四虎成人免费视频,国产一级a作爱视频免费观9看,色五月丁香亚洲,亚洲欧美性爱在线视频,1000部黄片免费观看一区,国产亚洲性生活视频播放,三级黄色在线视频网站

現(xiàn)在位置:范文先生網(wǎng)>教案大全>數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案>八年級(jí)數(shù)學(xué)教案

八年級(jí)數(shù)學(xué)教案

時(shí)間:2022-08-22 09:47:05 八年級(jí)數(shù)學(xué)教案 我要投稿

關(guān)于八年級(jí)數(shù)學(xué)教案7篇

  作為一名辛苦耕耘的教育工作者,常常要根據(jù)教學(xué)需要編寫教案,教案是備課向課堂教學(xué)轉(zhuǎn)化的關(guān)節(jié)點(diǎn)。教案應(yīng)該怎么寫才好呢?下面是小編精心整理的八年級(jí)數(shù)學(xué)教案7篇,希望能夠幫助到大家。

關(guān)于八年級(jí)數(shù)學(xué)教案7篇

八年級(jí)數(shù)學(xué)教案 篇1

  教學(xué)目標(biāo):

  1.知道負(fù)整數(shù)指數(shù)冪=(a≠0,n是正整數(shù)).

  2.掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).

  3.會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).

  教學(xué)重點(diǎn):

  掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì).

  難點(diǎn):

  會(huì)用科學(xué)計(jì)數(shù)法表示小于1的數(shù).

  情感態(tài)度與價(jià)值觀:

  通過學(xué)習(xí)課堂知識(shí)使學(xué)生懂得任何事物之間是相互聯(lián)系的,理論來源于實(shí)踐,服務(wù)于實(shí)踐.能利用事物之間的類比性解決問題.

  教學(xué)過程:

  一、課堂引入

  1.回憶正整數(shù)指數(shù)冪的運(yùn)算性質(zhì): (1)同底數(shù)的冪的乘法:am?an = am+n (m,n是正整數(shù)); (2)冪的乘方:(am)n = amn (m,n是正整數(shù)); (3)積的乘方:(ab)n = anbn (n是正整數(shù)); (4)同底數(shù)的冪的除法:am÷an = am?n ( a≠0,m,n是正整數(shù),m>n); (5)商的.乘方:()n = (n是正整數(shù));

  2.回憶0指數(shù)冪的規(guī)定,即當(dāng)a≠0時(shí),a0 = 1.

  3.你還記得1納米=10?9米,即1納米=米嗎?

  4.計(jì)算當(dāng)a≠0時(shí),a3÷a5 ===,另一方面,如果把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷an = am?n (a≠0,m,n是正整數(shù),m>n)中的m>n這個(gè)條件去掉,那么a3÷a5 = a3?5 = a?2,于是得到a?2 =(a≠0).

  二、總結(jié): 一般地,數(shù)學(xué)中規(guī)定: 當(dāng)n是正整數(shù)時(shí),=(a≠0)(注意:適用于m、n可以是全體整數(shù)) 教師啟發(fā)學(xué)生由特殊情形入手,來看這條性質(zhì)是否成立. 事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),前面提到的運(yùn)算性質(zhì)都可推廣到整數(shù)指數(shù)冪;am?an = am+n (m,n是整數(shù))這條性質(zhì)也是成立的.

  三、科學(xué)記數(shù)法: 我們已經(jīng)知道,一些較大的數(shù)適合用科學(xué)記數(shù)法表示,有了負(fù)整數(shù)指數(shù)冪后,小于1的正數(shù)也可以用科學(xué)記數(shù)法來表示,例如:0.000012 = 1.2×10?5. 即小于1的正數(shù)可以用科學(xué)記數(shù)法表示為a×10?n的形式,其中a是整數(shù)位數(shù)只有1位的正數(shù),n是正整數(shù). 啟發(fā)學(xué)生由特殊情形入手,比如0.012 = 1.2×10?2,0.0012 = 1.2×10?3,0.00012 = 1.2×10?4,以此發(fā)現(xiàn)其中的規(guī)律,從而有0.0000000012 = 1.2×10?9,即對(duì)于一個(gè)小于1的正數(shù),如果小數(shù)點(diǎn)后到第一個(gè)非0數(shù)字前有8個(gè)0,用科學(xué)記數(shù)法表示這個(gè)數(shù)時(shí),10的指數(shù)是?9,如果有m個(gè)0,則10的指數(shù)應(yīng)該是?m?1.

八年級(jí)數(shù)學(xué)教案 篇2

  一、素質(zhì)教育目標(biāo)

  (一)知識(shí)教學(xué)點(diǎn)

  1.掌握平行四邊形的判定定理1、2、3、4,并能與性質(zhì)定理、定義綜合應(yīng)用.

  2.使學(xué)生理解判定定理與性質(zhì)定理的區(qū)別與聯(lián)系.

  3.會(huì)根據(jù)簡(jiǎn)單的條件畫出平行四邊形,并說明畫圖的依據(jù)是哪幾個(gè)定理.

  (二)能力訓(xùn)練點(diǎn)

  1.通過“探索式試明法”開拓學(xué)生思路,發(fā)展學(xué)生思維能力.

  2.通過教學(xué),使學(xué)生逐步學(xué)會(huì)分別從題設(shè)或結(jié)論出發(fā)尋求論證思路的分析方法,進(jìn)一步提高學(xué)生分析問題,解決問題的能力.

  (三)德育滲透點(diǎn)

  通過一題多解激發(fā)學(xué)生的'學(xué)習(xí)興趣.

  (四)美育滲透點(diǎn)

  通過學(xué)習(xí),體會(huì)幾何證明的方法美.

  二、學(xué)法引導(dǎo)

  構(gòu)造逆命題,分析探索證明,啟發(fā)講解.

  三、重點(diǎn)·難點(diǎn)·疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn):平行四邊形的判定定理1、2、3的應(yīng)用.

  2.教學(xué)難點(diǎn):綜合應(yīng)用判定定理和性質(zhì)定理.

  3.疑點(diǎn)及解決辦法:在綜合應(yīng)用判定定理及性質(zhì)定理時(shí),在什么條件下用判定定理,在什么條件下用性質(zhì)定理

  (強(qiáng)調(diào)在求證平行四邊形時(shí)用判定定理在已知平行四邊形時(shí)用性質(zhì)定理).

八年級(jí)數(shù)學(xué)教案 篇3

  一、學(xué)生起點(diǎn)分析

  通過前一章《勾股定理》的學(xué)習(xí),學(xué)生已經(jīng)明白什么是勾股數(shù),但也發(fā)現(xiàn)并不是所有的直角三角形的邊長都是勾股數(shù),甚至有些直角三角形的邊長連有理數(shù)都不是,例如:①腰長為1的等腰直角三角形的底邊長不是有理數(shù),②兩條直角邊分別為1,2的直角三角形的斜邊長不是有理數(shù),這為引入“新數(shù)”奠定了必要性.

  二、教學(xué)任務(wù)分析

  《數(shù)不夠用了》是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第二章《實(shí)數(shù)》的第一節(jié). 本節(jié)內(nèi)容安排了2個(gè)課時(shí)完成,第1課時(shí)讓學(xué)生感受無理數(shù)的存在,初步建立無理數(shù)的印象,結(jié)合勾股定理知識(shí),會(huì)根據(jù)要求畫線段;第2課時(shí)借助計(jì)算器感受無理數(shù)是無限不循環(huán)小數(shù),會(huì)判斷一個(gè)數(shù)是無理數(shù).本課是第1課時(shí),學(xué)生將在具體的實(shí)例中,通過操作、估算、分析等活動(dòng),感受無理數(shù)的客觀存在性和引入的必要性,并能判斷一個(gè)數(shù)是不是有理數(shù).

  本節(jié)課的教學(xué)目標(biāo)是:

 、偻ㄟ^拼圖活動(dòng),讓學(xué)生感受客觀世界中無理數(shù)的存在;

 、谀芘袛嗳切蔚哪尺呴L是否為無理數(shù);

  ③學(xué)生親自動(dòng)手做拼圖活動(dòng),培養(yǎng)學(xué)生的動(dòng)手能力和探索精神;

 、苣苷_地進(jìn)行判斷某些數(shù)是否為有理數(shù),加深對(duì)有理數(shù)和無理數(shù)的理解;

  三、教學(xué)過程設(shè)計(jì)

  本節(jié)課設(shè)計(jì)了6個(gè)教學(xué)環(huán)節(jié):

  第一環(huán)節(jié):置疑;第二環(huán)節(jié):課題引入;第三環(huán)節(jié):獲取新知;第四環(huán)節(jié):應(yīng)用與鞏固;第五環(huán)節(jié):課堂小結(jié);第六環(huán)節(jié):作業(yè)布置.

  第一環(huán)節(jié):質(zhì)疑

  內(nèi)容:【想一想】

 、乓粋(gè)整數(shù)的平方一定是整數(shù)嗎?

 、埔粋(gè)分?jǐn)?shù)的平方一定是分?jǐn)?shù)嗎?

  目的:作必要的知識(shí)回顧,為第二環(huán)節(jié)埋下伏筆,便于后續(xù)問題的說理.

  效果:為后續(xù)環(huán)節(jié)的進(jìn)行起了很好的鋪墊的作用

  第二環(huán)節(jié):課題引入

  內(nèi)容:1.【算一算】

  已知一個(gè)直角三角形的兩條直角邊長分別為1和2,算一算斜邊長 的平方 ,并提出問題: 是整數(shù)(或分?jǐn)?shù))嗎?

  2.【剪剪拼拼】

  把邊長為1的兩個(gè)小正方形通過剪、拼,設(shè)法拼成一個(gè)大正方形,你會(huì)嗎?

  目的:選取客觀存在的“無理數(shù)“實(shí)例,讓學(xué)生深刻感受“數(shù)不夠用了”.

  效果:巧設(shè)問題背景,順利引入本節(jié)課題.

  第三環(huán)節(jié):獲取新知

  內(nèi)容:【議一議】→【釋一釋】→【憶一憶】→【找一找】

  【議一議】: 已知 ,請(qǐng)問:① 可能是整數(shù)嗎?② 可能是分?jǐn)?shù)嗎?

  【釋一釋】:釋1.滿足 的 為什么不是整數(shù)?

  釋2.滿足 的 為什么不是分?jǐn)?shù)?

  【憶一憶】:讓學(xué)生回顧“有理數(shù)”概念,既然 不是整數(shù)也不是分?jǐn)?shù),那么 一定不是有理數(shù),這表明:有理數(shù)不夠用了,為“新數(shù)”(無理數(shù))的學(xué)習(xí)奠定了基礎(chǔ)

  【找一找】:在下列正方形網(wǎng)格中,先找出長度為有理數(shù)的線段,再找出長度不是有理數(shù)的線段

  目的:創(chuàng)設(shè)從感性到理性的認(rèn)知過程,讓學(xué)生充分感受“新數(shù)”(無理數(shù))的存在,從而激發(fā)學(xué)習(xí)新知的興趣

  效果:學(xué)生感受到無理數(shù)產(chǎn)生的過程,確定存在一種數(shù)與以往學(xué)過的數(shù)不同,產(chǎn)生了學(xué)習(xí)新數(shù)的必要性.

  第四環(huán)節(jié):應(yīng)用與鞏固

  內(nèi)容:【畫一畫1】→【畫一畫2】→【仿一仿】→【賽一賽】

  【畫一畫1】:在右1的正方形網(wǎng)格中,畫出兩條線段:

  1.長度是有理數(shù)的線段

  2.長度不是有理數(shù)的線段

  【畫一畫2】:在右2的正方形網(wǎng)格中畫出四個(gè)三角形 (右1)

  2.三邊長都是有理數(shù)

  2.只有兩邊長是有理數(shù)

  3.只有一邊長是有理數(shù)

  4.三邊長都不是有理數(shù)

  【仿一仿】:例:在數(shù)軸上表示滿足 的

  解: (右2)

  仿:在數(shù)軸上表示滿足 的

  【賽一賽】:右3是由五個(gè)單位正方形組成的紙片,請(qǐng)你把

  它剪成三塊,然后拼成一個(gè)正方形,你會(huì)嗎?試試看! (右3)

  目的:進(jìn)一步感受“新數(shù)”的存在,而且能把“新數(shù)”表示在數(shù)軸上

  效果:加深了對(duì)“新知”的`理解,鞏固了本課所學(xué)知識(shí).

  第五環(huán)節(jié):課堂小結(jié)

  內(nèi)容:

  1.通過本課學(xué)習(xí),感受有理數(shù)又不夠用了, 請(qǐng)問你有什么收獲與體會(huì)?

  2.客觀世界中,的確存在不是有理數(shù)的數(shù),你能列舉幾個(gè)嗎?

  3.除了本課所認(rèn)識(shí)的非有理數(shù)的數(shù)以外,你還能找到嗎?

  目的:引導(dǎo)學(xué)生自己小結(jié)本節(jié)課的知識(shí)要點(diǎn)及數(shù)學(xué)方法,使知識(shí)系統(tǒng)化.

  效果:學(xué)生總結(jié)、相互補(bǔ)充,學(xué)會(huì)進(jìn)行概括總結(jié).

  第六環(huán)節(jié):布置作業(yè)

  習(xí)題2.1

  六、教學(xué)設(shè)計(jì)反思

 。ㄒ唬┥钍菙(shù)學(xué)的源泉,興趣是學(xué)習(xí)的動(dòng)力

  大量事實(shí)都證明一點(diǎn),與生活貼得越近的東西最容易引起學(xué)習(xí)者的濃厚興趣,才能激發(fā)學(xué)習(xí)者的學(xué)習(xí)積極性,學(xué)習(xí)才可能是主動(dòng)的.本節(jié)課中教師首先用拼圖游戲引發(fā)學(xué)生學(xué)習(xí)的欲望,把課程內(nèi)容通過學(xué)生的生活經(jīng)驗(yàn)呈現(xiàn)出來,然后進(jìn)行大膽置疑,生活中的數(shù)并不都是有理數(shù),那它們究竟是什么數(shù)呢?從而引發(fā)了學(xué)生的好奇心,為獲取新知,創(chuàng)設(shè)了積極的氛圍.在教學(xué)中,不要盲目的搶時(shí)間,讓學(xué)生能夠充分的思考與操作.

  (二)化抽象為具體

  常言道:“數(shù)學(xué)是鍛煉思維的體操”,數(shù)學(xué)教師應(yīng)通過一系列數(shù)學(xué)活動(dòng)開啟學(xué)生的思維,因此對(duì)新數(shù)的學(xué)習(xí)不能僅僅停留于感性認(rèn)識(shí),還應(yīng)要求學(xué)生充分理解,并能用恰當(dāng)數(shù)學(xué)語言進(jìn)行解釋.正是基于這個(gè)原因,在教學(xué)過程中,刻意安排了一些環(huán)節(jié),加深對(duì)新數(shù)的理解,充分感受新數(shù)的客觀存在,讓學(xué)生覺得新數(shù)并不抽象.

 。ㄈ⿵(qiáng)化知識(shí)間聯(lián)系,注意糾錯(cuò)

  既然稱之為“新數(shù)”,那它當(dāng)然不是有理數(shù),亦即不是整數(shù),也不是分?jǐn)?shù),所以“新數(shù)”不可以用分?jǐn)?shù)來表示,這為進(jìn)一步學(xué)習(xí)“新數(shù)”,即第二課時(shí)教學(xué)埋下了伏筆,在教學(xué)中,要著重強(qiáng)調(diào)這一點(diǎn):“新數(shù)”不能表示成分?jǐn)?shù),為無理數(shù)的教學(xué)奠好基.

八年級(jí)數(shù)學(xué)教案 篇4

  教學(xué)任務(wù)分析

  教學(xué)目標(biāo)

  知識(shí)技能

  探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索、了解并掌握等腰梯形的性質(zhì).

  數(shù)學(xué)思考

  能夠運(yùn)用梯形的有關(guān)概念和性質(zhì)進(jìn)行有關(guān)問題的論證和計(jì)算,進(jìn)一步培養(yǎng)學(xué)生的分析問題能力和計(jì)算能力.

  解決問題

  通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學(xué)生體會(huì)圖形變換的方法和轉(zhuǎn)化的思想.

  情感態(tài)度

  在應(yīng)用等腰梯形的性質(zhì)的過程養(yǎng)成獨(dú)立思考的習(xí)慣, 在數(shù)學(xué)學(xué)習(xí)活動(dòng)中獲得成功的體驗(yàn).

  重點(diǎn)

  等腰梯形的性質(zhì)及其應(yīng)用.

  難點(diǎn)

  解決梯形問題的基本方法(將梯形轉(zhuǎn)化為平行四邊形和三角形及正確運(yùn)用輔助線),及梯形有關(guān)知識(shí)的應(yīng)用.

  教學(xué)流程安排

  活動(dòng)流程圖

  活動(dòng)的內(nèi)容和目的

  活動(dòng)1想一想

  活動(dòng)2說一說

  活動(dòng)3畫一畫

  活動(dòng)4做—做

  活動(dòng)5練一練

  活動(dòng)6理一理

  觀察梯形圖片,引入本節(jié)課的學(xué)習(xí)內(nèi)容.

  了解梯形定義、各部分名稱及分類.

  通過畫圖活動(dòng),初步發(fā)現(xiàn)梯形與三角形的'轉(zhuǎn)化關(guān)系.

  探究得到等腰梯形的性質(zhì).

  通過解決具體問題,尋找解決梯形問題的方法.

  通過整理回顧,鞏固知識(shí)、提高能力、滲透思想.

  教學(xué)過程設(shè)計(jì)

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  [活動(dòng)1]

  觀察下圖中,有你熟悉的圖形嗎?它們有什么共同的特點(diǎn)?

  演示圖片,學(xué)生欣賞.

  結(jié)合圖片,教師引導(dǎo)學(xué)生注意這些圖片的共同特征:一組對(duì)邊平行而另一組對(duì)邊不平行.

  由現(xiàn)實(shí)中實(shí)際問題入手,設(shè)置問題情境,引出本課主題.通過學(xué)生觀察圖片和歸納圖形的特點(diǎn),培養(yǎng)學(xué)生的觀察、概括能力.

  [活動(dòng)2]

  梯形定義 一組對(duì)邊平行而另一組對(duì)邊不平行的四邊形叫做梯形.

  學(xué)生根據(jù)梯形概念畫出圖形,教師可以進(jìn)一步引導(dǎo)學(xué)生類比梯形與平行四邊形的區(qū)別和聯(lián)系.

  通過類比,培養(yǎng)學(xué)生歸納、總結(jié)的能力.

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  一些基本概念

 。1)(如圖):底、腰、高.

  (2)等腰梯形:兩腰相等的梯形叫做等腰梯形.

 。3)直角梯形:有一個(gè)角是直角的梯形叫做直角梯形.

  學(xué)生在小學(xué)已經(jīng)對(duì)梯形有一定的感性認(rèn)識(shí),因此教師讓學(xué)生自己介紹(1)中的基本概念,在聆聽學(xué)生發(fā)言后, 教師可以強(qiáng)調(diào):①梯形與四邊形的關(guān)系;

 、谏、下底的概念是由底的長短來定義的,而并不是指位置來說的.

  熟悉圖形,明確概念,為探究圖形性質(zhì)做準(zhǔn)備.

  [活動(dòng)3]

  畫一畫

  在下列所給圖中的每個(gè)三角形中畫一條線段,

 。1)怎樣畫才能得到一個(gè)梯形?

  (2)在哪些三角形中,能夠得到一個(gè)等腰梯形?

  在學(xué)生獨(dú)立探究的基礎(chǔ)上,學(xué)生分組交流.

  教師參與小組活動(dòng),指導(dǎo)、傾聽學(xué)生交流.針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其正確作圖.

  本次活動(dòng)教師應(yīng)重點(diǎn)關(guān)注:

 。1)學(xué)生在活動(dòng)過程中能否發(fā)現(xiàn)梯形與三角形之間的聯(lián)系,他們之間的轉(zhuǎn)化方法.

 。2)學(xué)生能否將等腰三角形轉(zhuǎn)化為等腰梯形.

 。3)學(xué)生能否主動(dòng)參與探究活動(dòng),在討論中發(fā)表自己的見解,傾聽他人的意見,對(duì)不同的觀點(diǎn)進(jìn)行質(zhì)疑,從中獲益.

  等腰梯形的性質(zhì)與等腰三角形相仿,因此在活動(dòng)3中設(shè)計(jì)了第(2)題,在推導(dǎo)等腰梯形性質(zhì)或需要添加輔助線時(shí),可以借助等腰三角形來研究.尤其是根據(jù)等腰三角形是軸對(duì)稱圖形,可得到等腰梯形是軸對(duì)稱圖形這條性質(zhì),為活動(dòng)4種開展探究奠定了基礎(chǔ).

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  [活動(dòng)4]

  做—做

  探索等腰梯形的性質(zhì)(引入用軸對(duì)稱解決問題的思想).

  在一張方格紙上作一個(gè)等腰梯形,連接兩條對(duì)角線.

 。1)這個(gè)圖形是軸對(duì)稱圖形嗎?對(duì)稱軸在哪里?你能發(fā)現(xiàn)哪些相等的線段和相等的角?學(xué)生畫圖并通過觀察猜想;

  (2)這個(gè)等腰梯形的兩條對(duì)角線的長度有什么關(guān)系?

  學(xué)生按照實(shí)驗(yàn)步驟,獨(dú)立完成畫圖過程,觀察圖形,思考教師提出的問題,猜想、驗(yàn)證、歸納結(jié)論.

  針對(duì)不同認(rèn)識(shí)水平的學(xué)生,教師指導(dǎo)學(xué)生活動(dòng).

  師生共同歸納:

 、俚妊菪问禽S對(duì)稱圖形,上下底的中點(diǎn)連線是對(duì)稱軸.

 、诘妊菪蝺裳嗟龋

  ③等腰梯形同一底上的兩個(gè)角相等.

  ④等腰梯形的兩條對(duì)角線相等.

  教學(xué)中要注意引導(dǎo)學(xué)生證明等腰梯形的性質(zhì),尤其在證明“等腰梯形同一底上的兩個(gè)角相等”這條性質(zhì)時(shí),“平移腰”和“作高”這兩種常見的輔助線,在教學(xué)中頭一次出現(xiàn),可以借此機(jī)會(huì),給學(xué)生介紹這兩種輔助線的添加方法.

  [活動(dòng)5]

  練—練

  例1 (教材P118的例1)略.

  例2 如圖,梯形ABCD中,AD∥BC,

  ∠B=70°,∠C=40°,AD=6cm,BC=15cm.

  求CD的長.

  師生共同分析,尋找解決問題的方法和策略.

  例1是等腰梯形性質(zhì)的直接運(yùn)用,請(qǐng)學(xué)生分析、解答,教師聆聽,同時(shí)注意指導(dǎo)學(xué)生,在證明△EAD是等腰三角形時(shí),要用到梯形的定義“上下底互相平行(AD∥BC)”這一點(diǎn).

  分析:設(shè)法把已知中所給的條件都移到一個(gè)三角形中,便可以解決問題.

  其方法是:平移一腰,過點(diǎn)A作AE∥DC交BC于E,因此四邊形AECD是平行四邊形,由已知又可以得到△ABE是等腰三角形(EA=EB),因此CD=EA=EB=BC—EC=BC—AD=9cm.

  解:(略)

  通過題目的練習(xí)與講解應(yīng)讓學(xué)生知道:解決梯形問題的基本思想和方法就是通過添加適當(dāng)?shù)妮o助線,把梯形問題轉(zhuǎn)化為已經(jīng)熟悉的平行四邊形和三角形問題來解決.在教學(xué)時(shí)應(yīng)讓學(xué)生注意它們的作用,掌握這些輔助線的使用對(duì)于學(xué)好梯形內(nèi)容很有幫助.

  問題與情景

  師生行為

  設(shè)計(jì)意圖

  例3已知:如圖,在梯形ABCD中,AD∥BC,∠D=90°,∠CAB=∠ABC,

  BE⊥AC于E.

  求證:BE=CD.

  分析:要證BE=CD,需添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形,其方法是:平移一腰,過點(diǎn)D作DF∥AB交BC于F,因此四邊形ABFD是平行四邊形,則DF=AB,由已知可導(dǎo)出∠DFC=∠BAE,因此Rt△ABE≌Rt△FDC(AAS),故可得出BE=CD.

  證明(略)

  例2與例3這里給出的輔助線均是“平移一腰”,老師們?cè)诮虒W(xué)或練習(xí)中可以根據(jù)學(xué)生的實(shí)際情況,再引導(dǎo)、補(bǔ)充其他輔助線的添加方法,讓學(xué)生多了解、多見識(shí).

  [活動(dòng)6]

  1.小結(jié)

  2.布置作業(yè)

 。1)已知等腰梯形的銳角等于60°它的兩底分別為15cm和49cm,求它的腰長和面積.

  (2)已知:如圖,

  梯形ABCD中,CD//AB,,.

  求證:AD=AB—DC.

 。3)已知,如圖,

  梯形ABCD中,AD∥BC,E是AB的中點(diǎn),DE⊥CE,求證:AD+BC=DC.(延長DE交CB延長線于點(diǎn)F,由全等可得結(jié)論)

  師生歸納總結(jié):

  解決梯形問題常用的方法:

 。1)“平移腰”:把梯形分成一個(gè)平行四邊形和一個(gè)三角形(圖1);

 。2)“作高”:使兩腰在兩個(gè)直角三角形中(圖2);

 。3)“延腰”:構(gòu)造具有公共角的兩個(gè)等腰三角形(圖3);

 。4)“平移對(duì)角線”:使兩條對(duì)角線在同一個(gè)三角形中(圖4);

 。5)“等積變形”,連結(jié)梯形上底一端點(diǎn)和另一腰中點(diǎn),并延長與下底延長線交于一點(diǎn),構(gòu)成三角形(圖5).

  盡量多地讓學(xué)生參與發(fā)言是一個(gè)交流的過程.

  梳理本節(jié)課應(yīng)用過的輔助線添加方法,既可以鍛煉學(xué)生思維,又可以留給學(xué)生繼續(xù)探究的空間.

  學(xué)生通過獨(dú)立思考,完成課后作業(yè),便于發(fā)現(xiàn)問題,及時(shí)查漏補(bǔ)缺.

八年級(jí)數(shù)學(xué)教案 篇5

  一、教學(xué)目標(biāo)

 。ㄒ唬⒅R(shí)與技能:

 。1)使學(xué)生了解因式分解的意義,理解因式分解的概念。

 。2)認(rèn)識(shí)因式分解與整式乘法的相互關(guān)系——互逆關(guān)系,并能運(yùn)用這種關(guān)系尋求因式分解的方法。

 。ǘ⑦^程與方法:

 。1)由學(xué)生自主探索解題途徑,在此過程中,通過觀察、類比等手段,尋求因式分解與因數(shù)分解之間的關(guān)系,培養(yǎng)學(xué)生的觀察能力,進(jìn)一步發(fā)展學(xué)生的類比思想。

 。2)由整式乘法的逆運(yùn)算過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

 。3)通過對(duì)分解因式與整式的乘法的觀察與比較,培養(yǎng)學(xué)生的分析問題能力與綜合應(yīng)用能力。

  (三)、情感態(tài)度與價(jià)值觀:讓學(xué)生初步感受對(duì)立統(tǒng)一的辨證觀點(diǎn)以及實(shí)事求是的科學(xué)態(tài)度。

  二、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):因式分解的概念及提公因式法。

  難點(diǎn):正確找出多項(xiàng)式各項(xiàng)的公因式及分解因式與整式乘法的區(qū)別和聯(lián)系。

  三、教學(xué)過程

  教學(xué)環(huán)節(jié):

  活動(dòng)1:復(fù)習(xí)引入

  看誰算得快:用簡(jiǎn)便方法計(jì)算:

 。1)7/9 ×13-7/9 ×6+7/9 ×2= ;

 。2)-2.67×132+25×2.67+7×2.67= ;

  (3)992–1= 。

  設(shè)計(jì)意圖:

  如果說學(xué)生對(duì)因式分解還相當(dāng)陌生的話,相信學(xué)生對(duì)用簡(jiǎn)便方法進(jìn)行計(jì)算應(yīng)該相當(dāng)熟悉.引入這一步的目的旨在讓學(xué)生通過回顧用簡(jiǎn)便方法計(jì)算——因數(shù)分解這一特殊算法,使學(xué)生通過類比很自然地過渡到正確理解因式分解的概念上,從而為因式分解的掌握掃清障礙,本環(huán)節(jié)設(shè)計(jì)的計(jì)算992–1的值是為了降低下一環(huán)節(jié)的難度,為下一環(huán)節(jié)的理解搭一個(gè)臺(tái)階.

  注意事項(xiàng):學(xué)生對(duì)于(1)(2)兩小題逆向利用乘法的分配律進(jìn)行運(yùn)算的方法是很熟悉,對(duì)于第(3)小題的逆向利用平方差公式的運(yùn)算則有一定的困難,因此,有必要引導(dǎo)學(xué)生復(fù)習(xí)七年級(jí)所學(xué)過的整式的乘法運(yùn)算中的平方差公式,幫助他們順利地逆向運(yùn)用平方差公式。

  活動(dòng)2:導(dǎo)入課題

  P165的探究(略);

  2. 看誰想得快:993–99能被哪些數(shù)整除?你是怎么得出來的?

  設(shè)計(jì)意圖:

  引導(dǎo)學(xué)生把這個(gè)式子分解成幾個(gè)數(shù)的.積的形式,繼續(xù)強(qiáng)化學(xué)生對(duì)因數(shù)分解的理解,為學(xué)生類比因式分解提供必要的精神準(zhǔn)備。

  活動(dòng)3:探究新知

  看誰算得準(zhǔn):

  計(jì)算下列式子:

 。1)3x(x-1)= ;

  (2)(a+b+c)= ;

 。3)(+4)(-4)= ;

 。4)(-3)2= ;

 。5)a(a+1)(a-1)= ;

  根據(jù)上面的算式填空:

 。1)a+b+c= ;

 。2)3x2-3x= ;

 。3)2-16= ;

 。4)a3-a= ;

 。5)2-6+9= 。

  在第一組的整式乘法的計(jì)算上,學(xué)生通過對(duì)第一組式子的觀察得出第二組式子的結(jié)果,然后通過對(duì)這兩組式子的結(jié)果的比較,使學(xué)生對(duì)因式分解有一個(gè)初步的意識(shí),由整式乘法的逆運(yùn)算逐步過渡到因式分解,發(fā)展學(xué)生的逆向思維能力。

  活動(dòng)4:歸納、得出新知

  比較以下兩種運(yùn)算的聯(lián)系與區(qū)別:

  a(a+1)(a-1)= a3-a

  a3-a= a(a+1)(a-1)

  在第三環(huán)節(jié)的運(yùn)算中還有其它類似的例子嗎?除此之外,你還能找到類似的例子嗎?

八年級(jí)數(shù)學(xué)教案 篇6

  總課時(shí):7課時(shí) 使用人:

  備課時(shí)間:第八周 上課時(shí)間:第十周

  第4課時(shí):5、2平面直角坐標(biāo)系(2)

  教學(xué)目標(biāo)

  知識(shí)與技能

  1.在給定的直角坐標(biāo)系下,會(huì)根據(jù)坐標(biāo)描出點(diǎn)的位置;

  2.通過找點(diǎn)、連線、觀察,確定圖形的大致形狀的問題,能進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  過程與方法

  1.經(jīng)歷畫坐標(biāo) 系、描點(diǎn)、連線、看圖以及由點(diǎn)找坐標(biāo)等過程,發(fā)展學(xué)生的數(shù)形結(jié)合思想,培養(yǎng)學(xué)生的合作 交流能力;

  2.通過由點(diǎn)確定坐標(biāo)到根據(jù)坐標(biāo)描點(diǎn)的轉(zhuǎn)化過程,進(jìn)一步培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí)。

  情感態(tài)度與價(jià)值觀

  通過生動(dòng)有趣的教學(xué)活動(dòng),發(fā)展學(xué)生的合情推理能力和豐富的情感、態(tài)度,提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  教學(xué)重點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。

  教學(xué)難點(diǎn):在已知的直角坐標(biāo)系下找點(diǎn)、連線、觀察,確定圖形的大致形狀。

  教學(xué)過程

  第一環(huán)節(jié) 感 受生活中的情境,導(dǎo)入新課(10分鐘,學(xué)生自己繪圖找點(diǎn))

  在上節(jié)課中我們學(xué)習(xí)了平面直角坐標(biāo)系的定義,以及橫軸、縱軸、點(diǎn) 的坐標(biāo)的定義,練習(xí)了在平面直角坐標(biāo)系中由點(diǎn)找坐標(biāo),還探討了橫坐標(biāo)或縱坐標(biāo)相同的.點(diǎn)的連線與坐標(biāo)軸的關(guān)系,坐標(biāo)軸上點(diǎn)的坐標(biāo)有什么特點(diǎn)。

  練習(xí):指出下列 各點(diǎn)以及所在象限或坐標(biāo)軸:

  A(-1,-2.5),B(3,-4),C( ,5),D(3,6),E (-2.3,0),F(xiàn)(0, ), G(0,0) (抽取學(xué)生作答)

  由點(diǎn)找坐標(biāo)是已知點(diǎn)在直角坐標(biāo) 系中的位置,根據(jù)這點(diǎn)在方格紙上對(duì)應(yīng)的x軸、y軸上的數(shù)字寫出它的坐標(biāo),反過來,已知坐標(biāo),讓 你在直角坐標(biāo)系中找點(diǎn),你能找到嗎?這就是本節(jié)課的內(nèi)容。

  第二環(huán)節(jié) 分類討論,探索新知.(15分鐘,小組討論,全班交流)

  1.請(qǐng)同學(xué)們拿出準(zhǔn)備好的方格紙,自己建立平面直角坐標(biāo)系,然后按照我給出的坐標(biāo),在直角坐標(biāo)系中描點(diǎn),并依次用線段連接起來。

  (-9,3),(-9,0),(-3,0),( -3,3)

  ( 學(xué)生操作完畢后)

  2.(出示投影)還是在這個(gè)平面直角坐標(biāo)系中,描出下列各組內(nèi)的點(diǎn)用線段依次連接起來。

  (1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

  (2)(3.5,9),(2,7),(3,7),(4,7) ,(5,7),(3.5,9);

  (3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

  (4)(2,5),( 0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

  觀察所得的圖形,你覺得它像什么?

  分成4人小組,大家合作在剛才建立的平面直角坐標(biāo)系中(選出小組中最好的)添畫。各人分工,每人畫一小題?茨膫(gè)小組做得最快?

  (出示學(xué)生的作品)畫出是 這樣的嗎?這幅圖畫很美,你們覺得它像什么?

  這個(gè)圖形像一棟房子旁邊還有一棵大樹。

  3.做一做

  (出示投影)

  在書上已建立的直角坐標(biāo)系畫,要求每位同學(xué)獨(dú)立完成。

  (學(xué)生描點(diǎn)、畫圖)

  (拿出一位做對(duì)的學(xué)生的作品投影)

  你們觀察所得的圖形和它是否一樣?若一樣,你能判斷出它像什么呢?

  (像貓臉)

  第三環(huán)節(jié) 學(xué)有所用.(10分鐘,先獨(dú)立完成,后小組討論)

  (補(bǔ)充)1.在直角坐標(biāo)系中描出下列各點(diǎn),并將各組內(nèi)的點(diǎn)用線段順次連接起來。

  (1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

  (2)(0,0),(4,-3),(8,0),(4,3),(0,0);

  (3)(2,0)

  觀察所得的圖形,你覺得它像什么?(像移動(dòng)的菱形)

  2.在直角坐標(biāo)系中,設(shè)法找到若干個(gè)點(diǎn)使得連接各點(diǎn)所得的封閉圖形是如下圖所示的十字。

  先獨(dú)立完成,然后小組討論是否正確。

  第四環(huán)節(jié) 感悟與收獲(5分鐘,學(xué)生總結(jié),全班交流)

  本節(jié)課在復(fù)習(xí)上節(jié)課的基礎(chǔ)上,通過找點(diǎn)、連 線、觀察,確定圖形的大致形狀,進(jìn)一步掌握平面直角坐標(biāo)系的基本內(nèi)容。

  在例題和練習(xí)中,我們畫出了不少美麗的圖形,自己設(shè)計(jì)一些圖形,并把圖形放在直角坐標(biāo)系下,寫出點(diǎn)的坐標(biāo)。

  第五環(huán)節(jié) 布置作業(yè)

  習(xí)題5、4

  A組(優(yōu)等生)1、2、3

  B組(中等生)1、2

  C組(后三分之一生)1、2

八年級(jí)數(shù)學(xué)教案 篇7

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時(shí)在實(shí)際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

  本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計(jì)算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時(shí)教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個(gè)探究欄目,研究了勾股定理在解決實(shí)際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對(duì)勾股定理的作用有一定的認(rèn)識(shí)。

  [教學(xué)目標(biāo)]

  一、 知識(shí)與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡(jiǎn)單的實(shí)際問題

  3學(xué)會(huì)簡(jiǎn)單的合情推理與數(shù)學(xué)說理

  二、 過程與方法

  引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動(dòng)手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識(shí)。

  三、 情感與態(tài)度目標(biāo)

  通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動(dòng)中,學(xué)生親自動(dòng)手對(duì)勾股定理進(jìn)行探索與驗(yàn)證,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神,以及自主學(xué)習(xí)的能力。

  四、 重點(diǎn)與難點(diǎn)

  1、探索和證明勾股定理

  2熟練運(yùn)用勾股定理

  [教學(xué)過程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請(qǐng)教數(shù)學(xué)知識(shí)時(shí)的對(duì)話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請(qǐng)問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請(qǐng)問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也!

  2、教師展示圖片并介紹第二情景

  畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時(shí),發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請(qǐng)你也動(dòng)手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點(diǎn)呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因?yàn)檫呴L為 的正方形面積加上4個(gè)直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡(jiǎn)得 。

  第二種方法:邊長為 的正方形可以看作是由4個(gè)直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個(gè)邊長為 的正方形“小洞”。

  因?yàn)檫呴L為 的正方形面積等于4個(gè)直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡(jiǎn)得 。

  這種證明方法很簡(jiǎn)明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對(duì)數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運(yùn)用勾股定理在實(shí)際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的'發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運(yùn)用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實(shí)際問題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個(gè)直角三角形表示正方形面積,再次驗(yàn)證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個(gè)梳理知識(shí)的機(jī)會(huì),通過提示性的引導(dǎo),讓學(xué)生對(duì)勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請(qǐng)同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

【八年級(jí)數(shù)學(xué)教案】相關(guān)文章:

八年級(jí)的數(shù)學(xué)教案12-14

八年級(jí)數(shù)學(xué)教案06-18

初中八年級(jí)數(shù)學(xué)教案11-03

八年級(jí)的數(shù)學(xué)教案15篇12-14

【熱門】八年級(jí)數(shù)學(xué)教案11-29

八年級(jí)數(shù)學(xué)教案【熱】11-29

八年級(jí)數(shù)學(xué)教案【薦】12-06

【熱】八年級(jí)數(shù)學(xué)教案12-07

八年級(jí)上冊(cè)數(shù)學(xué)教案11-09

人教版八年級(jí)數(shù)學(xué)教案11-04