- 相關(guān)推薦
梯形——初中數(shù)學第一冊教案
作為一名人民教師,時常需要編寫教案,教案是教學活動的總的組織綱領(lǐng)和行動方案。那么教案應該怎么寫才合適呢?下面是小編為大家整理的梯形——初中數(shù)學第一冊教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
梯形——初中數(shù)學第一冊教案 1
教學目標:
1、經(jīng)歷探索梯形的有關(guān)概念、性質(zhì)的過程,在簡單的操作活動中發(fā)展學生的說理意識、主動探究的習慣,初步體會平移、軸對稱的有關(guān)知識在研究等腰梯形性質(zhì)中的運用;
2、探索并掌握梯形的有關(guān)概念和基本性質(zhì),探索并了解等腰梯形的性質(zhì),能用它們解決簡單的問題。
教學重點:
探索梯形的有關(guān)概念、性質(zhì)及其應用。
教學難點:
探索等腰梯形的性質(zhì)。
教學過程設計:
一、回顧——知識的連續(xù)和類比
本章中已經(jīng)研究了哪幾種特殊四邊形?
二、創(chuàng)設問題情境——引出梯形概念
觀察一組圖片,在圖中有你熟悉的圖形嗎?
三、探究:
。ㄒ唬┛纯磳W學——梯形的有關(guān)概念
1、梯形:一組對邊平行而另一組對邊不平行的四邊形叫做梯形。一些基本概念(如圖):底、腰、高。
2、等腰梯形:兩腰相等的梯形叫做等腰梯形。
3、直角梯形:一腰和底垂直的梯形叫做直角梯形。
。ǘ┳鲆蛔雳D―探索等腰梯形的性質(zhì)(引入用軸對稱解決問題的思想)
在一張方格紙上作一個等腰梯形,連接兩條對角線
問題一:圖中有哪些相等的線段?有哪些相等的角?這個圖形是軸對稱圖形嗎?學生畫圖并通過觀察猜想;
問題二:這個等腰梯形的兩條對角線的長度有什么關(guān)系?
結(jié)論:
①等腰梯形是軸對稱圖形,對稱軸是連接兩底中點的直線。
、诘妊菪瓮坏咨系膬蓚內(nèi)角相等,兩條對角線相等。
。ㄈ┳鲆蛔,比一比——等腰梯形性質(zhì)的簡單應用
1.如圖1所示,在等腰梯形中∠B=70度,你能確定其他三個內(nèi)角的度數(shù)嗎?
2.如圖2所示,將等腰梯形ABCD的一條對角線BD平移到CE的位置,則圖中有平行四邊形嗎?△CAE是等腰三角形嗎?為什么?
。ㄋ模┳h一議
如圖,四邊形ABCD是等腰梯形,將腰AB平移到DE的位置。
問題一:DE把四邊形ABCD分成怎樣的`兩個圖形?
問題二:圖中有哪些相等的線段,相等的角?
注意:先讓學生觀看整個平移過程,使學生體會平移思想在研究梯形問題時的運用,然后再討論完成問題。
(五)講解例1――等腰梯形性的運用
如圖,在等腰梯形ABCD中,AD=2,BC=4,高DF=2,求CF和腰DC的長。
。康模菏箤W生學會用平移的思想解決有關(guān)梯形問題)
。┓此寂c小結(jié)
1.我們今天學習了哪幾種梯形?主要研究了哪一種梯形?
2.等腰梯形有哪些性質(zhì)?
3.今天我們在研究梯形問題時用了哪些方法將梯形問題轉(zhuǎn)化為其他圖形的問題?
梯形——初中數(shù)學第一冊教案 2
教學目標:
情意目標:培養(yǎng)學生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標:能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學生探究問題、自主學習的能力。
認知目標:了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學重點、難點
重點:等腰梯形性質(zhì)的探索;
難點:梯形中輔助線的添加。
教學課件:
PowerPoint演示文稿
教學方法:
啟發(fā)法、
學習方法:
討論法、合作法、練習法
教學過程:
。ㄒ唬⿲
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習:下列圖形中哪些圖形是梯形?(投影)
4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
(二)等腰梯形性質(zhì)的'探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
(1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
。2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學生回顧本課教學內(nèi)容,并提出尚存問題;
學生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
梯形——初中數(shù)學第一冊教案 3
一、教學目標:
1.通過探究教學,使學生掌握“同一底上兩底角相等的梯形是等腰梯形”這個判定方法,及其此判定方法的證明.
2.能夠運用等腰梯形的性質(zhì)和判定方法進行有關(guān)的論證和計算,體會轉(zhuǎn)化的思想,數(shù)學建模的思想,會用分析法尋求證明題思路,從而進一步培養(yǎng)學生的分析能力和計算能力.
3.通過添加輔助線,把梯形的問題轉(zhuǎn)化成平行四邊形或三角形問題,使學生體會圖形變換的方法和轉(zhuǎn)化的思想.
二、重點、難點
1.重點:掌握等腰梯形的判定方法并能運用.
2.難點:等腰梯形判定方法的運用.
三、例題的意圖分析
本節(jié)課安排的例題與練習較多,可供老師們選用.
例1是教材P119的例2,這是一道計算題,講解時要讓學生注意,已知中并沒有給出等腰梯形的條件,它需要先判定梯形ABCD為等腰梯形,然后再用其性質(zhì)得出結(jié)論.
例2、例3、例4都是補充的題目.其中例2是一道文字題,這道題在進行證明時,可采用“平移對角線”或“作高”兩種不同的方法,通過講解例2,可以再次給學生介紹解決梯形問題時輔助線的添加方法.
例3是一道證明等腰梯形的題,它需要先證明其四邊形是梯形,即先證出EG∥AB,此時還要由AE,BG延長交于O,說明EG≠AB,才能得出四邊形ABGE是梯形.然后再利用同底上的兩角相等得出這個梯形是等腰梯形.選講此題的目的是為了讓學生了解和掌握證明一個四邊形是等腰梯形的步驟與方法.
例4是一道作圖題,新教材P119的練習4就是一道畫梯形圖的題,此例4與練習4相同.通過此題的講解與練習,就是要加強學生對梯形概念的理解,并了解梯形作圖的一般方法.讓學生知道梯形的'畫圖題,也常常是通過分析,找出需要添加的輔助線,先畫出三角形或四邊形,再根據(jù)它們之間的聯(lián)系畫出所要求的梯形.
四、課堂引入
1.復習提問:
。1)什么樣的四邊形叫梯形,什么樣的梯形是直角梯形、等腰梯形?
。2)等腰梯形有哪些性質(zhì)?它的性質(zhì)定理是怎樣證明的?
。3)在研究解決梯形問題時的基本思想和方法是什么?常用的輔助線有哪幾種?
我們已經(jīng)掌握了等腰梯形的性質(zhì),那么又如何來判定一個梯形是否是等腰梯形呢?今天我們就共同來研究這個問題.
2.【提出問題】:前面所學的特殊四邊形的判定基本上是性質(zhì)的逆命題.等腰梯形同一底上兩個角相等的逆命題是什么?
命題:同一底上的兩個角相等的梯形是等腰梯形
問:這個命題是否成立?能否加以證明,引導學生寫出已知、求證.
啟發(fā):能否轉(zhuǎn)化為特殊四邊形或三角形,鼓勵學生大膽猜想,和求證.
已知:如圖,在梯形ABCD中,AD∥BC,∠B=∠C.
求證:AB=CD.
分析:我們學過“如果一個三角形中有兩個角相等,那么它們所對的邊相等.”因此,我們只要能將等腰梯形同一底上的兩個角轉(zhuǎn)化為等腰三角形的兩個底角,命題就容易證明了.
證明方法1:過點D作DE∥AB交BC于點F,得到△DEC.
∵AB∥DE, ∴∠B=∠1,
∵∠B=∠C, ∴∠1=∠C. ∴DE=DC.
又∵AD∥BC, ∴DE=AB=DC.
證明時,可以仿照性質(zhì)證明時的分析,來啟發(fā)學生添加輔助線DE.
證明方法二:用常見的梯形輔助線方法:過點A作AE⊥BC, 過D作DF⊥BC,垂足分別為E、F(見圖一).
證明方法三: 延長BA、CD相交于點E(見圖二). 圖一 圖二
通過證明:驗證了命題的正確性,從而得到:等腰梯形判定方法
等腰梯形判定方法 在同一底上的兩個角相等的梯形是等腰梯形.
幾何表達式:梯形ABCD中,若∠B=∠C,則AB=DC.
【注意】等腰梯形的判定方法:①先判定它是梯形,②再用“兩腰相等”“或同一底上的兩個角相等”來判定它是等腰梯形.
五、例、習題分析
例1(教材P119的例2)
例2(補充) 證明:對角線相等的梯形是等腰梯形.
已知:如圖,梯形ABCD中,對角線AC=BD.
求證:梯形ABCD是等腰梯形.
分析:證明本題的關(guān)鍵是如何利用對角線相等的條件來構(gòu)造等腰三角形.在ΔABC和ΔDCB中,已有兩邊對應相等,要能證∠1=∠2,就可通過證ΔABC ≌ΔDCB得到AB=DC.
證明:過點D作DE∥AC,交BC的延長線于點E,
又 AD∥BC,∴ 四邊形ACED為平行四邊形, ∴ DE=AC .
∵ AC=BD , ∴ DE=BD ∴ ∠1=∠E
∵ ∠2=∠E , ∴ ∠1=∠2
又 AC=DB,BC=CE, ∴ ΔABC≌ΔDCB. ∴ AB=CD.
∴ 梯形ABCD是等腰梯形.
說明:如果AC、BD交于點O,那么由∠1=∠2可得OB=OC,OA=OD ,即等腰梯形對角線相交,可以得到以交點為頂點的兩個等腰三角形,這個結(jié)論雖不能直接引用,但可以為以后解題提供思路.
問:能否有其他證法,引導學生作出常見輔助線,如圖,作AE⊥BC,DF⊥BC,可證 RtΔABC≌RtΔCAE,得∠1=∠2.
例3(補充) 已知:如圖,點E在正方形ABCD的對角線AC上,CF⊥BE交BD于G,F(xiàn)是垂足.求證:四邊形ABGE是等腰梯形.
分析:先證明OE=OG,從而說明∠OEG=45°,得出EG∥AB,由AE,BG延長交于O,顯然EG≠AB.得出四邊形ABGE是梯形,再利用同底上的兩角相等得出它為等腰梯形.
例4 (補充)畫一等腰梯形,使它上、下底長分別4cm、12cm,高為3cm,并計算這個等腰梯形的周長和面積.
分析:梯形的畫圖題常常通過分析,找出需添加的輔助線,歸結(jié)為三角形或平行四邊形的作圖,然后,再根據(jù)它們之間的聯(lián)系,畫出所要求的梯形.
如圖,先算出AB長,可畫等腰三角形ABE,然后完成 AECD的畫圖.
畫法:
、佼嫤BE,使BE=12—4=8cm.
、谘娱LBE到C使EC=4cm.
③分別過A、C作AD∥BC ,CD∥AE,AD、CD交于點D.
四邊形ABCD就是所求的等腰梯形.
解:梯形ABCD周長=4+12+5×2=26cm .
答:梯形周長為26cm,面積為24 .
六、隨堂練習
1.下列說法中正確的是( ).
。ˋ)等腰梯形兩底角相等
(B)等腰梯形的一組對邊相等且平行
。–)等腰梯形同一底上的兩個角都等于90度
。―)等腰梯形的四個內(nèi)角中不可能有直角
2.已知等腰梯形的周長25cm,上、下底分別為7cm、8cm,則腰長為_______cm.
3.已知等腰梯形中的腰和上底相等,且一條對角線和一腰垂直,求這個梯形的各個角的度數(shù).
4.已知,如圖,在四邊形ABCD中,AB>DC,∠1=∠2,AC=BD,求證:四邊形ABCD是等腰梯形.
。宰C ,AD=BC, ,∴ AB∥DC)
5.已知,如圖,E、F分別是梯形ABCD的兩底AD、BC的中點,且EF⊥BC,求證:梯形ABCD是等腰梯形.
七、課后練習
1.等腰梯形一底角 ,上、下底分別為8,18,則它的腰長為______,高為______,面積是_________.
2.梯形兩條對角線分別為15,20,高為12,則此梯形面積為_________.
3.已知:如圖,在四邊形ABCD中,∠B=∠C,AB與CD不平行,且AB=CD.求證:四邊形ABCD是等腰梯形.
4.如圖4.9-9,梯形ABCD中,AB∥CD,AD=BC,CE⊥AB于E,若AC⊥BD于G.求證:CE= (AB+CD).
【梯形——初中數(shù)學第一冊教案】相關(guān)文章:
中班數(shù)學梯形教案12-11
中班數(shù)學有趣的梯形教案01-07
認識梯形數(shù)學教案02-11
數(shù)學教案-梯形面積計算04-03
中班數(shù)學活動教案:梯形02-27
中班數(shù)學教案:梯形02-27
數(shù)學教案梯形面積計算07-06
中班數(shù)學認識梯形教案02-21
大班數(shù)學認識梯形教案11-25
認識梯形中班數(shù)學教案01-06