有關(guān)八年級(jí)數(shù)學(xué)教案集合十篇
作為一名教職工,往往需要進(jìn)行教案編寫(xiě)工作,編寫(xiě)教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。教案要怎么寫(xiě)呢?以下是小編幫大家整理的八年級(jí)數(shù)學(xué)教案10篇,僅供參考,歡迎大家閱讀。
八年級(jí)數(shù)學(xué)教案 篇1
知識(shí)要點(diǎn)
1、函數(shù)的概念:一般地,在某個(gè)變化過(guò)程中,有兩個(gè) 變量x和 y,如果給定一個(gè)x值,
相應(yīng)地就確定了一個(gè)y值,那么稱y是x的函數(shù),其中x是自變量,y是因變量。
2、一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k0,b為常數(shù))的形式,則稱y是x的一次函數(shù), x為自變量,y為因變量。特別地,當(dāng)b=0 時(shí),稱y 是x的正比例函數(shù)。正比例函數(shù)是一次函數(shù)的特殊形式,因此正比例函數(shù)都是一次函數(shù),而 一次函 數(shù)不一定都是正比例函數(shù).
3、正比例函數(shù)y=kx的性質(zhì)
(1)、正比例函數(shù)y=kx的圖象都經(jīng)過(guò)
原點(diǎn)(0,0),(1,k)兩點(diǎn)的一條直線;
(2)、當(dāng)k0時(shí),圖象都經(jīng)過(guò)一、三象限;
當(dāng)k0時(shí),圖象都經(jīng)過(guò)二、四象限
(3)、當(dāng)k0時(shí),y隨x的增大而增大;
當(dāng)k0時(shí),y隨x的增大而減小。
4、一次函數(shù)y=kx+b的性質(zhì)
(1)、經(jīng)過(guò)特殊點(diǎn):與x軸的交點(diǎn)坐標(biāo)是 ,
與y軸的交點(diǎn)坐標(biāo)是 .
(2)、當(dāng)k0時(shí),y隨x的增大而增大
當(dāng)k0時(shí),y隨x的增大而減小
(3)、k值相同,圖象是互相平行
(4)、b值相同,圖象相交于同一點(diǎn)(0,b)
(5)、影響圖象的兩個(gè)因素是k和b
、賙的正負(fù)決定直線的方向
②b的正負(fù)決定y軸交點(diǎn)在原點(diǎn)上方或下方
5.五種類型一次函數(shù)解析式的確定
確定一次函數(shù)的解析式,是一次函數(shù)學(xué)習(xí)的重要內(nèi)容。
(1)、根據(jù)直線的解析式和圖像上一個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例1、若函數(shù)y=3x+b經(jīng)過(guò)點(diǎn)(2,-6),求函數(shù)的解析式。
解:把點(diǎn)(2,-6)代入y=3x+b,得
-6=32+b 解得:b=-12
函數(shù)的解析式為:y=3x-12
(2)、根據(jù)直線經(jīng)過(guò)兩個(gè)點(diǎn)的坐標(biāo),確定函數(shù)的解析式
例2、直線y=kx+b的圖像經(jīng)過(guò)A(3,4)和點(diǎn)B(2,7),
求函數(shù)的表達(dá)式。
解:把點(diǎn)A(3,4)、點(diǎn)B(2,7)代入y=kx+b,得
,解得:
函數(shù)的解析式為:y=-3x+13
(3)、根據(jù)函數(shù)的圖像,確定函數(shù)的解析式
例3、如圖1表示一輛汽車油箱里剩余油量y(升)與行駛時(shí)間x
(小時(shí))之間的關(guān)系.求油箱里所剩油y(升)與行駛時(shí)間x
(小時(shí))之間的函數(shù)關(guān)系式,并且確定自變量x的取值范圍。
(4)、根據(jù)平移規(guī)律,確定函數(shù)的解析式
例4、如圖2,將直線 向上平移1個(gè)單位,得到一個(gè)一次
函數(shù)的圖像,那么這個(gè)一次函數(shù)的解析式是 .
解:直線 經(jīng)過(guò)點(diǎn)(0,0)、點(diǎn)(2,4),直線 向上平移1個(gè)單位
后,這兩點(diǎn)變?yōu)?0,1)、(2,5),設(shè)這個(gè)一次函數(shù)的解析式為 y=kx+b,
得 ,解得: ,函數(shù)的解析式為:y=2x+1
(5)、根據(jù)直線的對(duì)稱性,確定函數(shù)的解析式
例5、已知直線y=kx+b與直線y=-3x+6關(guān)于y軸對(duì)稱,求k、b的值。
例6、已知直線y=kx+b與直線y=-3x+6關(guān)于x軸對(duì)稱,求k、b的值。
例7、已知直線y=kx+b與直線y=-3x+6關(guān)于原點(diǎn)對(duì)稱,求k、b的值。
經(jīng)典訓(xùn)練:
訓(xùn)練1:
1、已知梯形上底的長(zhǎng)為x,下底的長(zhǎng)是10,高是 6,梯形的面積y隨上底x的變化而變化。
(1)梯形的面積y與上底的長(zhǎng)x之間的關(guān)系是否是函數(shù)關(guān)系?為什么?
(2)若y是x的函數(shù),試寫(xiě)出y與x之間的函數(shù)關(guān)系式 。
訓(xùn)練2:
1.函數(shù):①y=- x x;②y= -1;③y= ;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x,
一次函數(shù)有___ __;正比例函數(shù)有____________(填序號(hào)).
2.函數(shù)y=(k2-1)x+3是一次函數(shù),則k的取值范圍是( )
A.k1 B.k-1 C.k1 D.k為任意實(shí)數(shù).
3.若一次函數(shù)y=(1+2k)x+2k-1是正比 例函數(shù),則k=_______.
訓(xùn)練3:
1 . 正比例函數(shù)y=k x,若y隨x的增大而減 小,則k______.
2. 一次函數(shù)y=mx+n的圖象如圖,則下面正確的是( )
A.m0 B.m0 C.m0 D.m0
3.一次函數(shù)y=-2x+ 4的圖象經(jīng)過(guò)的象限是____,它與x軸的交 點(diǎn)坐標(biāo)是____,與y軸的交點(diǎn)坐標(biāo)是____.
4.已知一次函 數(shù)y =(k-2)x+(k+2),若它的圖象經(jīng)過(guò)原點(diǎn),則k=_____;
若y隨x的增大而增大,則k__________.
5.若一次函數(shù)y=kx-b滿足kb0,且函數(shù)值隨x的減小而增大,則它的大致圖象是圖中的( )
訓(xùn)練4:
1、 正比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)A(-3,5),寫(xiě)出這正比例函數(shù)的解析式.
2、已知一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(2,1)和(-1,-3).求此一次函數(shù)的解析式 .
3、一次函數(shù)y=kx+b的圖象如上圖所示,求此一次函數(shù)的解析式。
4、已知一次函數(shù)y=kx+b,在x=0時(shí)的值為4,在x=-1時(shí)的值為-2,求這個(gè)一次函數(shù)的解析式。
5、已知y-1與x成正比例,且 x=-2時(shí),y=-4.
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=3時(shí),求y的值.
一、填空題(每題2分,共26分)
1、已知 是整數(shù),且一次函數(shù) 的圖象不過(guò)第二象限,則 為 .
2、若直線 和直線 的交點(diǎn)坐標(biāo)為 ,則 .
3、一次函數(shù) 和 的圖象與 軸分別相交于 點(diǎn)和 點(diǎn), 、 關(guān)于 軸對(duì)稱,則 .
4、已知 , 與 成正比例, 與 成反比例,當(dāng) 時(shí) , 時(shí), ,則當(dāng) 時(shí), .
5、函數(shù) ,如果 ,那么 的取值范圍是 .
6、一個(gè)長(zhǎng) ,寬 的矩形場(chǎng)地要擴(kuò)建成一個(gè)正方形場(chǎng)地,設(shè)長(zhǎng)增加 ,寬增加 ,則 與 的函數(shù)關(guān)系是 .自變量的取值范圍是 .且 是 的 函數(shù).
7、如圖 是函數(shù) 的一部分圖像,(1)自變量 的取值范圍是 ;(2)當(dāng) 取 時(shí), 的最小值為 ;(3)在(1)中 的取值范圍內(nèi), 隨 的增大而 .
8、已知一次函數(shù) 和 的圖象交點(diǎn)的橫坐標(biāo)為 ,則 ,一次函數(shù) 的圖象與兩坐標(biāo)軸所圍成的三角形的面積為 ,則 .
9、已知一次函數(shù) 的圖象經(jīng)過(guò)點(diǎn) ,且它與 軸的交點(diǎn)和直線 與 軸的交點(diǎn)關(guān)于 軸對(duì)稱,那么這個(gè)一次函數(shù)的解析式為 .
10、一次函數(shù) 的圖象過(guò)點(diǎn) 和 兩點(diǎn),且 ,則 , 的取值范圍是 .
11、一次函數(shù) 的圖象如圖 ,則 與 的大小關(guān)系是 ,當(dāng) 時(shí), 是正比例函數(shù).
12、 為 時(shí),直線 與直線 的交點(diǎn)在 軸上.
13、已知直線 與直線 的交點(diǎn)在第三象限內(nèi),則 的取值范圍是 .
二、選擇題(每題3分,共36分)
14、圖3中,表示一次函數(shù) 與正比例函數(shù) 、 是常數(shù),且 的'圖象的是( )
15、若直線 與 的交點(diǎn)在 軸上,那么 等于( )
A.4 B.-4 C. D.
16、直線 經(jīng)過(guò)一、二、四象限,則直線 的圖象只能是圖4中的( )
17、直線 如圖5,則下列條件正確的是( )
18、直線 經(jīng)過(guò)點(diǎn) , ,則必有( )
A.
19、如果 , ,則直線 不通過(guò)( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
20、已知關(guān)于 的一次函數(shù) 在 上的函數(shù)值總是正數(shù),則 的取值范圍是
A. B. C. D.都不對(duì)
21、如圖6,兩直線 和 在同一坐標(biāo)系內(nèi)圖象的位置可能是( )
圖6
22、已知一次函數(shù) 與 的圖像都經(jīng)過(guò) ,且與 軸分別交于點(diǎn)B, ,則 的面積為( )
A.4 B.5 C.6 D.7
23、已知直線 與 軸的交點(diǎn)在 軸的正半軸,下列結(jié)論:① ;② ;③ ;④ ,其中正確的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
24、已知 ,那么 的圖象一定不經(jīng)過(guò)( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
25、如圖7,A、B兩站相距42千米,甲騎自行車勻速行駛,由A站經(jīng)P處去B站,上午8時(shí),甲位于距A站18千米處的P處,若再向前行駛15分鐘,使可到達(dá)距A站22千米處.設(shè)甲從P處出發(fā) 小時(shí),距A站 千米,則 與 之間的關(guān)系可用圖象表示為( )
三、解答題(1~6題每題8分,7題10分,共58分)
26、如圖8,在直角坐標(biāo)系內(nèi),一次函數(shù) 的圖象分別與 軸、 軸和直線 相交于 、 、 三點(diǎn),直線 與 軸交于點(diǎn)D,四邊形OBCD(O是坐標(biāo)原點(diǎn))的面積是10,若點(diǎn)A的橫坐標(biāo)是 ,求這個(gè)一次函數(shù)解析式.
27、一次函數(shù) ,當(dāng) 時(shí),函數(shù)圖象有何特征?請(qǐng)通過(guò)不同的取值得出結(jié)論?
28、某油庫(kù)有一大型儲(chǔ)油罐,在開(kāi)始的8分鐘內(nèi),只開(kāi)進(jìn)油管,不開(kāi)出油管,油罐的油進(jìn)至24噸(原油罐沒(méi)儲(chǔ)油)后將進(jìn)油管和出油管同時(shí)打開(kāi)16分鐘,油罐內(nèi)的油從24噸增至40噸,隨后又關(guān)閉進(jìn)油管,只開(kāi)出油管,直到將油罐內(nèi)的油放完,假設(shè)在單位時(shí)間內(nèi)進(jìn)油管與出油管的流量分別保持不變.
(1)試分別寫(xiě)出這一段時(shí)間內(nèi)油的儲(chǔ)油量Q(噸)與進(jìn)出油的時(shí)間t(分)的函數(shù)關(guān)系式.
(2)在同一坐標(biāo)系中,畫(huà)出這三個(gè)函數(shù)的圖象.
29、某市電力公司為了鼓勵(lì)居民用電,采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi):每月不超過(guò)100度時(shí),按每度0.57元計(jì)費(fèi);每月用電超過(guò)100度時(shí),其中的100度按原標(biāo)準(zhǔn)收費(fèi);超過(guò)部分按每度0.50元計(jì)費(fèi).
(1)設(shè)用電 度時(shí),應(yīng)交電費(fèi) 元,當(dāng) 100和 100時(shí),分別寫(xiě)出 關(guān)于 的函數(shù)關(guān)系式.
(2)小王家第一季度交納電費(fèi)情況如下:
月份 一月份 二月份 三月份 合計(jì)
交費(fèi)金額 76元 63元 45元6角 184元6角
問(wèn)小王家第一季度共用電多少度?
30、某地上年度電價(jià)為0.8元,年用電量為1億度.本年度計(jì)劃將電價(jià)調(diào)至0.55~0.75元之間,經(jīng)測(cè)算,若電價(jià)調(diào)至 元,則本年度新增用電量 (億度)與( 0.4)(元)成反比例,又當(dāng) =0.65時(shí), =0.8.
(1)求 與 之間的函數(shù)關(guān)系式;
(2)若每度電的成本價(jià)為0.3元,則電價(jià)調(diào)至多少時(shí),本年度電力部門(mén)的收益將比上年度增加20%?[收益=用電量(實(shí)際電價(jià)-成本價(jià))]
31、汽車從A站經(jīng)B站后勻速開(kāi)往C站,已知離開(kāi)B站9分時(shí),汽車離A站10千米,又行駛一刻鐘,離A站20千米.(1)寫(xiě)出汽車與B站距離 與B站開(kāi)出時(shí)間 的關(guān)系;(2)如果汽車再行駛30分,離A站多少千米?
32、甲乙兩個(gè)倉(cāng)庫(kù)要向A、B兩地運(yùn)送水泥,已知甲庫(kù)可調(diào)出100噸水泥,乙?guī)炜烧{(diào)出80噸水泥,A地需70噸水泥,B地需110噸水泥,兩庫(kù)到A,B兩地的路程和運(yùn)費(fèi)如下表(表中運(yùn)費(fèi)欄元/(噸、千米)表示每噸水泥運(yùn)送1千米所需人民幣)
路程/千米 運(yùn)費(fèi)(元/噸、千米)
甲庫(kù) 乙?guī)?甲庫(kù) 乙?guī)?/p>
A地 20 15 12 12
B地 25 20 10 8
(1)設(shè)甲庫(kù)運(yùn)往A地水泥 噸,求總運(yùn)費(fèi) (元)關(guān)于 (噸)的函數(shù)關(guān)系式,畫(huà)出它的圖象(草圖).
(2)當(dāng)甲、乙兩庫(kù)各運(yùn)往A、B兩地多少噸水泥時(shí),總運(yùn)費(fèi)最省?最省的總運(yùn)費(fèi)是多少?
八年級(jí)數(shù)學(xué)教案 篇2
一、知識(shí)與技能
1.從現(xiàn)實(shí)情境和已有的知識(shí)、經(jīng)驗(yàn)出發(fā)、討論兩個(gè)變量之間的相依關(guān)系,加深對(duì)函數(shù)、函數(shù)概念的理解.
2.經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念.
二、過(guò)程與方法
1、經(jīng)歷對(duì)兩個(gè)變量之間相依關(guān)系的討論,培養(yǎng)學(xué)生的辨別唯物主義觀點(diǎn).
2、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,發(fā)展學(xué)生的抽象思維能力,提高數(shù)學(xué)化意識(shí).
三、情感態(tài)度與價(jià)值觀
1、經(jīng)歷抽象反比例函數(shù)概念的過(guò)程,體會(huì)數(shù)學(xué)學(xué)習(xí)的重要性,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣.
2、通過(guò)分組討論,培養(yǎng)學(xué)生合作交流意識(shí)和探索精神.
教學(xué)重點(diǎn):理解和領(lǐng)會(huì)反比例函數(shù)的概念.
教學(xué)難點(diǎn):領(lǐng)悟反比例的概念.
教學(xué)過(guò)程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
活動(dòng)1
問(wèn)題:下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用怎樣的`函數(shù)關(guān)系式表示?這些函數(shù)有什么共同特點(diǎn)?
(1)京滬線鐵路全程為1463km,乘坐某次列車所用時(shí)間t(單位:h)隨該列車平均速度v(單位:km/h)的變化而變化;
(2)某住宅小區(qū)要種植一個(gè)面積為1000m2的矩形草坪,草坪的長(zhǎng)為y隨寬x的變化;
(3)已知北京市的總面積為1.68×104平方千米,人均占有土地面積S(單位:平方千米/人)隨全市人口n(單位:人)的變化而變化.
師生行為:
先讓學(xué)生進(jìn)行小組合作交流,再進(jìn)行全班性的問(wèn)答或交流.學(xué)生用自己的語(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系為什么可以看著函數(shù),了解所討論的函數(shù)的表達(dá)形式.
教師組織學(xué)生討論,提問(wèn)學(xué)生,師生互動(dòng).
在此活動(dòng)中老師應(yīng)重點(diǎn)關(guān)注學(xué)生:
、倌芊穹e極主動(dòng)地合作交流.
、谀芊裼谜Z(yǔ)言說(shuō)明兩個(gè)變量間的關(guān)系.
③能否了解所討論的函數(shù)表達(dá)形式,形成反比例函數(shù)概念的具體形象.
分析及解答:(1)
;(2)
;(3)
其中v是自變量,t是v的函數(shù);x是自變量,y是x的函數(shù);n是自變量,s是n的函數(shù);
上面的函數(shù)關(guān)系式,都具有
的形式,其中k是常數(shù).
二、聯(lián)系生活,豐富聯(lián)想
活動(dòng)2
下列問(wèn)題中,變量間的對(duì)應(yīng)關(guān)系可用這樣的函數(shù)式表示?
。1)一個(gè)游泳池的容積為20xxm3,注滿游泳池所用的時(shí)間隨注水速度u的變化而變化;
。2)某立方體的體積為1000cm3,立方體的高h(yuǎn)隨底面積S的變化而變化;
。3)一個(gè)物體重100牛頓,物體對(duì)地面的壓力p隨物體與地面的接觸面積S的變化而變化.
師生行為
學(xué)生先獨(dú)立思考,在進(jìn)行全班交流.
教師操作課件,提出問(wèn)題,關(guān)注學(xué)生思考的過(guò)程,在此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注學(xué)生:
(1)能否從現(xiàn)實(shí)情境中抽象出兩個(gè)變量的函數(shù)關(guān)系;
(2)能否積極主動(dòng)地參與小組活動(dòng);
(3)能否比較深刻地領(lǐng)會(huì)函數(shù)、反比例函數(shù)的概念.
分析及解答:(1)
;(2)
;(3)
概念:如果兩個(gè)變量x,y之間的關(guān)系可以表示成
的形式,那么y是x的反比例函數(shù),反比例函數(shù)的自變量x不能為零.
活動(dòng)3
做一做:
一個(gè)矩形的面積為20cm2, 相鄰的兩條邊長(zhǎng)為xcm和ycm.那么變量y是變量x的函數(shù)嗎?是反比例函數(shù)嗎?為什么?
師生行為:
學(xué)生先進(jìn)行獨(dú)立思考,再進(jìn)行全班交流.教師提出問(wèn)題,關(guān)注學(xué)生思考.此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
①生能否理解反比例函數(shù)的意義,理解反比例函數(shù)的概念;
②學(xué)生能否順利抽象反比例函數(shù)的模型;
、蹖W(xué)生能否積極主動(dòng)地合作、交流;
活動(dòng)4
問(wèn)題1:下列哪個(gè)等式中的y是x的反比例函數(shù)?
問(wèn)題2:已知y是x的反比例函數(shù),當(dāng)x=2時(shí),y=6
(1)寫(xiě)出y與x的函數(shù)關(guān)系式:
(2)求當(dāng)x=4時(shí),y的值.
師生行為:
學(xué)生獨(dú)立思考,然后小組合作交流.教師巡視,查看學(xué)生完成的情況,并給予及時(shí)引導(dǎo).在此活動(dòng)中教師應(yīng)重點(diǎn)關(guān)注:
、賹W(xué)生能否領(lǐng)會(huì)反比例函數(shù)的意義,理解反比例函數(shù)的概念;
、趯W(xué)生能否積極主動(dòng)地參與小組活動(dòng).
分析及解答:
1、只有xy=123是反比例函數(shù).
2、分析:因?yàn)閥是x的反比例函數(shù),所以
,再把x=2和y=6代入上式就可求出常數(shù)k的值.
解:(1)設(shè)
,因?yàn)閤=2時(shí),y=6,所以有
解得k=12
因此
。2)把x=4代入
,得
三、鞏固提高
活動(dòng)5
1、已知y是x的反比例函數(shù),并且當(dāng)x=3時(shí),y=8.
(1)寫(xiě)出y與x之間的函數(shù)關(guān)系式.
。2)求y=2時(shí)x的值.
2、y是x的反比例函數(shù),下表給出了x與y的一些值:
。1)寫(xiě)出這個(gè)反比例函數(shù)的表達(dá)式;
。2)根據(jù)函數(shù)表達(dá)式完成上表.
學(xué)生獨(dú)立練習(xí),而后再與同桌交流,上講臺(tái)演示,教師要重點(diǎn)關(guān)注“學(xué)困生”.
四、課時(shí)小結(jié)
反比例函數(shù)概念形成的過(guò)程中,大家充分利用已有的生活經(jīng)驗(yàn)和背景知識(shí),注意挖掘問(wèn)題中變量的相依關(guān)系及變化規(guī)律,逐步加深理解.在概念的形成過(guò)程中,從感性認(rèn)識(shí)到理發(fā)認(rèn)識(shí)一旦建立概念,即已擺脫其原型成為數(shù)學(xué)對(duì)象.反比例函數(shù)具有豐富的數(shù)學(xué)含義,通過(guò)舉例、說(shuō)理、討論等活動(dòng),感知數(shù)學(xué)眼光,審視某些實(shí)際現(xiàn)象.
八年級(jí)數(shù)學(xué)教案 篇3
學(xué)習(xí)目標(biāo):
1、知道線段的垂直平分線的概念,探索并掌握成軸對(duì)稱的兩個(gè)圖形全等,對(duì)稱軸是對(duì)稱點(diǎn)連線的垂直平分線等性質(zhì).
2、經(jīng)歷探索軸對(duì)稱的性質(zhì)的活動(dòng)過(guò)程 ,積累數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),進(jìn)一步發(fā)展空間觀念和有條理地思考和表達(dá)能力.
3、利用軸對(duì)稱的基本性質(zhì)解決實(shí)際問(wèn)題。
學(xué)習(xí)重點(diǎn):靈活運(yùn)用對(duì)應(yīng)點(diǎn)所連的線段被 對(duì)稱軸垂直平分、對(duì)應(yīng)線段相等、對(duì)應(yīng)角相等等性質(zhì)。
學(xué)習(xí)難點(diǎn):軸對(duì)稱的性質(zhì)的理解和拓展運(yùn)用。
學(xué)習(xí)過(guò)程 :
一、探索活動(dòng)
如右圖所示,在紙上任意畫(huà)一點(diǎn)A,把紙對(duì)折,用針在 點(diǎn)A處穿孔,再把紙展開(kāi),并連接兩針孔A、A.
兩針孔A、A和線段AA與折痕MN之間有什么關(guān)系?
1、請(qǐng)同學(xué)們按要求畫(huà)點(diǎn)、折紙、扎孔,仔細(xì)觀察你 所做的圖形,然后研究:兩針孔A、A與折痕MN之間有什么關(guān)系?線段AA與折痕MN之間又有什么關(guān)系呢?兩針孔A、A ,直線MN 線段AA.
2、那么 直線MN為什么會(huì)垂直平分線段AA呢?
3.垂直并且平分一條線段的直線,叫做線段的垂直平分線(mi dpoint perpendicular).
例如,如圖,對(duì)稱軸MN就是對(duì)稱點(diǎn)A、A連線(即線段AA)的垂直 平分線.
4.如圖,在紙上再任畫(huà)一點(diǎn)B,同樣地,折紙、穿孔、展開(kāi),并連接AB、AB、BB.線段AB與AB有什么關(guān)系?線段BB與MN 有什么關(guān)系?
5.如圖,再在紙上任畫(huà)一點(diǎn)C,并仿照上面進(jìn)行操作.
(1)線段AC與 AC有什么關(guān)系 ? BC與BC呢?線段CC與MN有什么關(guān)系?
(2)A與A有什么關(guān)系? B與B呢? △ABC 與△ABC有什么關(guān)系?為什么?
(3)軸對(duì)稱有哪些性質(zhì)?
6.軸對(duì)稱的性質(zhì):
(1)成軸對(duì)稱的兩個(gè)圖形全等.
(2)如果兩個(gè)圖形成軸對(duì)稱,那么對(duì)稱軸是對(duì)稱點(diǎn)連線的.垂直平分線.
二、例題講解
例1、(1)如圖,A 、B、C、D的對(duì)稱點(diǎn)分別是 ,線段AC、AB的對(duì)應(yīng)線段分別是 ,CD= , CBA= ,ADC= .
(2)連接AF、BE,則線段AF、BE有什么關(guān)系?并用測(cè)量的方法驗(yàn)證.
(3)AE與BF平行嗎?為什么?
(4)AE與BF平行,能說(shuō)明軸對(duì)稱圖形對(duì)稱點(diǎn)的連線一定 互相平行嗎?
(5)延長(zhǎng)線段BC、FG,作直線AB、EG,你有什么發(fā)現(xiàn)嗎?
八年級(jí)數(shù)學(xué)教案 篇4
知識(shí)目標(biāo):理解函數(shù)的概念,能準(zhǔn)確識(shí)別出函數(shù)關(guān)系中的自變量和函數(shù)
能力目標(biāo):會(huì)用變化的量描述事物
情感目標(biāo):回用運(yùn)動(dòng)的觀點(diǎn)觀察事物,分析事物
重點(diǎn):函數(shù)的概念
難點(diǎn):函數(shù)的概念
教學(xué)媒體:多媒體電腦,計(jì)算器
教學(xué)說(shuō)明:注意區(qū)分函數(shù)與非函數(shù)的關(guān)系,學(xué)會(huì)確定自變量的取值范圍
教學(xué)設(shè)計(jì):
引入:
信息1:小明在14歲生日時(shí),看到他爸爸為他記錄的以前各年周歲時(shí)體重?cái)?shù)值表,你能看出小明各周歲時(shí)體重是如何變化的嗎?
新課:
問(wèn)題:(1)如圖是某日的氣溫變化圖。
、 這張圖告訴我們哪些信息?
、 這張圖是怎樣來(lái)展示這天各時(shí)刻的溫度和刻畫(huà)這鐵的氣溫變化規(guī)律的?
(2)收音機(jī)上的刻度盤(pán)的波長(zhǎng)和頻率分別是用米(m)和赫茲(KHz)為單位標(biāo)刻的,下表中是一些對(duì)應(yīng)的數(shù):
① 這表告訴我們哪些信息?
、 這張表是怎樣刻畫(huà)波長(zhǎng)和頻率之間的變化規(guī)律的,你能用一個(gè)表達(dá)式表示出來(lái)嗎?
一般的,在一個(gè)變化過(guò)程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有惟一確定的值與其對(duì)應(yīng),那么我們就說(shuō)x是自變量,y是x的函數(shù)。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的'函數(shù)值。
范例:例1 判斷下列變量之間是不是函數(shù)關(guān)系:
(5) 長(zhǎng)方形的寬一定時(shí),其長(zhǎng)與面積;
(6) 等腰三角形的底邊長(zhǎng)與面積;
(7) 某人的年齡與身高;
活動(dòng)1:閱讀教材7頁(yè)觀察1. 后完成教材8頁(yè)探究,利用計(jì)算器發(fā)現(xiàn)變量和函數(shù)的關(guān)系
思考:自變量是否可以任意取值
例2 一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:km)的增加而減少,平均耗油量為0.1L/km。
(1) 寫(xiě)出表示y與x的函數(shù)關(guān)系式.
(2) 指出自變量x的取值范圍.
(3) 汽車行駛200km時(shí),油箱中還有多少汽油?
解:(1)y=50-0.1x
(2)0500
(3)x=200,y=30
活動(dòng)2:練習(xí)教材9頁(yè)練習(xí)
小結(jié):(1)函數(shù)概念
(2)自變量,函數(shù)值
(3)自變量的取值范圍確定
作業(yè):18頁(yè):2,3,4題
八年級(jí)數(shù)學(xué)教案 篇5
一、學(xué)習(xí)目標(biāo):
1、會(huì)推導(dǎo)兩數(shù)差的平方公式,會(huì)用式子表示及用文字語(yǔ)言敘述;
2、會(huì)運(yùn)用兩數(shù)差的平方公式進(jìn)行計(jì)算。
二、學(xué)習(xí)過(guò)程:
請(qǐng)同學(xué)們快速閱讀課本第27—28頁(yè)的內(nèi)容,并完成下面的'練習(xí)題:
(一)探索
1、計(jì)算: (a - b) =
方法一: 方法二:
方法三:
2、兩數(shù)差的平方用式子表示為_(kāi)________________________;
用文字語(yǔ)言敘述為_(kāi)__________________________ 。
3、兩數(shù)差的平方公式結(jié)構(gòu)特征是什么?
。ǘ┈F(xiàn)學(xué)現(xiàn)用
利用兩數(shù)差的平方公式計(jì)算:
1、(3 - a) 2、 (2a -1) 3、(3y-x)
4、(2x – 4y) 5、( 3a - )
。ㄈ┖献鞴リP(guān)
靈活運(yùn)用兩數(shù)差的平方公式計(jì)算:
1、(999) 2、( a – b – c )
3、(a + 1) -(a-1)
(四)達(dá)標(biāo)訓(xùn)練
1、、選擇:下列各式中,與(a - 2b) 一定相等的是( )
A、a -2ab + 4b B、a -4b
C、a +4b D、 a - 4ab +4b
2、填空:
(1)9x + + 16y = (4y - 3x )
(2) ( ) = m - 8m + 16
2、計(jì)算:
。 a - b) ( x -2y )
3、有一邊長(zhǎng)為a米的正方形空地,現(xiàn)準(zhǔn)備將這塊空地四周均留出b米寬修筑圍壩,中間修建噴泉水池,你能計(jì)算出噴泉水池的面積嗎?
(四)提升
1、本節(jié)課你學(xué)到了什么?
2、已知a – b = 1,a + b = 25,求ab 的值
八年級(jí)數(shù)學(xué)教案 篇6
一、教學(xué)目標(biāo):
1、知識(shí)目標(biāo):能熟練掌握簡(jiǎn)單圖形的移動(dòng)規(guī)律,能按要求作出簡(jiǎn)單平面圖形平移后的圖形,能夠探索圖形之間的平移關(guān)系;
2、能力目標(biāo):①,在實(shí)踐操作過(guò)程中,逐步探索圖形之間的平移關(guān)系;
、,對(duì)組合圖形要找到一個(gè)或者幾個(gè)“基本圖案”,并能通過(guò)對(duì)“基本圖案”的平移,復(fù)制所求的圖形;
3、情感目標(biāo):經(jīng)歷對(duì)圖形進(jìn)行觀察、分析、欣賞和動(dòng)手操作、畫(huà)圖等過(guò)程,發(fā)展初步的審美能力,增強(qiáng)對(duì)圖形欣賞的意識(shí)。
二、重點(diǎn)與難點(diǎn):
重點(diǎn):圖形連續(xù)變化的特點(diǎn);
難點(diǎn):圖形的劃分。
三、教學(xué)方法:
講練結(jié)合。使用多媒體課件輔助教學(xué)。
八年級(jí)數(shù)學(xué)上冊(cè)教案四、教具準(zhǔn)備:
多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。
五、教學(xué)設(shè)計(jì):
教師活動(dòng)
學(xué)生活動(dòng)
設(shè)計(jì)意圖
創(chuàng)設(shè)情景,探究新知:
(演示課件):教材上小狗的圖案。提問(wèn):(1)這個(gè)圖案有什么特點(diǎn)?(2)它可以通過(guò)什么“基本圖案”,經(jīng)過(guò)怎樣的平移而形成?(3)在平移過(guò)程中,“基本圖案”的大小、形狀、位置是否發(fā)生了變化?
小組討論,派代表回答。(答案可以多種)
讓學(xué)生充分討論,歸納總結(jié),老師給予適當(dāng)?shù)闹笇?dǎo),并對(duì)每種答案都要肯定。
看磁性黑板,展示教材64頁(yè)圖3-9,提問(wèn):左圖是一個(gè)正六邊形,它經(jīng)過(guò)怎樣的平移能得到右圖?誰(shuí)到黑板做做看?
展示教材64頁(yè)3-10,提問(wèn):左圖是一種“工”字形磚,右圖是怎樣通過(guò)左圖得到的?
小組討論,派代表到臺(tái)上給大家講解。
氣氛要熱烈,充分調(diào)動(dòng)學(xué)生的積極性,發(fā)掘他們的`想象力。
(演示課件)教材65頁(yè)圖3-11,提問(wèn):這個(gè)圖可以看做是什么“基本圖案”通過(guò)平移得到的?
暢所欲言,互相補(bǔ)充。
課堂小結(jié):
在教師的引導(dǎo)下學(xué)生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學(xué)生在我們周圍尋找平移的例子。
課堂練習(xí):
(演示課件)教材65頁(yè)“隨堂練習(xí)”。
小組討論。
小組討論完成。
例子一定要和大家接觸緊密、典型。
答案不惟一,對(duì)于每種答案,教師都要給予充分的肯定。
六、教學(xué)反思:
本節(jié)的內(nèi)容并不是很復(fù)雜,借助多媒體進(jìn)行直觀、形象,內(nèi)容貼近生活,學(xué)生興致較高,課堂氣氛活躍,參與意識(shí)較強(qiáng),學(xué)生一般都能在教師的指導(dǎo)下掌握。教學(xué)過(guò)程中滲透數(shù)學(xué)美學(xué)思想,促進(jìn)學(xué)生綜合素質(zhì)的提高。
八年級(jí)數(shù)學(xué)教案 篇7
一、教學(xué)目的
1.使學(xué)生進(jìn)一步理解自變量的取值范圍和函數(shù)值的意義.
2.使學(xué)生會(huì)用描點(diǎn)法畫(huà)出簡(jiǎn)單函數(shù)的圖象.
二、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):1.理解與認(rèn)識(shí)函數(shù)圖象的意義.
2.培養(yǎng)學(xué)生的看圖、識(shí)圖能力.
難點(diǎn):在畫(huà)圖的三個(gè)步驟的列表中,如何恰當(dāng)?shù)剡x取自變量與函數(shù)的對(duì)應(yīng)值問(wèn)題.
三、教學(xué)過(guò)程
復(fù)習(xí)提問(wèn)
1.函數(shù)有哪三種表示法?(答:解析法、列表法、圖象法.)
2.結(jié)合函數(shù)y=x的圖象,說(shuō)明什么是函數(shù)的圖象?
3.說(shuō)出下列各點(diǎn)所在象限或坐標(biāo)軸:
新課
1.畫(huà)函數(shù)圖象的方法是描點(diǎn)法.其步驟:
(1)列表.要注意適當(dāng)選取自變量與函數(shù)的對(duì)應(yīng)值.什么叫“適當(dāng)”?——這就要求能選取表現(xiàn)函數(shù)圖象特征的幾個(gè)關(guān)鍵點(diǎn).比如畫(huà)函數(shù)y=3x的圖象,其關(guān)鍵點(diǎn)是原點(diǎn)(0,0),只要再選取另一個(gè)點(diǎn)如M(3,9)就可以了.
一般地,我們把自變量與函數(shù)的對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)和縱坐標(biāo),這就要把自變量與函數(shù)的對(duì)應(yīng)值列出表來(lái).
(2)描點(diǎn).我們把表中給出的有序?qū)崝?shù)對(duì),看作點(diǎn)的坐標(biāo),在直角坐標(biāo)系中描出相應(yīng)的點(diǎn).
(3)用光滑曲線連線.根據(jù)函數(shù)解析式比如y=3x,我們把所描的兩個(gè)點(diǎn)(0,0),(3,9)連成直線.
一般地,根據(jù)函數(shù)解析式,我們列表、描點(diǎn)是有限的幾個(gè),只需在平面直角坐標(biāo)系中,把這有限的幾個(gè)點(diǎn)連成表示函數(shù)的曲線(或直線).
2.講解畫(huà)函數(shù)圖象的.三個(gè)步驟和例.畫(huà)出函數(shù)y=x+0.5的圖象.
小結(jié)
本節(jié)課的重點(diǎn)是讓學(xué)生根據(jù)函數(shù)解析式畫(huà)函數(shù)圖象的三個(gè)步驟,自己動(dòng)手畫(huà)圖.
練習(xí)
、龠x用課本練習(xí)(前一節(jié)已作:列表、描點(diǎn),本節(jié)要求連線)
、谘a(bǔ)充題:畫(huà)出函數(shù)y=5x-2的圖象.
作業(yè)
選用課本習(xí)題.
四、教學(xué)注意問(wèn)題
1.注意滲透數(shù)形結(jié)合思想.通過(guò)研究函數(shù)的圖象,對(duì)圖象所表示的一個(gè)變量隨另一個(gè)變量的變化而變化就更有形象而直觀的認(rèn)識(shí).把函數(shù)的解析式、列表、圖象三者結(jié)合起來(lái),更有利于認(rèn)識(shí)函數(shù)的本質(zhì)特征.
2.注意充分調(diào)動(dòng)學(xué)生自己動(dòng)手畫(huà)圖的積極性.
3.認(rèn)識(shí)到由于計(jì)算器和計(jì)算機(jī)的普及化,代替了手工繪圖功能.故在教學(xué)中要傾向培養(yǎng)學(xué)生看圖、識(shí)圖的能力.
八年級(jí)數(shù)學(xué)教案 篇8
一、創(chuàng)設(shè)情境
在學(xué)習(xí)與生活中,經(jīng)常要研究一些數(shù)量關(guān)系,先看下面的問(wèn)題.
問(wèn)題1如圖是某地一天內(nèi)的氣溫變化圖.
看圖回答:
(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為多少?任意給出這天中的某一時(shí)刻,說(shuō)出這一時(shí)刻的氣溫.
(2)這一天中,最高氣溫是多少?最低氣溫是多少?
(3)這一天中,什么時(shí)段的氣溫在逐漸升高?什么時(shí)段的氣溫在逐漸降低?
解(1)這天的6時(shí)、10時(shí)和14時(shí)的氣溫分別為-1℃、2℃、5℃;
(2)這一天中,最高氣溫是5℃.最低氣溫是-4℃;
(3)這一天中,3時(shí)~14時(shí)的氣溫在逐漸升高.0時(shí)~3時(shí)和14時(shí)~24時(shí)的氣溫在逐漸降低.
從圖中我們可以看到,隨著時(shí)間t(時(shí))的變化,相應(yīng)地氣溫T(℃)也隨之變化.那么在生活中是否還有其它類似的數(shù)量關(guān)系呢?
二、探究歸納
問(wèn)題2銀行對(duì)各種不同的存款方式都規(guī)定了相應(yīng)的利率,下表是20xx年7月中國(guó)工商銀行為“整存整取”的存款方式規(guī)定的年利率:
觀察上表,說(shuō)說(shuō)隨著存期x的增長(zhǎng),相應(yīng)的年利率y是如何變化的.
解隨著存期x的增長(zhǎng),相應(yīng)的年利率y也隨著增長(zhǎng).
問(wèn)題3收音機(jī)刻度盤(pán)的波長(zhǎng)和頻率分別是用米(m)和千赫茲(kHz)為單位標(biāo)刻的.下面是一些對(duì)應(yīng)的數(shù)值:
觀察上表回答:
(1)波長(zhǎng)l和頻率f數(shù)值之間有什么關(guān)系?
(2)波長(zhǎng)l越大,頻率f就________.
解(1)l與f的乘積是一個(gè)定值,即
lf=300000,
或者說(shuō).
(2)波長(zhǎng)l越大,頻率f就 越小 .
問(wèn)題4圓的面積隨著半徑的增大而增大.如果用r表示圓的半徑,S表示圓的`面積則S與r之間滿足下列關(guān)系:S=_________.
利用這個(gè)關(guān)系式,試求出半徑為1cm、1.5cm、2cm、2.6cm、3.2cm時(shí)圓的面積,并將結(jié)果填入下表:
由此可以看出,圓的半徑越大,它的面積就_________.
解S=πr2.
圓的半徑越大,它的面積就越大.
在上面的問(wèn)題中,我們研究了一些數(shù)量關(guān)系,它們都刻畫(huà)了某些變化規(guī)律.這里出現(xiàn)了各種各樣的量,特別值得注意的是出現(xiàn)了一些數(shù)值會(huì)發(fā)生變化的量.例如問(wèn)題1中,刻畫(huà)氣溫變化規(guī)律的量是時(shí)間t和氣溫T,氣溫T隨著時(shí)間t的變化而變化,它們都會(huì)取不同的數(shù)值.像這樣在某一變化過(guò)程中,可以取不同數(shù)值的量,叫做變量(variable).
上面各個(gè)問(wèn)題中,都出現(xiàn)了兩個(gè)變量,它們互相依賴,密切相關(guān).一般地,如果在一個(gè)變化過(guò)程中,有兩個(gè)變量,例如x和y,對(duì)于x的每一個(gè)值
八年級(jí)數(shù)學(xué)教案 篇9
[教學(xué)分析]
勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書(shū)所體現(xiàn)的主要思想。教材在編寫(xiě)時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。
本節(jié)教科書(shū)從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說(shuō)談起,讓學(xué)生通過(guò)觀察計(jì)算一些以直角三角形兩條直角邊為邊長(zhǎng)的小正方形的面積與以斜邊為邊長(zhǎng)的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書(shū)以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書(shū)正文中介紹了我國(guó)古人趙爽的證法。之后,通過(guò)三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問(wèn)題和解決數(shù)學(xué)問(wèn)題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。
[教學(xué)目標(biāo)]
一、 知識(shí)與技能
1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。
2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問(wèn)題
3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說(shuō)理
二、 過(guò)程與方法
引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過(guò)動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。
三、 情感與態(tài)度目標(biāo)
通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。
四、 重點(diǎn)與難點(diǎn)
1、探索和證明勾股定理
2熟練運(yùn)用勾股定理
[教學(xué)過(guò)程]
一、創(chuàng)設(shè)情景,揭示課題
1、教師展示圖片并介紹第一情景
以中國(guó)最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開(kāi)頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。
周公問(wèn):“竊聞乎大夫善數(shù)也,請(qǐng)問(wèn)古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問(wèn)數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤(pán).得成三、四、五,兩矩共長(zhǎng)二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!
2、教師展示圖片并介紹第二情景
畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。
二、師生協(xié)作,探究問(wèn)題
1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?
2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?
3、你能得到什么結(jié)論嗎?
三、得出命題
勾股定理:如果直角三角形的兩直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國(guó)古代把直角三角形中較短的'直角邊稱為勾,較長(zhǎng)的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。
四、勾股定理的證明
趙爽弦圖的證法(圖2)
第一種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L(zhǎng)為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。
第二種方法:邊長(zhǎng)為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的
角三角形拼接形成的(虛線表示),不過(guò)中間缺出一個(gè)邊長(zhǎng)為 的正方形“小洞”。
因?yàn)檫呴L(zhǎng)為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。
這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國(guó)古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。
五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。
勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問(wèn)題,今天我們就來(lái)運(yùn)用勾股定理解決一些問(wèn)題,你可以嗎?試一試。
例題:小明媽媽買(mǎi)了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?
六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問(wèn)題
2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫(huà)一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。
七、討論交流
讓學(xué)生發(fā)表自己的意見(jiàn),提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過(guò)提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開(kāi)朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。
我們班的同學(xué)很聰明。大家很快就通過(guò)數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來(lái)交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。
八年級(jí)數(shù)學(xué)教案 篇10
一、 教學(xué)目標(biāo)
1.了解分式、有理式的概念.
2.理解分式有意義的條件,能熟練地求出分式有意義的條件.
二、重點(diǎn)、難點(diǎn)
1.重點(diǎn):理解分式有意義的條件.
2.難點(diǎn):能熟練地求出分式有意義的條件.
三、課堂引入
1.讓學(xué)生填寫(xiě)P127[思考],學(xué)生自己依次填出:,,,.
2.學(xué)生看問(wèn)題:一艘輪船在靜水中的最大航速為30 /h,它沿江以最大航速順流航行90 所用時(shí)間,與以最大航速逆流航行60 所用時(shí)間相等,江水的流速為多少?
請(qǐng)同學(xué)們跟著教師一起設(shè)未知數(shù),列方程.
設(shè)江水的流速為v /h.
輪船順流航行90 所用的時(shí)間為小時(shí),逆流航行60 所用時(shí)間小時(shí),所以=.
3. 以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?
四、例題講解
P128例1. 當(dāng)下列分式中的字母為何值時(shí),分式有意義.
[分析]已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解
出字母的取值范圍.
[補(bǔ)充提問(wèn)]如果題目為:當(dāng)字母為何值時(shí),分式無(wú)意義.你知道怎么解題嗎?這樣可以使學(xué)生一題二用,也可以讓學(xué)生更全面地感受到分式及有關(guān)概念.
(補(bǔ)充)例2. 當(dāng)為何值時(shí),分式的值為0?
。1) (2) (3)
[分析] 分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:分母不能為零;分子為零,這樣求出的的解集中的公共部分,就是這類題目的解.
[答案] (1)=0 (2)=2 (3)=1
五、隨堂練習(xí)
1.判斷下列各式哪些是整式,哪些是分式?
9x+4, , , , ,
2. 當(dāng)x取何值時(shí),下列分式有意義?
。1) (2) (3)
3. 當(dāng)x為何值時(shí),分式的值為0?
。1) (2) (3)
六、課后練習(xí)
1.下列代數(shù)式表示下列數(shù)量關(guān)系,并指出哪些是正是?哪些是分式?
。1)甲每小時(shí)做x個(gè)零件,則他8小時(shí)做零件 個(gè),做80個(gè)零件需 小時(shí).
。2)輪船在靜水中每小時(shí)走a千米,水流的`速度是b千米/時(shí),輪船的順流速度是 千米/時(shí),輪船的逆流速度是 千米/時(shí).
。3)x與的差于4的商是 .
2.當(dāng)x取何值時(shí),分式 無(wú)意義?
3. 當(dāng)x為何值時(shí),分式 的值為0?
【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:
八年級(jí)上冊(cè)數(shù)學(xué)教案11-09
八年級(jí)上冊(cè)人教版數(shù)學(xué)教案02-27
【熱門(mén)】八年級(jí)數(shù)學(xué)教案11-29