.y= 1.5x+12(0≤x≤10)
C.y=1.5x+10(x≥0)
D.y=1.5(x-12)(0≤x≤10)
【初二數學上冊教案】相關文章:
初二數學上冊教案11-14
初二上冊數學教案11-11
初二數學上冊教案 15篇12-05
初二數學上冊教案精選15篇12-12
初二數學上冊教案 (15篇)12-06
初二數學上冊教案(15篇)11-16
初二數學上冊教案(集錦15篇)12-11
初二數學上冊教案通用15篇12-12
初二數學上冊教案(通用15篇)12-11