四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學教案>八年級數(shù)學教案>八年級數(shù)學教案

八年級數(shù)學教案

時間:2022-08-23 05:22:58 八年級數(shù)學教案 我要投稿

關于八年級數(shù)學教案模板合集六篇

  作為一位杰出的老師,就不得不需要編寫教案,教案是教學活動的總的組織綱領和行動方案。那么寫教案需要注意哪些問題呢?以下是小編為大家整理的八年級數(shù)學教案6篇,僅供參考,大家一起來看看吧。

關于八年級數(shù)學教案模板合集六篇

八年級數(shù)學教案 篇1

  教學目標:

  1. 掌握三角形內(nèi)角和定理及其推論;

  2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

  3.通過對三角形分類的學習,使學生了解數(shù)學分類的基本思想,并會用方程思想去解決一些圖形中求角的問題。

  4.通過三角形內(nèi)角和定理的證明,提高學生的邏輯思維能力,同時培養(yǎng)學生嚴謹?shù)目茖W態(tài)

  5. 通過對定理及推論的分析與討論,發(fā)展學生的求同和求異的思維能力,培養(yǎng)學生聯(lián)系與轉(zhuǎn)化的'辯證思想。

  教學重點:

  三角形內(nèi)角和定理及其推論。

  教學難點:

  三角形內(nèi)角和定理的證明

  教學用具:

  直尺、微機

  教學方法:

  互動式,談話法

  教學過程:

  1、創(chuàng)設情境,自然引入

  把問題作為教學的出發(fā)點,創(chuàng)設問題情境,激發(fā)學生學習興趣和求知欲,為發(fā)現(xiàn)新知識創(chuàng)造一個最佳的心理和認知環(huán)境。

  問題1 三角形三條邊的關系我們已經(jīng)明確了,而且利用上述關系解決了一些幾何問題,那么三角形的三個內(nèi)角有何關系呢?

  問題2 你能用幾何推理來論證得到的關系嗎?

  對于問題1絕大多數(shù)學生都能回答出來(小學學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節(jié)課將要學習的一個重要內(nèi)容(板書課題)

  新課引入的好壞在某種程度上關系到課堂教學的成敗,本節(jié)課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關系,自然想到三角形角的關系怎樣呢?”使學生感覺本節(jié)課學習的內(nèi)容自然合理。

  2、設問質(zhì)疑,探究嘗試

  (1)求證:三角形三個內(nèi)角的和等于

  讓學生剪一個三角形,并把它的三個內(nèi)角分別剪下來,再拼成一個平面圖形。這里教師設計了電腦動畫顯示具體情景。然后,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

  問題1 觀察:三個內(nèi)角拼成了一個

  什么角?問題2 此實驗給我們一個什么啟示?

  (把三角形的三個內(nèi)角之和轉(zhuǎn)化為一個平角)

  問題3 由圖中AB與CD的關系,啟發(fā)我們畫一條什么樣的線,作為解決問題的橋梁?

  其中問題2是解決本題的關鍵,教師可引導學生分析。對于問題3學生經(jīng)過思考會畫出此線的。這里教師要重點講解“輔助線”的有關知識。比如:為什么要畫這條線?畫這條線有什么作用?要讓學生知道“輔助線”是以后解決幾何問題有力的工具。它的作用在于充分利用條件;恰當轉(zhuǎn)化條件;恰當轉(zhuǎn)化結(jié)論;充分提示題目中各元素間的一些不明顯的關系,達到化難為易解決問題的目的。

  (2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

  學生回答后,電腦顯示圖表。

  (3)三角形中三個內(nèi)角之和為定值

  ,那么對三角形的其它角還有哪些特殊的關系呢?問題1 直角三角形中,直角與其它兩個銳角有何關系?

  問題2 三角形一個外角與它不相鄰的兩個內(nèi)角有何關系?

  問題3 三角形一個外角與其中的一個不相鄰內(nèi)角有何關系?

  其中問題1學生很容易得出,提出問題2之后,先給出三角形外角的定義,然后讓學生經(jīng)過分析討論,得出結(jié)論并書寫證明過程。

  這樣安排的目的有三點:第一,理解定理之后的延伸――推論,培養(yǎng)學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

  3、三角形三個內(nèi)角關系的定理及推論

  引導學生分析并嚴格書寫解題過程

八年級數(shù)學教案 篇2

  一、教學目標:

  1、知識目標:能熟練掌握簡單圖形的移動規(guī)律,能按要求作出簡單平面圖形平移后的圖形,能夠探索圖形之間的平移關系;

  2、能力目標:

 、伲趯嵺`操作過程中,逐步探索圖形之間的平移關系;

  ②,對組合圖形要找到一個或者幾個“基本圖案”,并能通過對“基本圖案”的平移,復制所求的圖形;

  3、情感目標:經(jīng)歷對圖形進行觀察、分析、欣賞和動手操作、畫圖等過程,發(fā)展初步的審美能力,增強對圖形欣賞的意識。

  二、重點與難點:

  重點:圖形連續(xù)變化的特點;

  難點:圖形的劃分。

  三、教學方法:

  講練結(jié)合。使用多媒體課件輔助教學。

  四、教具準備:

  多媒體、磁性板,若干小正六邊形,“工”字的磚,組合圖形。

  五、教學設計:

  創(chuàng)設情景,探究新知:

  (演示課件):教材上小狗的圖案。提問:

  (1)這個圖案有什么特點?

  (2)它可以通過什么“基本圖案”,經(jīng)過怎樣的平移而形成?

  (3)在平移過程中,“基本圖案”的.大小、形狀、位置是否發(fā)生了變化?

  小組討論,派代表回答。(答案可以多種)

  讓學生充分討論,歸納總結(jié),老師給予適當?shù)闹笇,并對每種答案都要肯定。

  看磁性黑板,展示教材64頁圖3-9,提問:左圖是一個正六邊形,它經(jīng)過怎樣的平移能得到右圖?誰到黑板做做看?

  小組討論,派代表到臺上給大家講解。

  氣氛要熱烈,充分調(diào)動學生的積極性,發(fā)掘他們的想象力。

  暢所欲言,互相補充。

  課堂小結(jié):

  在教師的引導下學生總結(jié)本節(jié)課的主要內(nèi)容,并啟發(fā)學生在我們周圍尋找平移的例子。

  課堂練習:

  小組討論。

  小組討論完成。

  例子一定要和大家接觸緊密、典型。

  答案不惟一,對于每種答案,教師都要給予充分的肯定。

  六、教學反思:

  本節(jié)的內(nèi)容并不是很復雜,借助多媒體進行直觀、形象,內(nèi)容貼近生活,學生興致較高,課堂氣氛活躍,參與意識較強,學生一般都能在教師的指導下掌握。教學過程中滲透數(shù)學美學思想,促進學生綜合素質(zhì)的提高。

八年級數(shù)學教案 篇3

  活動一、創(chuàng)設情境

  引入:首先我們來看幾道練習題(幻燈片)

 。◤土暎浩叫芯及三角形全等的知識)

  下面我們一起來欣賞一組圖片(幻燈片)

  [學生活動]觀看后答問題:你看到了哪些圖形?

 。ǜ魇礁鳂拥膱D案裝點著我們的生活,使我們這個世界變得如此美麗,那么,請你用兩個相同的300的三角板,看能拼出哪些圖案?)

  [學生活動]小組合作交流,拼出圖案的`類型。

  同學們所拼的圖形中,除了有我們學過的三角形,還有很多四邊形,今天,我們一起來研究四邊形,探索四邊形的性質(zhì)。(幻燈片出示課題)

  活動二、合作交流,探求新知

  問題(1):為什么我們把(甲)圖叫平行四邊形,而(乙)圖不是平行四邊形呢?你怎么知道這些四邊形是平行四邊形?(拿一模型,幻燈片)

  [學生活動]認真觀察、討論、思考、推理。

  鼓勵學生交流,并是試著用自己的語言概括出平行四邊形的定義。

  學生交流,歸納:有兩組對邊分別平行的四邊形叫做平行四邊形。

  并說明:平行四邊形不相鄰的兩個頂點連成的線段叫它的對角線。

  平行四邊形用“”表示,如圖平行四邊形ABCD記作“ABCD”讀作:平行四邊形ABCD。(幻燈片出示揭示課題)

  問題(2):由平行四邊形的定義,我們知道平行四邊形的兩組對邊分別平行,平行四邊形還有什么特征呢?

  [學生活動]動手操作,小組演示交流。鼓勵學生用多種方法探究。

  小結(jié)平行四邊形的性質(zhì):

  平行四邊形的對邊相等

  平行四邊形的對角相等(這里要弄清對角、對邊兩個名詞)

  你能演示你的結(jié)論是如何得到的嗎?(學生演示)

  你能證明嗎?(幻燈片出示證明題)

  [學生活動]先分析思路尤其是輔助線,請學生上黑板證明。

  自己完成性質(zhì)2的證明。

  活動三、運用新知

  性質(zhì)掌握了嗎?一起來看一道題目:

  嘗試練習(幻燈片)例1

  [學生活動]作嘗試性解答。

八年級數(shù)學教案 篇4

  教學目標

  一、教學知識點:

  1.旋轉(zhuǎn)的定義.2.旋轉(zhuǎn)的基本性質(zhì).

  二、能力訓練要求:

  1.通過具體實例認識旋轉(zhuǎn),理解旋轉(zhuǎn)的基本涵義.

  2.探索旋轉(zhuǎn)的基本性質(zhì),理解旋轉(zhuǎn)前后兩個圖形對應點到旋轉(zhuǎn)中心的距離相等,對應點與旋轉(zhuǎn)中心的連線所成的角彼此相等的性質(zhì).

  三、情感與價值觀要求

  1.經(jīng)歷對生活中與旋轉(zhuǎn)現(xiàn)象有關的圖形進行觀察、分析、欣賞以及動手操作、畫圖等過程,掌握有關畫圖的操作技能,發(fā)展初步的審美能力,增強對圖形欣賞的意識.

  2.通過學習使學生能用數(shù)學的眼光看待生活中的有關問題,進一步發(fā)展學生的數(shù)學觀.

  教學重點:旋轉(zhuǎn)的基本性質(zhì).

  教學難點:探索旋轉(zhuǎn)的基本性質(zhì).

  教學方法:

  1、遵循學生是學習的主人的原則,在為學生創(chuàng)造大量實例的基礎上,引導學生自主思考、交流、討論、歸納、學習。

  2、采用多媒體課件輔助教學。

  教學過程:

  一.巧設情景問題,引入課題

  日常生活中,我們經(jīng)常見到以下情景(出示圖示:鐘表、汽車方向盤、轆轤或電腦演示:鐘表指針的轉(zhuǎn)動、汽車方向盤的轉(zhuǎn)動、轆轤打水的情景). (1)上面情景中的轉(zhuǎn)動現(xiàn)象,有什么共同特征?(2)鐘表的指針、鐘擺在轉(zhuǎn)動過程中,其形狀、大小、位置是否發(fā)生改變?汽車方向盤的轉(zhuǎn)動呢?

  1.在這些轉(zhuǎn)動的現(xiàn)象中,它們都是繞著一個點轉(zhuǎn)動的.

  2.每個物體的轉(zhuǎn)動都是向同一個方向轉(zhuǎn)動.

  3.鐘表的指針、鐘擺在轉(zhuǎn)動過程中,它的形狀、大小沒有變化,只是它的位置有所改變.

  4.汽車的方向盤在轉(zhuǎn)動過程中,同樣它的形狀、大小沒有改變,方向盤上的每點的位置所變化.同學們觀察得很仔細,我們把這樣的轉(zhuǎn)動叫旋轉(zhuǎn)(circumrotate),這節(jié)課我們就來探討生活中的旋轉(zhuǎn).

  二.講授新課

  在數(shù)學中,如何定義旋轉(zhuǎn)呢?在平面內(nèi),將一個圖形繞著一個定點沿某個方向轉(zhuǎn)動一個角度,這樣的圖形運動稱為旋轉(zhuǎn)(circumrotate).這個定點稱為旋轉(zhuǎn)中心,轉(zhuǎn)動的角稱為旋轉(zhuǎn)角.注意:“將一個圖形繞一個定點沿某個方向轉(zhuǎn)動一個角度”意味著圖形上的每個點同時都按相同的方式轉(zhuǎn)動相同的角度.在物體繞著一個定點轉(zhuǎn)動時,它的形狀和大小不變.因此,旋轉(zhuǎn)具有不改變圖形的大小和形狀的特征.

  議一議:(課本67頁)答:(1)旋轉(zhuǎn)中心是O點,旋轉(zhuǎn)角是∠AOD.旋轉(zhuǎn)角還可以是∠BOE.

  (2)四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置.這時點A旋轉(zhuǎn)到點D的位置,點B旋轉(zhuǎn)到點E的位置.

  (3)可以把OA看作鐘表的指針,它OA的位置旋轉(zhuǎn)到OD的位置,指針的長短、形狀沒有變化,所以OA與OD是相等的.同樣,線段OB與OE是相等的.

  (4)因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,在旋轉(zhuǎn)的過程中,圖形上的每個點同時都按相同的方向旋轉(zhuǎn)相同的角度,所以∠AOD與∠BOE是相等的..

  (4)也可以這樣理解:因為四邊形AOBC繞O點旋轉(zhuǎn)到四邊形DOEF的位置,所以∠AOB與∠DOE是相等的,又因為∠BOD是公共角,所以,∠AOD與∠BOE是相等的.

  看上圖,四邊形DOEF是由四邊形AOBC繞O點旋轉(zhuǎn)得到的,經(jīng)過旋轉(zhuǎn),點A移動到點D的位置,點B移動到點E的位置,點C移動到點F的位置,則點A與點D、點B與點E、點C與點F就是對應點.從剛才大家得出的結(jié)論中,能否總結(jié)出旋轉(zhuǎn)的性質(zhì)呢?

  答:因為O是旋轉(zhuǎn)中心,點A與點D是對應點,點B與點E是對應點,且OA=OD,OB=OE,所以可以知道:對應點與旋轉(zhuǎn)中心所連的線段的長度是相等的.

  因為點A與點D、點B與點E是對應點,且∠AOD=∠BOE,所以由此可以知道:對應點與旋轉(zhuǎn)中心的連線所成的角是互相相等的.

  由此我們得到了旋轉(zhuǎn)的基本性質(zhì):經(jīng)過旋轉(zhuǎn),圖形上的每一點都繞旋轉(zhuǎn)中心沿相同方向轉(zhuǎn)動了相同的角度.任意一對對應點與旋轉(zhuǎn)中心的連線所成的角都是旋轉(zhuǎn)角,旋轉(zhuǎn)角彼此相等.對應點到旋轉(zhuǎn)中心的距離相等.

 。劾1](課本68頁例1)

 。蹘熒参觯萁(jīng)演示(鐘表實物或教具)可以知道,分針是繞著表面盤的中心位置,即鐘表的軸心旋轉(zhuǎn)的,它旋轉(zhuǎn)一周時的度數(shù)是360°,一周需要60分,因此每分鐘分針所轉(zhuǎn)過的度數(shù)是6°,這樣20分時,分針逆轉(zhuǎn)的角度即可求出.

  解:(見課本68頁)

  書上68頁做一做

  三.課堂練習

  課本P69隨堂練習.

  1.解:旋轉(zhuǎn)5次得到,旋轉(zhuǎn)的角度分別等于60°、120°、180°、240°、300°.

  四.課時小結(jié)

  五.課后作業(yè):課本P69習題3.4 1、2、3.

  六.活動與探究

  1.分析圖中的旋轉(zhuǎn)現(xiàn)象.過程:讓學生畫圖、找規(guī)律,也可讓他們通過剪切,找到旋轉(zhuǎn)規(guī)律.

  結(jié)果:旋轉(zhuǎn)現(xiàn)象為:

  整個圖形可以看做是圖形的八分之一(一組大小不等的三個“角”)繞中心位置,按照同一方向連續(xù)旋轉(zhuǎn)45°、90°、135°、180°、225°、270°、315°前后的圖形共同組成的.

  整個圖形也可以看做是圖形的四分之一(兩組相鄰的“角”)繞中心位置連續(xù)旋轉(zhuǎn)90°、180°、270°前后的圖形共同組成的.

  整個圖形還可以看做是圖形的二分之一(四組相鄰的“角”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  2.圖中是否存在這樣的兩個三角形,其中一個是另一個通過旋轉(zhuǎn)得到的?

  過程:同樣讓學生在畫圖過程中體會圖形中每個三角形之間的關系;或讓學生仔細觀察圖形,分析圖形,找出關系.

  結(jié)果:圖中存在這樣的三角形,其中一個是另一個通過旋轉(zhuǎn)得到的.

  整個圖形可以看做圖形的四分之一(一組“樓梯”)繞中心連續(xù)旋轉(zhuǎn)90°、180°、 270°.前后的圖形共同組成的.

  整個圖形也可以看做圖形的二分之一(兩組“樓梯”)繞中心位置旋轉(zhuǎn)180°前后的圖形共同組成的.

  板書設計:

  教學反思:本節(jié)課仍然是圖形的基本變換。借助多媒體教學直觀生動形象。學生一般都能在教師的指導下掌握。也在培養(yǎng)學生的空間想象能力。

八年級數(shù)學教案 篇5

  [教學分析]

  勾股定理是揭示三角形三條邊數(shù)量關系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際操作,使學生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學生理解勾股定理,以利于進行正確的應用。

  本節(jié)教科書從畢達哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學問題中的應用,使學生對勾股定理的作用有一定的認識。

  [教學目標]

  一、 知識與技能

  1、探索直角三角形三邊關系,掌握勾股定理,發(fā)展幾何思維。

  2、應用勾股定理解決簡單的實際問題

  3學會簡單的合情推理與數(shù)學說理

  二、 過程與方法

  引入兩段中西關于勾股定理的史料,激發(fā)同學們的興趣,引發(fā)同學們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關系,經(jīng)歷小組協(xié)作與討論,進一步發(fā)展合作交流能力和數(shù)學表達能力,并感受勾股定理的應用知識。

  三、 情感與態(tài)度目標

  通過對勾股定理歷史的了解,感受數(shù)學文化,激發(fā)學習興趣;在探究活動中,學生親自動手對勾股定理進行探索與驗證,培養(yǎng)學生的合作交流意識和探索精神,以及自主學習的能力。

  四、 重點與難點

  1、探索和證明勾股定理

  2熟練運用勾股定理

  [教學過程]

  一、創(chuàng)設情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學著作——《周髀算經(jīng)》的'開頭為引,介紹周公向商高請教數(shù)學知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達哥拉斯是古希臘著名的數(shù)學家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請你也動手數(shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

  第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

  因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學家趙爽高超的證題思想和對數(shù)學的鉆研精神,是我們中華民族的驕傲。

  五、應用舉例,拓展訓練,鞏固反饋。

  勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機,小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

  2、方法歸納:數(shù)方格看圖找關系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機會,通過提示性的引導,讓學生對勾股定理的概念豁然開朗,為后面勾股定理的應用打下基礎。

  我們班的同學很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學們課后在反思天地中都發(fā)表一下自己的學習心得。

八年級數(shù)學教案 篇6

  教學目標:

  1。經(jīng)歷探索平行四邊形有關概念和性質(zhì)的過程,在活動中發(fā)展學生的探究意識和合作交流的習慣;

  2。索并掌握平行四邊形的性質(zhì),并能簡單應用;

  3。在探索活動過程中發(fā)展學生的探究意識。

  教學重點:平行四邊形性質(zhì)的探索。

  教學難點:平行四邊形性質(zhì)的理解。

  教學準備:多媒體課件

  教學過程

  第一環(huán)節(jié):實踐探索,直觀感知(5分鐘,動手實踐、探索、感知,學生進一步探索了平行四邊形的概念,明確了平行四邊形的本質(zhì)特征。)

  1。小組活動一

  內(nèi)容:

  問題1:同學們拿出準備好的剪刀、彩紙或白紙一張。將一張紙對折,剪下兩張疊放的三角形紙片,將它們相等的一邊重合,得到一個四邊形。

 。1)你拼出了怎樣的四邊形?與同桌交流一下;

 。2)給出小明拼出的四邊形,它們的對邊有怎樣的位置關系?說說你的理由,請用簡捷的語言刻畫這個圖形的特征。

  2。小組活動二

  內(nèi)容:生活中常見到平行四邊形的實例有什么呢?你能舉例說明嗎?

  第二環(huán)節(jié) 探索歸納、合作交流(5分鐘,學生動手、動嘴,全班交流)

  小組活動3:

  用 一張半透明的紙復制你剛才畫的平行四邊形,并將復制 后的四邊形繞一個頂點旋轉(zhuǎn)180,你能平移該紙片,使它與你畫的平行四邊形重合嗎?由此你能得到哪些結(jié)論?四邊形的對邊、對角分別有什么關系?能用別的方法驗證你的結(jié)論嗎?

 。1)讓學生動手操作、復制、旋轉(zhuǎn) 、觀察、分析;

  (2)學生交流、議論;

 。3)教師利用多媒體展示實踐的過程。

  第三環(huán)節(jié) 推理論證、感悟升華(10分鐘,學生通過說理,由直觀感受上升到理性分析,在操作層面感知的基礎上提升,并了解圖形具有的數(shù)學本質(zhì)。)

  實踐 探索內(nèi)容

 。1)通過剪紙,拼紙片,及旋轉(zhuǎn),可以觀察到平行四邊行的對角線把它分成的兩個三角形全等。

 。2)可以通過推理來證明這個結(jié)論,如圖連結(jié)AC。

  ∵ 四邊形ABCD是平行四邊形

  AD // BC, AB // CD

  2,4

  △AB C和△CDA中

  1

  AC=C A

  4

  △ABC≌△CDA(ASA)

  AB=DC, AD=CB,B

  又∵2

  4

  3=4

  即BAD=DCB

  第四環(huán)節(jié) 應用鞏固 深化提高(10分鐘,通過議一議,練一練,學生進一步理解平行四邊形的性質(zhì),并進行簡單合情推理,體現(xiàn)性質(zhì)的應用,同時從不同角度平移、旋轉(zhuǎn)等再一次認識平行四邊形的本質(zhì)特征。)

  1;顒觾(nèi)容:

 。1)議一議:如果已知平行四邊形的'一個內(nèi)角度數(shù),能確定其它三個內(nèi)角的度數(shù)嗎?

  A(學生思考、議論)

  B總結(jié)歸納:可以確定其它三個內(nèi)角的度數(shù)。

  由平行四邊形對 邊分邊平行 得到鄰角互補;又由于平行四邊形對角相等,由此已知平行四邊形的一個內(nèi)角的度數(shù),可以確定其它三個角度數(shù)。

  (2)練一練(P99隨堂練習)

  練1 如圖:四邊形ABCD是平行四邊形。

  (1)求ADC、BCD度數(shù)

  (2)邊AB、BC的度數(shù)、長度。

  練2 四邊形ABCD是平行四邊形

 。1)它的四條邊中哪些 線段可以通過平移相到得到?

  (2)設對角線AC、BD交于O;AO與OC、BO與OD有何關系?說說理由。

  歸 納:平行四邊形的性質(zhì):平行四邊形的對角線互相平分。

  第五環(huán)節(jié) 評價反思 概括總結(jié)(8分鐘,學生踴躍談感受和收獲)

  活動內(nèi)容

  師生相互交流、反思、總結(jié)。

 。1)經(jīng)歷了對平行四邊形的特征探索,你有什么感受和收獲?給自己一個評價。

 。2)在與同伴合作交流中練表現(xiàn),優(yōu)秀方面有哪些?你看到同伴哪些優(yōu)點?

 。3)本節(jié)學習到了什么?(知識上、方法上)

  考一考:

  1。 ABCD中,B=60,則A= ,C= ,D= 。

  2。 ABCD中,A比B大20,則C= 。

  3。 ABCD中,AB=3,BC=5,則AD= CD= 。

  4。 ABCD中,周長為40cm,△ABC周長為25,則對角線AC=( )cm。

  布置作業(yè)

  課本習題4。1

  A組(學優(yōu)生)1 、2

  B組(中等生)1、2

  C組(后三分之一生)1、2

  教學反思

【八年級數(shù)學教案】相關文章:

八年級的數(shù)學教案12-14

八年級數(shù)學教案06-18

初中八年級數(shù)學教案11-03

八年級的數(shù)學教案15篇12-14

【熱門】八年級數(shù)學教案11-29

八年級數(shù)學教案【熱】11-29

八年級數(shù)學教案【薦】12-06

【熱】八年級數(shù)學教案12-07

八年級上冊數(shù)學教案11-09

人教版八年級數(shù)學教案11-04