四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

八年級數(shù)學(xué)教案

時間:2022-09-03 13:54:00 八年級數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

有關(guān)八年級數(shù)學(xué)教案范文匯編8篇

  作為一名教職工,時常需要用到教案,教案有利于教學(xué)水平的提高,有助于教研活動的開展。那么你有了解過教案嗎?以下是小編整理的八年級數(shù)學(xué)教案8篇,供大家參考借鑒,希望可以幫助到有需要的朋友。

有關(guān)八年級數(shù)學(xué)教案范文匯編8篇

八年級數(shù)學(xué)教案 篇1

  教學(xué)目標(biāo):

  1、經(jīng)歷對圖形進(jìn)行觀察、分析、欣賞和動手操作、畫圖過程,掌握有關(guān)畫圖的操作技能,發(fā)展初步審美能力,增強(qiáng)對圖形欣賞的意識。

  2、能按要求把所給出的圖形補(bǔ)成以某直線為軸的軸對稱圖形,能依據(jù)圖形的軸對稱關(guān)系設(shè)計(jì)軸對稱圖形。

  教學(xué)重點(diǎn):本節(jié)課重點(diǎn)是掌握已知對稱軸L和一個點(diǎn),要畫出點(diǎn)A關(guān)于L的軸對稱點(diǎn)的畫法,在此基礎(chǔ)上掌握有關(guān)軸對稱圖形畫圖的操作技能,并能利用圖形之間的軸對稱關(guān)系來設(shè)計(jì)軸對稱圖形,掌握有關(guān)畫圖的技能及設(shè)計(jì)軸對稱圖形是本節(jié)課的難點(diǎn)。

  教學(xué)方法:動手實(shí)踐、討論。

  教學(xué)工具:課件

  教學(xué)過程:

  一、 先復(fù)習(xí)軸對稱圖形的定義,以及軸對稱的相關(guān)的性質(zhì):

  1.如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相________,那么這個圖形叫做________________,這條直線叫做_____________

  2.軸對稱的三個重要性質(zhì)______________________________________________

  _____________________________________________________________________

  二、提出問題:

  二、探索練習(xí):

  1. 提出問題:

  如圖:給出了一個圖案的一半,其中的虛線是這個圖案的對稱軸。

  你能畫出這個圖案的另一半嗎?

  吸引學(xué)生讓學(xué)生有一種解決難點(diǎn)的'想法。

  2.分析問題:

  分析圖案:這個圖案是由重要六個點(diǎn)構(gòu)成的,要將這個圖案的另一半畫出來,根據(jù)軸對稱的性質(zhì)只要畫出這個圖案中六個點(diǎn)的對應(yīng)點(diǎn)即可

  問題轉(zhuǎn)化成:已知對稱軸和一個點(diǎn)A,要畫出點(diǎn)A關(guān)于L的對應(yīng)點(diǎn) ,可采用如下方法:`

  在學(xué)生掌握已知一個點(diǎn)畫對應(yīng)點(diǎn)的基礎(chǔ)上,解決上述給出的問題,使學(xué)生有一條較明確的思路。

  三、對所學(xué)內(nèi)容進(jìn)行鞏固練習(xí):

  1. 如圖,直線L是一個軸對稱圖形的對稱軸,畫出這個軸對稱圖形的另一半。

  2. 試畫出與線段AB關(guān)于直線L的線段

  3.如圖,已知 直線MN,畫出以MN為對稱軸 的軸對稱圖形

  小 結(jié): 本節(jié)課學(xué)習(xí)了已知對稱軸L和一個點(diǎn)如何畫出它的對應(yīng)點(diǎn),以及如何補(bǔ)全圖形,并利用軸對稱的性質(zhì)知道如何設(shè)計(jì)軸對稱圖形。

  教學(xué)后記:學(xué)生對這節(jié)課的內(nèi)容掌握比較好,但對于利用軸對稱的性質(zhì)來設(shè)計(jì)圖形覺得難度比較大。因本節(jié)課內(nèi)容較有趣,許多學(xué)生上課積極性較高

八年級數(shù)學(xué)教案 篇2

  單元(章)主題第三章 直棱柱任課教師與班級

  本課(節(jié))課題3.1 認(rèn)識直棱柱第 1 課時 / 共 課時

  教學(xué)目標(biāo)(含重點(diǎn)、難點(diǎn))及

  設(shè)置依據(jù)教學(xué)目標(biāo)

  1、了解多面體、直棱柱的有關(guān)概念.

  2、會認(rèn)直棱柱的側(cè)棱、側(cè)面、底面.

  3、了解直棱柱的側(cè)棱互相平行且相等,側(cè)面是長方形(含正方形)等特征.

  教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn):直棱柱的有關(guān)概念.

  教學(xué)難點(diǎn):本節(jié)的例題描述一個物體的形狀,把它看成怎樣的兩個幾何體的組合,都需要一定的空間想象能力和表達(dá)能力.

  教學(xué)準(zhǔn)備每個學(xué)生準(zhǔn)備一個幾何體,(分好學(xué)習(xí)小組)教師準(zhǔn)備各種直棱柱和長方體、立方體模型

  教 學(xué) 過 程

  內(nèi)容與環(huán)節(jié)預(yù)設(shè)、簡明設(shè)計(jì)意圖二度備課(即時反思與糾正)

  一、創(chuàng)設(shè)情景,引入新課

  師:在現(xiàn)實(shí)生活中,像筆筒、西瓜、草莓、禮品盒等都呈現(xiàn)出了立體圖形的形狀,在你身邊,還有沒有這樣類似的立體圖形呢?

  析:學(xué)生很容易回答出更多的答案。

  師:(繼續(xù)補(bǔ)充)有許多著名的建筑,像古埃及的金字塔、巴黎的艾菲爾鐵塔、美國的迪思尼樂園、德國的古堡風(fēng)光,中國北京的西客站,它們也是由不同的立體圖形組成的;那么立體圖形在生活中有著怎樣的廣泛的應(yīng)用呢?瞧,食物中的冰激凌、櫻桃、端午節(jié)的粽子等。

  二、合作交流,探求新知

  1.多面體、棱、頂點(diǎn)概念:

  師:(出示長方體,立方體模型)這是我們熟悉的立體圖形,它們是有幾個平面圍成的?都有什么相同特點(diǎn)?

  析:一個同學(xué)回答,然后小結(jié)概念:由若干個平面圍成的幾何體,叫做多面體。多面體上相鄰兩個面之間的交線叫做多面體的棱,幾個面的公共頂點(diǎn)叫做多面體的頂點(diǎn)

  2.合作交流

  師:以學(xué)習(xí)小組為單位,拿出事先準(zhǔn)備好的幾何體。

  學(xué)生活動:(讓學(xué)生從中閉眼摸出某些幾何體,邊摸邊用語言描

  述其特征。)

  師:同學(xué)們再討論一下,能否把自己的`語言轉(zhuǎn)化為數(shù)學(xué)語言。

  學(xué)生活動:分小組討論。

  說明:真正體現(xiàn)了“以生為本”。讓學(xué)生在主動探究中發(fā)現(xiàn)知識,充分發(fā)揮了學(xué)生的主體作用和教師的主導(dǎo)作用,課堂氣氛活躍,教師教的輕松,學(xué)生學(xué)的愉快。

  師:請大家找出與長方體,立方體類似的物體或模型。

  析:舉出實(shí)例。(找出區(qū)別)

  師:(總結(jié))棱柱分為之直棱柱和斜棱柱。(根據(jù)其側(cè)棱與底面是否垂直)根據(jù)底面多邊形的邊數(shù)而分為直三棱柱、直四棱柱……直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  長方體和正方體都是直四棱柱。

  3.反饋鞏固

  完成“做一做”

  析:由第(3)小題可以得到:

  直棱柱的相鄰兩條側(cè)棱互相平行且相等。

  4.學(xué)以至用

  出示例題。(先請學(xué)生單獨(dú)考慮,再作講解)

  析:引導(dǎo)學(xué)生著重觀察首飾盒的側(cè)面是什么圖形,上底面是什么圖形,然后與直棱柱的特征作比較。(使學(xué)生養(yǎng)成發(fā)現(xiàn)問題,解決問題的創(chuàng)造性思維習(xí)慣)

  最后完成例題中的“想一想”

  5.鞏固練習(xí)(學(xué)生練習(xí))

  完成“課內(nèi)練習(xí)”

  三、小結(jié)回顧,反思提高

  師:我們這節(jié)課的重點(diǎn)是什么?哪些地方比較難學(xué)呢?

  合作交流后得到:重點(diǎn)直棱柱的有關(guān)概念。

  直棱柱有以下特征:

  有上、下兩個底面,底面是平面圖形中的多邊形,而且彼此全等;

  側(cè)面都是長方形含正方形。

  例題中的把首飾盒看成是由兩個直三棱柱、直四棱柱的組合,或著是兩個直四棱柱的組合需要一定的空間想象能力和表達(dá)能力。這一點(diǎn)比較難。

  板書設(shè)計(jì)

  作業(yè)布置或設(shè)計(jì)作業(yè)本及課時特訓(xùn)

八年級數(shù)學(xué)教案 篇3

  一、教學(xué)目標(biāo)

  1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

  2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識.

  二、重點(diǎn)、難點(diǎn)

  1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

  2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

  3.難點(diǎn)的突破方法:

  三、課堂引入

  創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識和數(shù)學(xué)方法.

  四、例習(xí)題分析

  例1(P83例2)

  分析:⑴了解方位角,及方位名詞;

  ⑵依題意畫出圖形;

 、且李}意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

  ⑷因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

  ⑸∠PRS=∠QPR—∠QPS=45°.

  小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

  例2(補(bǔ)充)一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的'長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

  分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

 、圃O(shè)未知數(shù)列方程,求出三角形的三邊長5、12、13;

 、歉鶕(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

  解略.

  本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識.

八年級數(shù)學(xué)教案 篇4

  1.展示生活中一些平行四邊形的實(shí)際應(yīng)用圖片(推拉門,活動衣架,籬笆、井架等),想一想:這里面應(yīng)用了平行四邊形的什么性質(zhì)?

  2.思考:拿一個活動的平行四邊形教具,輕輕拉動一個點(diǎn),觀察不管怎么拉,它還是一個平行四邊形嗎?為什么?(動畫演示拉動過程如圖)

  3.再次演示平行四邊形的移動過程,當(dāng)移動到一個角是直角時停止,讓學(xué)生觀察這是什么圖形?(小學(xué)學(xué)過的長方形)引出本課題及矩形定義.

  矩形定義:有一個角是直角的平行四邊形叫做矩形(通常也叫長方形).

  矩形是我們最常見的圖形之一,例如書桌面、教科書的封面等都有矩形形象.

  【探究】在一個平行四邊形活動框架上,用兩根橡皮筋分別套在相對的兩個頂點(diǎn)上(作出對角線),拉動一對不相鄰的頂點(diǎn),改變平行四邊形的形狀.

 、匐S著∠α的變化,兩條對角線的長度分別是怎樣變化的?

 、诋(dāng)∠α是直角時,平行四邊形變成矩形,此時它的其他內(nèi)角是什么樣的.角?它的兩條對角線的長度有什么關(guān)系?

  操作,思考、交流、歸納后得到矩形的性質(zhì).

  矩形性質(zhì)1 矩形的四個角都是直角.

  矩形性質(zhì)2 矩形的對角線相等.

  如圖,在矩形ABCD中,AC、BD相交于點(diǎn)O,由性質(zhì)2有AO=BO=CO=DO=AC=BD.因此可以得到直角三角形的一個性質(zhì):直角三角形斜邊上的中線等于斜邊的一半.

  例習(xí)題分析

  例1(教材P104例1)已知:如圖,矩形ABCD的兩條對角線相交于點(diǎn)O,∠AOB=60°,AB=4cm,求矩形對角線的長.

  分析:因?yàn)榫匦问翘厥獾钠叫兴倪呅,所以它具有對角線相等且互相平分的特殊性質(zhì),根據(jù)矩形的這個特性和已知,可得△OAB是等邊三角形,因此對角線的長度可求.

  解:∵ 四邊形ABCD是矩形,

  ∴ AC與BD相等且互相平分.

  ∴ OA=OB.

  又∠AOB=60°,

  ∴△OAB是等邊三角形.

  ∴矩形的對角線長AC=BD=2OA=2×4=8(cm).

  例2(補(bǔ)充)已知:如圖,矩形ABCD,AB長8cm,對角線比AD邊長4cm.求AD的長及點(diǎn)A到BD的距離AE的長.

  分析:(1)因?yàn)榫匦嗡膫角都是直角,因此矩形中的計(jì)算經(jīng)常要用到直角三角形的性質(zhì),而此題利用方程的思想,解決直角三角形中的計(jì)算,這是幾何計(jì)算題中常用的方法

八年級數(shù)學(xué)教案 篇5

  第一步:情景創(chuàng)設(shè)

  乒乓球的標(biāo)準(zhǔn)直徑為40mm,質(zhì)檢部門從A、B兩廠生產(chǎn)的乒乓球中各抽取了10只,對這些乒乓球的直徑了進(jìn)行檢測。結(jié)果如下(單位:mm):

  A廠:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;

  B廠:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.

  你認(rèn)為哪廠生產(chǎn)的乒乓球的直徑與標(biāo)準(zhǔn)的誤差更小呢?

 。1)請你算一算它們的平均數(shù)和極差。

 。2)是否由此就斷定兩廠生產(chǎn)的.乒乓球直徑同樣標(biāo)準(zhǔn)?

  今天我們一起來探索這個問題。

  探索活動

  通過計(jì)算發(fā)現(xiàn)極差只能反映一組數(shù)據(jù)中兩個極值之間的大小情況,而對其他數(shù)據(jù)的波動情況不敏感。讓我們一起來做下列的數(shù)學(xué)活動

  算一算

  把所有差相加,把所有差取絕對值相加,把這些差的平方相加。

  想一想

  你認(rèn)為哪種方法更能明顯反映數(shù)據(jù)的波動情況?

  第二步:講授新知:

 。ㄒ唬┓讲

  定義:設(shè)有n個數(shù)據(jù),各數(shù)據(jù)與它們的平均數(shù)的差的平方分別是,…,我們用它們的平均數(shù),即用

  來衡量這組數(shù)據(jù)的波動大小,并把它叫做這組數(shù)據(jù)的方差(variance),記作。

  意義:用來衡量一批數(shù)據(jù)的波動大小

  在樣本容量相同的情況下,方差越大,說明數(shù)據(jù)的波動越大,越不穩(wěn)定

  歸納:(1)研究離散程度可用(2)方差應(yīng)用更廣泛衡量一組數(shù)據(jù)的波動大小

  (3)方差主要應(yīng)用在平均數(shù)相等或接近時

 。4)方差大波動大,方差小波動小,一般選波動小的

  方差的簡便公式:

  推導(dǎo):以3個數(shù)為例

 。ǘ(biāo)準(zhǔn)差:

  方差的算術(shù)平方根,即④

  并把它叫做這組數(shù)據(jù)的標(biāo)準(zhǔn)差.它也是一個用來衡量一組數(shù)據(jù)的波動大小的重要的量.

  注意:波動大小指的是與平均數(shù)之間差異,那么用每個數(shù)據(jù)與平均值的差完全平方后便可以反映出每個數(shù)據(jù)的波動大小,整體的波動大小可以通過對每個數(shù)據(jù)的波動大小求平均值得到。所以方差公式是能夠反映一組數(shù)據(jù)的波動大小的一個統(tǒng)計(jì)量,教師也可以根據(jù)學(xué)生程度和課堂時間決定是否介紹平均差等可以反映數(shù)據(jù)波動大小的其他統(tǒng)計(jì)量。

八年級數(shù)學(xué)教案 篇6

  一、教學(xué)目標(biāo):

  1、會根據(jù)頻數(shù)分布表求加權(quán)平均數(shù),從而解決一些實(shí)際問題

  2、會用計(jì)算器求加權(quán)平均數(shù)的值

  3、會運(yùn)用樣本估計(jì)總體的方法來獲得對總體的認(rèn)識

  二、重點(diǎn)、難點(diǎn):

  1、重點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  2、難點(diǎn):根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)

  三、教學(xué)過程:

  1、復(fù)習(xí)

  組中值的定義:上限與下限之間的中點(diǎn)數(shù)值稱為組中值,它是各組上下限數(shù)值的簡單平均,即組中值=(上限+上限)/2.

  因?yàn)樵诟鶕?jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值過程中要用到組中值去代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,所以有必要在這里復(fù)習(xí)組中值定義.

  應(yīng)給學(xué)生介紹為什么可以利用組中值代替一組數(shù)據(jù)中的每個數(shù)據(jù)的值,以及這樣代替的好處、不妨舉一個例子,在一組中如果數(shù)據(jù)分布較為均勻時,比如教材P140探究問題的表格中的第三組數(shù)據(jù),它的范圍是41≤X≤61,共有20個數(shù)據(jù),若分布較為平均,41、42、43、44…60個出現(xiàn)1次,那么這組數(shù)據(jù)的和為41+42+…+60=1010.而用組中值51去乘以頻數(shù)20恰好為1020≈1010,即當(dāng)數(shù)據(jù)分布較為平均時組中值恰好近似等于它的平均數(shù).所以利用組中值X頻數(shù)去代替這組數(shù)據(jù)的和還是比較合理的,而且這樣做的.最大好處是簡化了計(jì)算量.

  為了更好的理解這種近似計(jì)算的方法和合理性,可以讓學(xué)生去讀統(tǒng)計(jì)表,體會表格的實(shí)際意義.

  2、教材P140探究欄目的意圖

 、、主要是想引出根據(jù)頻數(shù)分布表求加權(quán)平均數(shù)近似值的計(jì)算方法.

  ②、加深了對“權(quán)”意義的理解:當(dāng)利用組中值近似取代替一組數(shù)據(jù)中的平均值時,頻數(shù)恰好反映這組數(shù)據(jù)的輕重程度,即權(quán).

  這個探究欄目也可以幫助學(xué)生去回憶、復(fù)習(xí)七年級下的關(guān)于頻數(shù)分布表的一些內(nèi)容,比如組、組中值及頻數(shù)在表中的具體意義.

  3、教材P140的思考的意圖.

  ①、使學(xué)生通過思考這兩個問題過程中體會利用統(tǒng)計(jì)知識可以解決生活中的許多實(shí)際問題.

  ②、幫助學(xué)生理解表中所表達(dá)出來的信息,培養(yǎng)學(xué)生分析數(shù)據(jù)的能力.

  4、利用計(jì)算器計(jì)算平均值

  這部分篇幅較小,與傳統(tǒng)教材那種詳細(xì)介紹計(jì)算器使用方法產(chǎn)生明顯對比.一則由于學(xué)校中學(xué)生使用計(jì)算器不同,其操作過程有差別亦不同,再者,各種計(jì)算器的使用說明書都有詳盡介紹,同時也說明在今后中考趨勢仍是不允許使用計(jì)算器.所以本節(jié)課的重點(diǎn)內(nèi)容不是利用計(jì)算器求加權(quán)平均數(shù),但是掌握其使用方法確實(shí)可以運(yùn)算變得簡單.統(tǒng)計(jì)中一些數(shù)據(jù)較大、較多的計(jì)算也變得容易些了.

  5、運(yùn)用樣本估計(jì)總體

  要使學(xué)生掌握在哪些情況下需要通過用樣本估計(jì)總體的方法來獲得對總體的認(rèn)識;一是所要考察的對象很多,二是考察本身帶有破壞性;教材P142例3,這個例子就屬于考察本身帶有破壞性的情況.

八年級數(shù)學(xué)教案 篇7

  教學(xué)目的

  1. 使學(xué)生熟練地運(yùn)用等腰三角形的性質(zhì)求等腰三角形內(nèi)角的角度。

  2. 熟識等邊三角形的性質(zhì)及判定.

  2.通過例題教學(xué),幫助學(xué)生總結(jié)代數(shù)法求幾何角度,線段長度的方法。

  教學(xué)重點(diǎn)

  等腰三角形的性質(zhì)及其應(yīng)用。

  教學(xué)難點(diǎn)

  簡潔的邏輯推理。

  教學(xué)過程

  一、復(fù)習(xí)鞏固

  1.敘述等腰三角形的性質(zhì),它是怎么得到的?

  等腰三角形的兩個底角相等,也可以簡稱等邊對等角。把等腰三角形對折,折疊兩部分是互相重合的,即AB與AC重合,點(diǎn)B與點(diǎn) C重合,線段BD與CD也重合,所以C。

  等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱三線合一。由于AD為等腰三角形的對稱軸,所以BD= CD,AD為底邊上的中線;BAD=CAD,AD為頂角平分線,ADB=ADC=90,AD又為底邊上的高,因此三線合一。

  2.若等腰三角形的兩邊長為3和4,則其周長為多少?

  二、新課

  在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

  等邊三角形具有什么性質(zhì)呢?

  1.請同學(xué)們畫一個等邊三角形,用量角器量出各個內(nèi)角的度數(shù),并提出猜想。

  2.你能否用已知的知識,通過推理得到你的猜想是正確的?

  等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質(zhì)得到B=C,又由B+C=180,從而推出B=C=60。

  3.上面的條件和結(jié)論如何敘述?

  等邊三角形的各角都相等,并且每一個角都等于60。

  等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

  等邊三角形也稱為正三角形。

  例1.在△ABC中,AB=AC,D是BC邊上的中點(diǎn),B=30,求1和ADC的度數(shù)。

  分析:由AB=AC,D為BC的中點(diǎn),可知AB為 BC底邊上的中線,由三線合一可知AD是△ABC的.頂角平分線,底邊上的高,從而ADC=90,BAC,由于B=30,BAC可求,所以1可求。

  問題1:本題若將D是BC邊上的中點(diǎn)這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計(jì)算的結(jié)果是否一樣?

  問題2:求1是否還有其它方法?

  三、練習(xí)鞏固

  1.判斷下列命題,對的打,錯的打。

  a.等腰三角形的角平分線,中線和高互相重合( )

  b.有一個角是60的等腰三角形,其它兩個內(nèi)角也為60( )

  2.如圖(2),在△ABC中,已知AB=AC,AD為BAC的平分線,且2=25,求ADB和B的度數(shù)。

  四、小結(jié)

  由等腰三角形的性質(zhì)可以推出等邊三角形的各角相等,且都為60。三線合一性質(zhì)在實(shí)際應(yīng)用中,只要推出其中一個結(jié)論成立,其他兩個結(jié)論一樣成立,所以關(guān)鍵是尋找其中一個結(jié)論成立的條件。

  五、作業(yè)

  1.課本P127─7,9

  2、補(bǔ)充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求CBD,BOE,BOC,

  EOD的度數(shù)。

  (一)課本P127─1、3、4、8題.

八年級數(shù)學(xué)教案 篇8

  一、教學(xué)目標(biāo)

 。ㄒ唬⒅R與技能:

 。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

 。2)認(rèn)識因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

 。ǘ、過程與方法:

  (1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

 。2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

 。3)通過對分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

 。ㄈ、情感態(tài)度與價值觀:讓學(xué)生初步感受對立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):因式分解的概念及提公因式法。

  難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學(xué)過程

  教學(xué)環(huán)節(jié):

  活動1:復(fù)習(xí)引入

  看誰算得快:用簡便方法計(jì)算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

 。3)992–1= 。

  設(shè)計(jì)意圖:

  如果說學(xué)生對因式分解還相當(dāng)陌生的話,相信學(xué)生對用簡便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個臺階.

  注意事項(xiàng):學(xué)生對于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

  活動2:導(dǎo)入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設(shè)計(jì)意圖:

  引導(dǎo)學(xué)生把這個式子分解成幾個數(shù)的積的形式,繼續(xù)強(qiáng)化學(xué)生對因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

  活動3:探究新知

  看誰算得準(zhǔn):

  計(jì)算下列式子:

 。1)3x(x-1)= ;

 。2)(a+b+c)= ;

 。3)(+4)(-4)= ;

 。4)(-3)2= ;

 。5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

 。1)a+b+c= ;

 。2)3x2-3x= ;

  (3)2-16= ;

  (4)a3-a= ;

  (5)2-6+9= 。

  在第一組的整式乘法的計(jì)算上,學(xué)生通過對第一組式子的`觀察得出第二組式子的結(jié)果,然后通過對這兩組式子的結(jié)果的比較,使學(xué)生對因式分解有一個初步的意識,由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  活動4:歸納、得出新知

  比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?